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Observation of non-Abelian Anderson localization and transition in topolectrical circuits
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Anderson localization, which originates from the wave interference between multiple-scattering paths, has
been widely explored in quantum and classical systems with disordered Abelian gauge potentials. Recently,
the interplay between disorder and non-Abelian gauge fields has been theoretically investigated, revealing
non-Abelian Anderson localization and transition without Abelian analogy. Due to the limitation on engineering
non-Abelian gauge potentials with disorder, the experimental observation of non-Abelian Anderson phenomena
is still lacking. Here, we report on the experimental realization of non-Abelian Anderson localization and
transition based on engineered topolectrical circuits, which are directly mapped to the quasiperiodic Aubry-
André Harper model with non-Abelian gauge fields. Disorder can be suitably introduced into the effective
non-Abelian coupling matrices by randomly setting the values of coupling and grounding circuit elements.
In this case, different types of non-Abelian Anderson phases, including the delocalization phase, coexisting
states with localized and delocalized spatial profiles, and the localization phase, can be clearly observed by
measuring the site-resolved impedance spectra and voltage dynamics. Our proposal provides a flexible platform
to investigate Anderson localization and transition driven by non-Abelian gauge potentials with disorder and
could have potential applications in the electronic signal control.
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I. INTRODUCTION

Anderson localization [1], which is a ubiquitous wave phe-
nomenon arising from the destructive interference of waves
scattered off by uncorrelated static disorder, has been widely
realized in many artificial systems, including ultracold atoms
[2–6], photonics [7–17], ultrasound wave [18,19], electrical
circuits [20], and so on [21–24]. Except for Anderson localiza-
tion in disordered systems, the Aubry-André-Harper (AAH)
model [25,26], a paradigmatic example of a one-dimensional
(1D) quasicrystal, with a truly incommensurate potential can
undergo a sudden metal-insulator phase transition at a crit-
ical strength of the quasiperiodic potential [27–30]. At the
critical point, the AAH model can be reduced to the Harper
equation, which can be mapped onto the two-dimensional
(2D) Hofstadter model on a square lattice with a nontriv-
ial topology [31–34]. In recent years, the 1D AAH model
has been experimentally realized in many classical systems;
both metal-insulator phase transition and topological edge
states have been directly observed. In addition, the topolog-
ical triple-phase transition, where the changing of a single
parameter simultaneously gives rise to the metal-insulator
transition, topological phase transition, and the parity-time
symmetry phase transition, was theoretically proposed and
experimentally realized [35–40]. Investigations of Anderson
localization and transition of the 1D AAH model, especially in
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the experimental aspect, are mainly focused on systems with
quasiperiodic Abelian gauge potentials.

Different from the Abelian gauge field, Yang and Mills
[41] proposed the concept of non-Abelian gauge fields, which
leverage the internal degrees of freedom of particles, to de-
scribe the interaction between nucleons. Recently, researchers
have extended the non-Abelian gauge fields into real spaces
and parameter spaces, giving opportunities to explore non-
Abelian physics in artificial systems, such as cold atoms [42],
exciton-polaritons [43–46], mechanics and acoustics [47–49],
electrical circuits [50,51], and photonics [52,53]. For ex-
ample, the multiple-band topology has been revealed using
non-Abelian topological charges [54], and the non-Abelian
braiding has also been realized in some photonic and acoustic
structures [55,56]. Non-Abelian Anderson localization and
transition have also been theoretically investigated using the
1D AAH model with non-Abelian gauge potentials [57].
However, due to the limitation on engineering disordered
non-Abelian gauge potentials, experimental observations of
non-Abelian Anderson localizations and metal-insulator tran-
sitions are still lacking.

In this paper, we report on the experimental realization of
non-Abelian Anderson localization and transition based on
engineered topolectrical circuits. By mapping eigenmodes of
the 1D non-Abelian AAH model to the modes of designed
electrical circuits, non-Abelian Anderson localization and
metal-insulator transition can be realized. Based on the flexi-
bly of circuit connections and groundings, different strengths
of disorder can be easily implemented in the non-Abelian
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AAH circuits. In this case, different types of non-Abelian
Anderson phases, including the delocalization phase, coexist-
ing states with localized and delocalized eigenstates, and the
localization phase, can be clearly observed by measuring the
site-resolved impedance spectra and voltage dynamics. In this
paper, we suggest a way to investigate the interplay between
disorder, non-Abelian gauge potentials, and metal-insulator
transitions, which could have potential applications in elec-
tronic signal control.

II. THEORY OF NON-ABELIAN ANDERSON
LOCALIZATION AND TRANSITION

IN ELECTRICAL CIRCUITS

We consider a 1D non-Abelian AAH quasiperiodic model,
as shown in Fig. 1(a). Each lattice site contains two inter-
nal degrees of freedom, providing a pair of pseudospins of
|↑〉 = [1, 0]T and |↓〉 = [0, 1]T . The coupling matrix between
adjacent sites is marked by M. Meanwhile, the quasiperiodic
onsite modulation Un is applied to the non-Abelian AAH
model. In this case, the Hamiltonian of the system with open
boundaries can be written as

H =
N∑

n=1

(ψ+
n Unψn) +

N−1∑
n=2

(ψ+
n+1Mψn + ψ+

n−1M+ψn), (1)

where ψ+
n = [ψ+

n,↑, ψ+
n,↓] (ψn = [ψn,↑, ψn,↓]T ) is the two-

component creation (annihilation) operator at the site n. Here,
N is the total number of the lattice sites. We set the coupling
matrix in the form of M = [ cos(q) sin(q)

−sin(q) cos(q)], with q determin-
ing the coupling strength. In addition, the on-site modulation
matrix is written as Un = 2J[ cos(q)cos(2πχn) −sin(q)sin(2πχn)

−sin(q)sin(2πχn) cos(q)cos(2πχn) ]
at the nth site, where J is the modulation strength and χ is
an irrational number to introduce the quasiperiodic modula-
tion. In the following, we set q = 0.3π and χ = (

√
5−1)/2.

The wave function in the non-Abelian AAH model can be
expressed as |�〉 = ∑N

n=1[ϕψn,↑, ϕψn,↓ ][ψ+
n,↑, ψ+

n,↓]T |0〉, where
ϕψn,↑ (ϕψn,↓) represents the probability amplitude of |↑〉 (|↓〉)
on the nth lattice site. Solving the steady-state Schrödinger
equation H |�〉 = ε|�〉, the eigenequation of the system can
be described by

ε

(
ϕψn,↑
ϕψn,↓

)
= M

(
ϕψn+1,↑
ϕψn+1,↓

)
+ M+

(
ϕψn−1,↑
ϕψn−1,↓

)
+ Un

(
ϕψn,↑
ϕψn,↓

)
. (2)

We note that the experimental realization of such a 1D
non-Abelian AAH model is not an easy task, which requires
the non-Abelian modulation of both site couplings and the
on-site potential. How to construct a suitable platform to
simulate this system is still an open question. Based on the
similarity between circuit Laplacian and lattice Hamiltonian
[20,50,51,58–83], electrical circuits can be used as an ideal
platform to achieve the 1D non-Abelian AAH model. The
schematic diagram for a unit cell of the designed electrical
circuit is shown in Fig. 1(b). Here, to realize the non-Abelian
coupling matrix, a pair of circuit nodes connected by the
capacitor C are considered to form an internal degree at
each lattice site. Voltages at these two nodes are expressed
as V1,nσ

and V2,nσ
(σ = |↑〉, |↓〉, and n = 1, 2, …, N). In

this case, we can construct two decoupled sectors VA,nσ
=

(V1,nσ
− V2,nσ

)/
√

2 and VS,nσ
= (V1,nσ

+ V2,nσ
)/

√
2 of de-

signed electrical circuits, where the effective coupling of the
antisymmetric sector VA can be mapped to non-Abelian AAH
model. The negative (positive) intersite coupling of −cos(q)
and −sin(q) [cos(q) and sin(q)] can be realized by connect-
ing two node pairs by the capacitor Cc = Ccos(q) and Cs =
Csin(q) with (without) a cross. To realize the non-Abelian on-
site modulation, two node pairs belonging to the same lattice
site are needed to be suitably connected and grounded. Specif-
ically, the positive (negative) nondiagonal elements in the
modulation matrix Un can be constructed by connecting two
node pairs at the nth site through the site-dependent capacitors
Cn′ = 2CJsin(q)sin(2πχn) without (with) a cross. The diago-
nal elements of Un are realized by grounding circuit nodes
with site-dependent capacitors Cn = 2CJcos(q)cos(2πχn). In
addition, there are some negative values of Cn at different
circuit nodes due to the cosine modulation. To eliminate the
appearance of negative values of Cn, we ground a constant
capacitor Cu at each node (equivalent to adding a constant
potential in the non-Abelian AAH model). It is noted that
the added constant potential does not influence the phase
transition properties of the non-Abelian AAH model. In this
case, the diagonal elements of the effective potential matrix
[Cu + 2CJ cos(q)cos(2πχn) −2CJ sin(q)sin(2πχn)

−2CJ sin(q)sin(2πχn) Cu + 2CJ cos(q)cos(2πχn)] are always larger
than zero, so that the quasiperiodic grounding capacitor Cu +
2CJcos(q)cos(2πχn) is positive at each node. Each circuit
node is also grounded by an inductor Lg. Through the ap-
propriate setting of grounding and connecting, the circuit
eigenequation can be derived as

(
f 2
0

f 2
− 2 − 2

Cc

C
− 2

Cs

C
− Cu

C
− Cn′

C

)∣∣∣∣∣VA,n↑

VA,n↓

∣∣∣∣∣
= −

([
Cc
C

Cs
C

−Cs
C

Cc
C

]∣∣∣∣∣VA,n+1↑

VA,n+1↓

∣∣∣∣∣ +
[

Cc
C −Cs

C
Cs
C

Cc
C

]∣∣∣∣∣VA,n−1↑

VA,n−1↓

∣∣∣∣∣
)

+
[

Cn
C −Cn′

C

−Cn′
C

Cn
C

]∣∣∣∣∣VA,n↑

VA,n↓

∣∣∣∣∣, (3)

where f is the eigenfrequency ( f0 = 1/2π
√

LgC) of the de-
signed electrical circuit. Details for the derivation of circuit
eigenequations are provided in Appendix A. It is shown
that the eigenequation of the designed electrical circuit pos-
sesses the same form as Eq. (1). The probability amplitudes
for the 1D non-Abelian AAH model ϕψn,↑ and ϕψn,↓ are
mapped to the voltages of pseudospins VA,n↑ and VA,n↓ . The
eigenfrequency of the circuit is related to the eigenenergy

in the form of ε = f 2
0

f 2 − 2−2Cc
C − 2Cs

C − Cu
C − Cn′

C . The effec-

tive non-Abelian matrices are given by M = [
Cc
C

Cs
C

− Cs
C

Cc
C

] and

Un = [
Cn
C − Cn′

C

− Cn′
C

Cn
C

]. In this case, we have achieved the above-

proposed non-Abelian AAH model in electrical circuits. The
strength of disorder on the on-site modulation matrix can be
changed by adjusting the value of CJ .

To investigate the Anderson transitions in the designed
non-Abelian AAH circuits, we calculate the inverse par-
ticipation ratio IPR = ∑N

n=1 |VA,nσ
|4/(

∑
n |VA,nσ

|2)
2

of all
eigenstates for the designed electrical circuit with different
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FIG. 1. Numerical results on the non-Abelian Anderson localization in electrical circuits. (a) Schematic diagram of the one-dimensional
(1D) non-Abelian Aubry-André-Harper (AAH) quasiperiodic model. Each lattice site contains two internal degrees of freedom marked by |↑〉
and |↓〉. M represents the coupling matrix between two adjacent sites. Un defines the onsite modulation matrix of site n. (b) Illustrations of the
non-Abelian hopping matrix in electrical circuits between two sites enclosed by the black block in (a). The grounding capacitors and inductors
are shown in the right inset. (c) The calculated inverse participation ratio (IPR) of the non-Abelian AAH circuit vs the strength of disorder
(CJ ). Four regimes separated by three critical values of CJ = 0.714nF , 1.4nF, and 1nF correspond to the delocalization phase, the coexistence
phase I, the coexistence phase II, and localization phase, respectively. Other circuit parameters are set as C = 1nF , Lg = 33uH , Cu = 2.5nF .
(d)–(g) Spatial profiles of two eigenstates of i = 640 (the orange line) and i = 1200 (the blue line) with disorder strength being CJ = 0.3nF ,
0.8nF, 1.2nF, and 2.0nF.

values of CJ in the range of [0nF, 3nF]. It is noted that
the IPR of an extended state is extremely small, while it re-
mains finite for a localized state. In the following calculation,
other circuit parameters are set as C = 1nF , Lg = 33uH , and
Cu = 2.5nF , respectively. Obviously, the IPR phase diagram

in Fig. 1(c) provides four regimes separated by three critical
values of CJ = 0.714nF , 1.4nF, and 1nF (marked by three
white lines). When the strength of disorder (CJ ) is sufficiently
small (<0.714nF), the values of calculated IPRs are approxi-
mately vanishing for all eigenstates, indicating all eigenstates
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TABLE I. A few representative examples on capacitances.

Formula Precision values Finite precision Realization

Cc Ccos(0.3π ) 0.5878nF 0.59nF 470pF + 120pF
CS Csin(0.3π ) 0.8090nF 0.81nF 820pF
Cn 2CJ cos(q)cos(2πχn) 1.4305nF (n = 2) 1.43nF 1nF + 430pF
Cn′ 2CJ sin(q)sin(2πχn′) 2.5681nF (n′ = 2) 2.57nF 2nF + 470pF + 100pF
Cu Cu 2.5nF 2.5nF 2nF + 470pF + 30pF
Lg Lg 33uH 33uH 33uH

are extended states, and the non-Abelian AAH circuit is in the
delocalization phase. Figure 1(d) presents spatial profiles of
two eigenstates of i = 640 and 1200 (i is the state index) with
CJ = 0.3nF . It is clearly shown that these two eigenstates ex-
hibit extended spatial distributions. Two types of coexistence
phases—that is, the localized and extended states can be found
at the same disorder strength—emerge within the regime from
0.714nF to 1.4nF. These two coexistence phases are separated
by the critical value of CJ = 1nF . We mark these two phases
as coexistence phases I and II. In Figs. 1(e) and 1(f), the spatial
profiles of two eigenstates (i = 640 and 1200) are plotted with
CJ = 0.8nF and 1.2nF, respectively. We find that one eigen-
state of i = 1200 (640) exhibits the strong localization and the
other eigenstate of i = 640 (1200) is delocalized in the whole
structure with CJ = 0.8nF (1.2nF), indicating the appearance
of coexistence phase in the quasiperiodic non-Abelian AAH
circuit. As CJ further increases to a value >1.4nF, the system
enters the localization phase verified by the large value of
IPRs for all eigenstates. The calculated spatial profiles of two
eigenstates (i = 640 and 1200) further confirm that the sys-
tem enters the localization phase with CJ = 2.0nF , as shown
in Fig. 1(g). Above numerical results clearly show that the
non-Abelian Anderson transition from delocalized states to
coexistence phases and from coexistence phases to localized
states can be realized in our designed non-Abelian AAH cir-
cuits with different strengths of disorder on the modulation
matrix.

III. EXPERIMENTAL OBSERVATION OF NON-ABELIAN
ANDERSON LOCALIZATION AND TRANSITION

IN ELECTRICAL CIRCUITS

To experimentally observe non-Abelian Anderson localiza-
tion and transition, the designed non-Abelian AAH circuits
are fabricated. The photographic image of two coupled sites
for the circuit sample is displayed in the left chart of Fig. 2(a).
The right chart shows the photo of grounding at two sites.
Here, the capacitor C (marked by pink) is used to connect a
pair of circuit nodes to construct an internal degree at each
site. The adjacent node pairs are connected by capacitors
Cc and Cs (marked by orange and green) with (without) a
cross to realize the negative (positive) intersite coupling. In
addition, the positive (negative) nondiagonal elements in the
modulation matrix Un can be fulfilled by coupling node pairs
(belonging to two internal degrees at a single site) through
the capacitor Cn′ marked by blue (red) without (with) a cross.
The grounding inductor Lg and capacitor Cn are enclosed
by pink and yellow (brown) frames in the right chart. In
addition, as circled by cyan squares, the extra capacitors Cu

are used to complement the negative grounding capacitor Cn.
The whole photograph images for the circuit samples with
different strengths of disorder are shown in Appendix B. The
values of C, Lg, and Cu are the same as that used in Fig. 1(c).
It is important to note that the realization of capacitors with
precise values is very hard by factory-made capacitors. Here,
we take two decimal places of applied capacitances in experi-
ments, where the phase transition of non-Abelian AAH model
still exists. In this case, the finite-precision capacitances can
be experimentally realized by factory-made capacitors with
series connections. Table I illustrates some representative
examples.

To observe non-Abelian Anderson transition and local-
ization, we measure impedance spectra of two nodes in the
non-Abelian AAH circuits with different disorder strengths. It
is noted that the eigenfrequency and eigenmodes of voltages
have a one-to-one correspondence to the eigenenergy and
eigenstates of the mapped lattice model. Moreover, the circuit
impedance equals the ratio of voltage and current. Hence, the
impedance response of a circuit node is related to the local am-
plitude of eigenstate for the mapped lattice model. In this case,
the measurement of impedance spectrum in the frequency
domain can reflect the local amplitudes of wave function at
different eigenenergies that are related to local density of
states for the mapped lattice model. Here, we excite the circuit
in the pseudospin subspace of |↑〉, and the impedance spectra
in the other pseudospin subspace of |↓〉 possess similar prop-
erties (see Appendix C). The blue and orange lines in Fig. 2(b)
present the experimental results of impedance spectra at two
circuit nodes of n = 24 and 70 (shown in Fig. 3) with CJ =
0.3nF , which stays in the range of delocalization phase. It
is found that there are many impedance peaks at different
frequencies from 0.25 to 0.55 MHz, manifesting the extension
of eigenspectra for the non-Abelian AAH circuit. In addition,
the peak values are extremely small, consistent with the de-
localized eigenfields in the circuit with CJ = 0.3nF . Then we
change the disorder strength to CJ = 0.8nF and measure the
impedance spectra at these two nodes, as shown in Fig. 2(c).
It is clearly shown that the impedance responses at different
circuit nodes displays completely opposite phenomena. There
is a large-valued impedance peak (the blue line) located at
0.44 MHz at the node n = 24. Differently, it is found that lots
of impedance peaks with small values appear (the orange line)
when the other circuit node with n = 70 is excited. These
phenomena are consistent with the property of coexistence
phase I, showing that delocalized and localized eigenstates co-
exist in the non-Abelian AAH circuit. Furthermore, Fig. 2(d)
displays the impedance responses of two circuit nodes
with CJ = 1.2nF that belong to coexistence phase II. In
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FIG. 2. Experimental observation of non-Abelian Anderson localization and transition in electrical circuits. (a) The photographic image of
two coupled sites in the fabricated one-dimensional (1D) non-Abelian Aubry-André-Harper (AAH) circuit. Right and left charts present the
realization of non-Abelian coupling matrix and on-site potential, respectively. (b) Measured impedance responses in the pseudospin subspace
of |↑〉 with CJ = 0.3nF , which correspond to the delocalization phase. (c) and (d) Measured impedance spectra of 1D non-Abelian AAH
circuits staying in the coexistence phases I and II, respectively, where the strengths of disorder are quantified by CJ = 0.8nF and 1.2nF,
respectively. (e) Measured impedance responses with CJ = 2.0nF , corresponding to the localization phase of the non-Abelian AAH circuit.
The blue and orange lines represent impedance spectra at two different circuit nodes of n = 24 and 70.

contrast to the result of coexistence phase I, it is shown
that the impedance spectrum of circuit node (n = 70) marked
by the orange line exhibits a large-valued impedance peak
at 0.42 MHz, but the other circuit node (n = 24, illustrated
by the blue line) shows many impedance peaks with small
values. These results clearly manifest the characteristics of
eigenstates in coexistence phase II. Due to the self-duality

of the model, the eigenstates that are delocalized in coexis-
tence phase I are localized in coexistence phase II and vice
versa. In addition, the existence of dualities in 1D quasiperi-
odic systems arises quite generically, even for models that
are not exactly self-dual [84]. Therefore, dualities between
extended and localized states can exist even in the presence
of circuit imperfections. By further increasing the disorder
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FIG. 3. Photograph images of fabricated circuits. (a)–(d) The front and back sides of photograph images for the fabricated circuits with
CJ = 0.3nF , 0.8nF, 1.2nF, and 2.0nF. The blue and orange circles with n = 24 and 70 mark circuit nodes with measured impedance spectra.
The red circles indicate the excited nodes during voltage dynamics measurement.

strength to CJ = 2.0nF (belonging to the localization phase),
the measured impedance spectra at two circuit nodes n =
24 and 70 show the large-valued impedance peaks at 0.29
and 0.44 MHz, as presented in Fig. 2(e). This phenomenon
demonstrates that the non-Abelian AAH circuit goes in the
localization phase. The corresponding simulation results of
impedance responses for non-Abelian AAH circuits with four
different disorder strengths are given in Appendix D. Good
consistency between simulations and measurements is ob-
tained, and the larger width of measured impedance peaks
should result from the lossy effect in fabricated circuits. The
above experimental results clearly demonstrate the observa-
tion of non-Abelian Anderson transition from delocalized
states to coexistence phases and from coexistence phases to
localized states by four 1D non-Abelian AAH circuits with
different disorder strengths. In Appendix D, the impedance
spectra of two types of electrical circuits, where one pre-
cisely matches the quasiperiodic distribution and the other
slightly deviates from the quasiperiodic distribution with
finite-precision capacitances, are calculated. It is shown that
impedance spectra of these two types of electrical circuits are
nearly identical, showing the effectiveness on the implemen-
tation of the non-Abelian AAH model with finite-precision
capacitances.

To further experimentally demonstrate non-Abelian An-
derson transition and localization, we measure the temporal
dynamics of the non-Abelian AAH circuits with different
disorder strengths. Here, the circuit excitation is in the form
of (V1,50↑ = V0eiωt , V2,50↑ = −V0eiωt ), locating at the 50th site
(marked in Fig. 3) in the |↑〉 subspace. Excitation frequencies
are matched to that of impedance peaks (in Fig. 2) with
different strengths of disorder. The top and bottom charts

in Fig. 4(a) display the measured voltage signals in the
non-Abelian AAH circuit with CJ = 0.3nF , and the excita-
tion frequencies are 0.35 and 0.45 MHz. We can clearly see
that the voltage signals spread quickly at two frequencies,
indicating the delocalization effect in the non-Abelian AAH
circuit with a low-valued disorder strength. Then we measure
the voltage dynamics in the non-Abelian AAH circuit with
CJ = 0.8nF , as shown in Fig. 4(b). In this case, the excitation
frequencies are set as 0.35 and 0.44 MHz, which correspond
to two impedance peaks in Fig. 2(c). When the excitation
frequency equals 0.35 MHz, the input voltage signal exhibits
fast-extension behavior. On the contrary, the injected voltage
is localized around the input node at 0.44 MHz. These results
demonstrate that the delocalization and localization eigen-
states coexist in the non-Abelian AAH circuit, corresponding
to the regime of coexistence phase I. As displayed in Fig. 4(c),
we further measure the voltage dynamics with the disorder
strength being CJ = 1.2nF , where the excitation frequencies
are 0.42 and 0.38 MHz. It is clearly shown that the input
voltage displays a significant localization at 0.42 MHz, but
the voltage signals extend quickly with the frequency of the
input signal being 0.38 MHz. This is consistent with the
characteristics of eigenstates in coexistence phase II. Finally,
when the disorder strength increases to CJ = 2.0nF , we can
clearly observe the strong localization of voltage signals at
both excitation frequencies of 0.29 and 0.44 MHz, as shown in
Fig. 4(d). In this case, we have achieved the localization phase
originating from the strong strength of disorder. These exper-
imental results are consistent with simulation results provided
in Appendix E, manifesting the observation of non-Abelian
Anderson localization and transition by non-Abelian AAH
circuits.
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FIG. 4. Observation of non-Abelian Anderson localization and transition by the temporal dynamics in one-dimensional (1D) non-Abelian
Aubry-André-Harper (AAH) circuits. (a)–(d) Experiment results of voltage dynamics at two circuit nodes in the 1D non-Abelian AAH circuits
staying in the delocalization phase with CJ = 0.3nF , the coexistence phase I with CJ = 0.8nF , the coexistence phase II with CJ = 1.2nF , and
the localization phase with CJ = 2nF . Here, the circuit excitation is in the form of [V1,50↑ = V0eiωt , V2,50↑ = −V0eiωt ] being consistent with the
eigenmode of |↑〉 at the 50th lattice site. The excitation frequency is shown in each subplot.

IV. CONCLUSIONS

In conclusion, we have experimentally investigated
non-Abelian Anderson localization and transition in 1D
non-Abelian AAH electrical circuits with different disor-
der strengths, where the eigenmodes of the non-Abelian
AAH model are mapped to the designed electrical circuit
simulators. Based on the flexibly of circuit connections
and groundings, different strengths of disorder can be suit-
ably introduced into the 1D effective non-Abelian AAH
circuit. In this case, through the direct measurements of
site-resolved impedance spectra and time-domain voltage dy-
namics, different types of non-Abelian Anderson phases,
including the delocalization phase, coexisting states with lo-
calized and delocalized spatial profiles, and the localization
phase can be clearly observed. In addition, the investiga-
tion of interplays between non-Abelian gauge potential and
Anderson localization can be further extended into non-
Hermitian, nonlinear, and high-dimensional systems, which
can also be implemented in electrical circuits. Our proposal
provides a flexible platform to investigate Anderson local-
ization driven by non-Abelian gauge potentials and could

have potential applications in the field of the electrical signal
control.
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APPENDIX A: DETAILS FOR DERIVATION OF THE
EIGENEQUATION FOR THE 1D NON-ABELIAN

CIRCUIT SIMULATOR

In this appendix, we give a detailed derivation of the circuit
eigenequation, which could be mapped to the 1D stationary
Schrödinger equation of the non-Abelian AAH model. Here,
each lattice site contains two pairs of circuit nodes. In this
case, the voltage and current at site n should be written as
Vn = [V1,nσ

,V2,nσ
]T and I = [I1,nσ

, I2,nσ
]T (σ = |↑〉, |↓〉). The

voltages on the circuit nodes are in the form of V1,nσ
e jωt and

V2,nσ
e jωt . Carrying out the Kirchhoff’s law on the circuit node

pair nσ , we get the following equations:

∣∣∣∣∣∣∣∣
I1,n↑
I2,n↑
I1,n↓
I2,n↓

∣∣∣∣∣∣∣∣
= iω−1

⎧⎪⎪⎨
⎪⎪⎩ω2C

⎡
⎢⎢⎣

1 −1
−1 1

0 0
0 0

0 0
0 0

1 −1
−1 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
+ ω2Cc

∣∣∣∣∣∣∣∣
V1,n↑ − V1,n+1↑
V2,n↑ − V2,n+1↑
V1,n↓ − V1,n+1↓
V2,n↓ − V2,n+1↓

∣∣∣∣∣∣∣∣
+ ω2Cs

∣∣∣∣∣∣∣∣
V1,n↑ − V1,n+1↓
V2,n↑ − V2,n+1↓
V1,n↓ − V2,n+1↑
V2,n↓ − V1,n+1↑

∣∣∣∣∣∣∣∣
144203-7
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+ ω2Cc

∣∣∣∣∣∣∣∣
V1,n↑ − V1,n−1↑
V2,n↑ − V2,n−1↑
V1,n↓ − V1,n−1↓
V2,n↓ − V2,n−1↓

∣∣∣∣∣∣∣∣
+ ω2Cs

∣∣∣∣∣∣∣∣
V1,n↑ − V2,n−1↓
V2,n↑ − V1,n−1↓
V1,n↓ − V1,n−1↑
V2,n↓ − V2,n−1↑

∣∣∣∣∣∣∣∣
+ ω2Cn

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
+ ω2Cn′

∣∣∣∣∣∣∣∣
V1,n↑ − V1,n↓
V2,n↑ − V2,n↓
V1,n↓ − V1,n↑
V2,n↓ − V2,n↑

∣∣∣∣∣∣∣∣
+ ω2Cu

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
− 1

Lg

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭,

(A1)∣∣∣∣∣∣∣∣
I1,n↑
I2,n↑
I1,n↓
I2,n↓

∣∣∣∣∣∣∣∣
= iω−1

⎧⎪⎪⎨
⎪⎪⎩ω2C

⎡
⎢⎢⎣

1 −1
−1 1

0 0
0 0

0 0
0 0

1 −1
−1 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
+ ω2Cc

∣∣∣∣∣∣∣∣
V1,n↑ − V1,n+1↑
V2,n↑ − V2,n+1↑
V1,n↓ − V1,n+1↓
V2,n↓ − V2,n+1↓

∣∣∣∣∣∣∣∣

+ ω2Cs

∣∣∣∣∣∣∣∣
V1,n↑ − V1,n+1↓
V2,n↑ − V2,n+1↓
V1,n↓ − V2,n+1↑
V2,n↓ − V1,n+1↑

∣∣∣∣∣∣∣∣
+ ω2Cc

∣∣∣∣∣∣∣∣
V1,n↑ − V1,n−1↑
V2,n↑ − V2,n−1↑
V1,n↓ − V1,n−1↓
V2,n↓ − V2,n−1↓

∣∣∣∣∣∣∣∣
+ ω2Cs

∣∣∣∣∣∣∣∣
V1,n↑ − V2,n−1↓
V2,n↑ − V1,n−1↓
V1,n↓ − V1,n−1↑
V2,n↓ − V2,n−1↑

∣∣∣∣∣∣∣∣
+ ω2Cn

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣

+ω2Cn′

∣∣∣∣∣∣∣∣
V1,n↑ − V2,n↓
V2,n↑ − V1,n↓
V1,n↓ − V2,n↑
V2,n↓ − V1,n↑

∣∣∣∣∣∣∣∣
+ ω2Cu

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
− 1

Lg

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭. (A2)

It is worth noting that Eqs. (A1) and (A2) correspond to cases with two node pairs at the nth site being connected without
and with a cross, respectively. Here, Lg is the grounding inductor, C is the capacitance used to link two circuit nodes to form an
internal degree at each lattice site, Cc and Cs are capacitances for connecting circuit node pairs with (without) a cross, indicating
the negative (positive) intersite coupling, and Cu is an extra grounding capacitor to ensure a positive value of the sum for all
grounding capacitors. In addition, capacitors Cn and Cn′ create the diagonal and nondiagonal elements of the modulation matrix
Un. We assume that there is no external source, so that the current flowing out of the node is zero. In this case, Eqs. (A1) and
(A2) become

−ω2C

⎡
⎢⎢⎣

1 −1
−1 1

0 0
0 0

0 0
0 0

1 −1
−1 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
= ω2(2Cc + 2Cs + Cn′ )

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
− ω2Cc

∣∣∣∣∣∣∣∣
V1,n+1↑
V2,n+1↑
V1,n+1↓
V2,n+1↓

∣∣∣∣∣∣∣∣
− ω2Cs

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n+1↓
V2,n+1↓
V1,n+1↑
V2,n+1↑

∣∣∣∣∣∣∣∣

− ω2Cc

∣∣∣∣∣∣∣∣
V1,n−1↑
V2,n−1↑
V1,n−1↓
V2,n−1↓

∣∣∣∣∣∣∣∣
− ω2Cs

⎡
⎢⎢⎣

0 1
1 0

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n−1↓
V2,n−1↓
V1,n−1↑
V2,n−1↑

∣∣∣∣∣∣∣∣
+ ω2Cn

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣

− ω2Cn′

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n↓
V2,n↓
V1,n↑
V2,n↑

∣∣∣∣∣∣∣∣
+ ω2Cu

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
− 1

Lg

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
, (A3)

−ω2C

⎡
⎢⎢⎣

1 −1
−1 1

0 0
0 0

0 0
0 0

1 −1
−1 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
= ω2(2Cc + 2Cs + Cn′ )

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
− ω2Cc

∣∣∣∣∣∣∣∣
V1,n+1↑
V2,n+1↑
V1,n+1↓
V2,n+1↓

∣∣∣∣∣∣∣∣
− ω2Cs

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n+1↓
V2,n+1↓
V1,n+1↑
V2,n+1↑

∣∣∣∣∣∣∣∣

− ω2Cc

∣∣∣∣∣∣∣∣
V1,n−1↑
V2,n−1↑
V1,n−1↓
V2,n−1↓

∣∣∣∣∣∣∣∣
− ω2Cs

⎡
⎢⎢⎣

0 1
1 0

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n−1↓
V2,n−1↓
V1,n−1↑
V2,n−1↑

∣∣∣∣∣∣∣∣
+ ω2Cn

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣

− ω2Cn′

⎡
⎢⎢⎣

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
V1,n↓
V2,n↓
V1,n↑
V2,n↑

∣∣∣∣∣∣∣∣
+ ω2Cu

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
− 1

Lg

∣∣∣∣∣∣∣∣
V1,n↑
V2,n↑
V1,n↓
V2,n↓

∣∣∣∣∣∣∣∣
. (A4)

Performing the diagonalization of Eqs. (A3) and (A4) with a unitary transformation:

F = diag(U,U ), with U = 1√
2

[
1 1
1 −1

]
, (A5)
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Eqs. (A3) and (A4) become

−C

⎡
⎢⎢⎣

0 0
0 2

0 0
0 0

0 0
0 0

0 0
0 2

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
= (2Cc + 2Cs + Cn′ )

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
− Cc

∣∣∣∣∣∣∣∣
VS,n+1↑
VA,n+1↑
VS,n+1↓
VA,n+1↓

∣∣∣∣∣∣∣∣
− Cs

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n+1↓
VA,n+1↓
VS,n+1↑
VA,n+1↑

∣∣∣∣∣∣∣∣

− Cc

∣∣∣∣∣∣∣∣
VS,n−1↑
VA,n−1↑
VS,n−1↓
VA,n−1↓

∣∣∣∣∣∣∣∣
− Cs

⎡
⎢⎢⎣

1 0
0 −1

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n−1↓
VA,n−1↓
VS,n−1↑
VA,n−1↑

∣∣∣∣∣∣∣∣
+ Cn

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣

− Cn′

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n↓
VA,n↓
VS,n↑
VA,n↑

∣∣∣∣∣∣∣∣
+ Cu

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
− 1

ω2Lg

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
, (A6)

−C

⎡
⎢⎢⎣

0 0
0 2

0 0
0 0

0 0
0 0

0 0
0 2

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
= (2Cc + 2Cs + Cn′ )

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
− Cc

∣∣∣∣∣∣∣∣
VS,n+1↑
VA,n+1↑
VS,n+1↓
VA,n+1↓

∣∣∣∣∣∣∣∣
− Cs

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n+1↓
VA,n+1↓
VS,n+1↑
VA,n+1↑

∣∣∣∣∣∣∣∣

− Cc

∣∣∣∣∣∣∣∣
VS,n−1↑
VA,n−1↑
VS,n−1↓
VA,n−1↓

∣∣∣∣∣∣∣∣
− Cs

⎡
⎢⎢⎣

1 0
0 −1

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n−1↓
VA,n−1↓
VS,n−1↑
VA,n−1↑

∣∣∣∣∣∣∣∣
+ Cn

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣

− Cn′

⎡
⎢⎢⎣

1 0
0 −1

0 0
0 0

0 0
0 0

1 0
0 −1

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
VS,n↓
VA,n↓
VS,n↑
VA,n↑

∣∣∣∣∣∣∣∣
+ Cu

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
− 1

ω2Lg

∣∣∣∣∣∣∣∣
VS,n↑
VA,n↑
VS,n↓
VA,n↓

∣∣∣∣∣∣∣∣
. (A7)

The new basis can be expressed as [VS,nσ
,VA,nσ

]T = U [Vnσ ,1,Vnσ ,2]T , with VS,nσ
= (V1,nσ

+ V2,nσ
)/

√
2 and VA,nσ

=
(V1,nσ

− V2,nσ
)/

√
2 (σ = |↑〉, |↓〉), which create two decoupled subspaces. Thus, both Eqs. (A6) and (A7) can be divided into

two independent equations as

1

ω2LgC

∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ =
(

2
Cc

C
+ 2

Cs

C
+ Cn′

C

)∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ − Cc

C

(∣∣∣∣VS,n+1↑
VS,n+1↓

∣∣∣∣ +
∣∣∣∣VS,n−1↑
VS,n−1↓

∣∣∣∣
)

− Cs

C

([
0 1
1 0

]∣∣∣∣VS,n+1↑
VS,n+1↓

∣∣∣∣
+

[
0 1
1 0

]∣∣∣∣VS,n−1↑
VS,n−1↓

∣∣∣∣
)

+ Cn

C

∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ − Cn′

C

[
0 1
1 0

]∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ + Cu

C

∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣,(
1

ω2LgC
− 2

)∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ =
(

2
Cc

C
+ 2

Cs

C
+ Cn′

C

)∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ − Cc

C

(∣∣∣∣VA,n+1↑
VA,n+1↓

∣∣∣∣ +
∣∣∣∣VA,n−1↑
VA,n−1↓

∣∣∣∣
)

− Cs

C

([
0 1

−1 0

]∣∣∣∣VA,n+1↑
VA,n+1↓

∣∣∣∣ +
[

0 −1
1 0

]∣∣∣∣VA,n−1↑
VA,n−1↓

∣∣∣∣
)

+ Cn

C

∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ − Cn′

C

[
0 1
1 0

]∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ + Cu

C

∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣,
(A8)

1

ω2LgC

∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ =
(

2
Cc

C
+ 2

Cs

C
+ Cn′

C

)∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ − Cc

C

(∣∣∣∣VS,n+1↑
VS,n+1↓

∣∣∣∣ +
∣∣∣∣VS,n−1↑
VS,n−1↓

∣∣∣∣
)

− Cs

C

([
0 1
1 0

]∣∣∣∣VS,n+1↑
VS,n+1↓

∣∣∣∣
+

[
0 1
1 0

]∣∣∣∣VS,n−1↑
VS,n−1↓

∣∣∣∣
)

+ Cn

C

∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ − Cn′

C

[
0 1
1 0

]∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣ + Cu

C

∣∣∣∣VS,n↑
VS,n↓

∣∣∣∣,(
1

ω2LgC
− 2

)∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ =
(

2
Cc

C
+ 2

Cs

C
+ Cn′

C

)∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ − Cc

C

(∣∣∣∣VA,n+1↑
VA,n+1↓

∣∣∣∣ +
∣∣∣∣VA,n−1↑
VA,n−1↓

∣∣∣∣
)

− Cs

C

([
0 1

−1 0

]∣∣∣∣VA,n+1↑
VA,n+1↓

∣∣∣∣ +
[

0 −1
1 0

]∣∣∣∣VA,n−1↑
VA,n−1↓

∣∣∣∣
)

+ Cn

C

∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ − Cn′

C

[
0 −1

−1 0

]∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣ + Cu

C

∣∣∣∣VA,n↑
VA,n↓

∣∣∣∣.
(A9)
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Combing the second formula of Eqs. (A8) and (A9) for VA,nσ
, the eigenequation of the designed non-Abelian electrical circuit

is described by(
f 2
0

f 2
− 2 − 2

Cc

C
− 2

Cs

C
− Cu

C
− Cn′

C

)∣∣∣∣∣VA,n↑

VA,n↓

∣∣∣∣∣ = −
[

Cc
C

Cs
C

−Cs
C

Cc
C

]∣∣∣∣∣VA,n+1↑

VA,n+1↓

∣∣∣∣∣ −
[

Cc
C −Cs

C
Cs
C

Cc
C

]∣∣∣∣∣VA,n−1↑

VA,n−1↓

∣∣∣∣∣ +
[

Cn
C −Cn′

C

−Cn′
C

Cn
C

]∣∣∣∣∣VA,n↑

VA,n↓

∣∣∣∣∣.
(A10)

We provide the following identification of tight-binding parameters in terms of circuit elements as

U = Cu

C
, cosq = Cc

C
, sinq = Cs

C
,

Cn

C
= 2Jcos(q)cos(2πχn),

Cn′

C
= 2Jsin(q)sin(2πχn),

ε =
(

f 2
0

f 2
− 2 − 2

Cc

C
− 2

Cs

C
− Cu

C
− Cn′

C

)
, f0 = 1

2π
√

LgC
,

M =
(

cosq sinq
−sinq cosq

)
, Un = 2J

[
cosqcos(2πχn) −sinqsin(2πχn)
−sinqsin(2πχn) cosqcos(2πχn)

]
,

where ε corresponds to the eigenenergy, and M and Un are the coupling and on-site modulation matrixes, respectively. In this
case, Eq (A10) becomes

ε

(
ϕψn,↑
ϕψn,↓

)
= M

(
ϕψn+1,↑
ϕψn+1,↓

)
+ M+

(
ϕψn−1,↑
ϕψn−1,↓

)
+ Un

(
ϕψn,↑
ϕψn,↓

)
, (A11)

with ϕψn,↑ and ϕψn,↓ corresponding to VA,n↑ and VA,n↓ . In this case, we can see that the circuit eigenequation is identical to the 1D
non-Abelian AAH model. In addition, the derived eigenequation of the symmetric sector VS is expressed as(

f 2
0

f 2
− 2

Cc

C
− 2

Cs

C
− Cu

C
− Cn′

C

)∣∣∣∣∣Vs,n↑

Vs,n↓

∣∣∣∣∣ = −
[

Cc
C

Cs
C

Cs
C

Cc
C

]∣∣∣∣∣VS,n+1↑

VS,n+1↓

∣∣∣∣∣ −
[

Cc
C

Cs
C

Cs
C

Cc
C

]∣∣∣∣∣VS,n−1↑

VS,n−1↓

∣∣∣∣∣ +
[

Cn
C −Cn′

C

−Cn′
C

Cn
C

]∣∣∣∣∣VS,n↑

VS,n↓

∣∣∣∣∣, (A12)

where the coupling matrix is different from that of the non-
Abelian AAH model. The energy spectrum of the symmetric

sector VS is given by ε = f 2
0

f 2 − 2Cc
C − 2Cs

C − Cu
C − Cn′

C , which
differs from the on-site term in the VA,nσ

sector, resulting in a
downward shift of the eigenenergy of the VS,nσ

sector relative
to that of VA,nσ

.

APPENDIX B: SAMPLE FABRICATIONS
AND CIRCUIT MEASUREMENTS

We exploit the non-Abelian AAH circuits by using
PADs program software. Here, the well-designed printed cir-
cuit board (PCB) possesses totally four layers to arrange
non-Abelian coupling matrices and on-site potentials. The
grounding layer should be placed in the gap between the other
two layers. Moreover, all PCB traces have relatively large
widths (0.5 mm) to reduce the parasitic inductance, and dis-
tances between electronic devices are also >1.0 mm to avert
spurious inductive coupling. Sub miniature push-on (SMP)
connectors are welded on PCB nodes for the signal input
and detection. In addition, we use a WK6500B impedance
analyzer to select circuit elements with high accuracy (the
disorder strength is only 1%) and low losses. Figure 3 presents
the front and back sides of photograph images for the fab-
ricated non-Abelian AAH circuits with different strengths of
disorder.

As for the measurement of the voltage evolution in the time
domain, we use the signal generator (NI PXI-5404) with eight
output ports to act as the current source for exciting two circuit
nodes related to a single lattice site with constant amplitude
and node-dependent initial phases. We measure the voltage

signal at one circuit node. The generator (the initial phase is
set to 0) is directly connected to one end of the oscilloscope
(Agilent Technologies Infiniivision DSO7104B) to ensure an
accurate start time. The measured voltage signals are in the
range from 0 to 5 ms, where 0 ms is defined as the time for
the simultaneously signal injection and measurement.

APPENDIX C: IMPEDANCE SPECTRA IN THE
PSEUDOSPIN SUBSPACE OF |↓〉

Here, we present the measured impedance responses in
the pseudospin subspace of |↓〉. The blue and orange lines
in Fig. 5 present the experiment results of two typical circuit
nodes (n = 24 and 70) with different strengths of disorder
(CJ = 0.3nF , 0.8nF, 1.2nF, and 2.0nF). Figure 5(a) gives
impedance responses of two different circuit nodes with CJ =
0.3nF , which belongs to the delocalization phase. It is shown
that there are many impedance peaks with small values at
different frequencies ranging from 0.25 to 0.55 MHz of these
two circuit nodes. These results clearly indicate the extension
of the eigenspectrum as well as the delocalization of the corre-
sponding eigenfields. Then we measure the impedance spectra
with CJ = 0.8nF at these two nodes, as shown in Fig. 5(b).
We can see that the measurement results at different circuit
nodes are completely opposite. It is found that a large-valued
impedance peak (the blue line with n = 24) is located at
0.44 MHz. On the contrary, there are many impedance peaks
with small values (the orange line) when the other circuit node
(n = 70) is excited. These results show the coexistence of
delocalized and localized eigenstates at CJ = 0.8nF , which
correspond to the feature of coexistence phase I. Furthermore,
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FIG. 5. Experimental impedance spectra in the pseudospin sub-
space of |↓〉. (a) Measured impedance responses with CJ = 0.3nF ,
which correspond to the delocalization phase. (b) and (c) Measured
impedance spectra of coexistence phases I and II in designed one-
dimensional (1D) non-Abelian Aubry-André-Harper (AAH) circuits
with disorder strengths set as CJ = 0.8nF and 1.2nF, respectively.
(d) Measured impedance responses with CJ = 2.0nF , corresponding
to the localization phase of the non-Abelian AAH circuit. The blue
and orange lines represent impedance spectra at two different circuit
nodes of n = 24 and 70.

the impedance responses of these two circuit nodes with CJ =
1.2nF (belonging to coexistence phase II) given by Fig. 5(c)
show the contrastive result of coexistence phase I. It is found
that one of the circuit nodes exhibits (n = 70) a large-valued
impedance peak at 0.42 MHz, as marked by orange line,
while the other circuit node (n = 24) shows a great number of
impedance peaks with small values. These phenomena clearly
demonstrate the property of the third regime (coexistence

phase II). Finally, we set the disorder strength of CJ as 2.0nF
and measure the impedance responses, as shown by Fig. 5(d).
The large-valued impedance peaks located at frequencies of
0.29 and 0.44 MHz of these two circuit nodes of n = 24 and
70 (marked by blue and orange lines) indicate the localization
phase. In this case, we have clearly observed non-Abelian An-
derson transition from delocalized states to coexistence phases
and then to localized states in the pseudospin subspace of |↓〉.

APPENDIX D: SIMULATION RESULTS OF IMPEDANCE
SPECTRA IN 1D NON-ABELIAN AAH CIRCUITS

It is worth noting that, due to the significant lossy effect in
the fabricated circuit sample, measured impedance peaks are
much wider than that in numerical simulations. Here, we cal-
culate the impedance response of two pseudospin subspaces
(|↑〉 and |↓〉) with different strengths of disorder based on
LTSPICE software, as shown in Fig. 6. Blue and orange lines
correspond to simulation results of two different circuit nodes
(n = 24 and 70). The effective series resistance of inductance
set as 10 m
. Good consistency between simulations and
measurements is obtained. As shown in Fig. 6(a), there are
many impedance peaks at different frequencies from 0.30 to
0.50 MHz in both pseudospin subspaces of |↑〉 and |↓〉, with
CJ = 0.3nF , indicating the extension of eigenspectra for the
non-Abelian AAH circuit. In addition, the peak values are
extremely small, corresponding to the delocalized eigenfields
in the designed circuit. These simulation results are consistent
with the delocalization phase. Figure 6(b) gives simulation
results of the impedance responses with CJ = 0.8nF . It is
clearly shown that there appears a large-valued impedance
peak in the subspace |↑〉 (|↓〉) of a circuit node (n = 24)
marked by the blue line located at 0.42 MHz. Oppositely,
the other circuit node (n = 70) marked by the orange line
shows lots of impedance peaks with small values. These phe-
nomena correspond to the property of coexistence phase I,
showing that delocalized and localized eigenstates coexist at

FIG. 6. Simulation results of impedance spectra of 1D non-Abelian Aubry-André-Harper (AAH) circuits in the pseudospin subspace of
|↑〉 and |↓〉. (a) Simulated impedance responses with CJ = 0.3nF , corresponding to the delocalization phase. (b) and (c) Simulated impedance
spectra staying in the coexistence phases I and II of the one-dimensional (1D) non-Abelian AAH circuits. The disorder strengths are set as
CJ = 0.8nF and 1.2nF, respectively. (d) Simulated results of impedance response with CJ = 2.0nF , corresponding to the localization phase.
The blue and orange lines show the simulation results of two different circuit nodes (n = 24 and 70).
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FIG. 7. Simulation results for impedance spectra of |↑〉 in the
non-Abelian Aubry-André-Harper (AAH) circuit with precisely
matched quasiperiodic potential. (a)–(d) Simulated impedance re-
sponses of the delocalization phase (CJ = 0.3nF ), coexistence phase
I (CJ = 0.8nF ), coexistence phase II (CJ = 1.2nF ), and localization
phase (CJ = 2.0nF ).

the same disorder strength. Then we simulate the impedance
responses of two circuit nodes with CJ = 1.2nF . It is shown
that the impedance spectrum of the pseudospin subspace |↑〉
(|↓〉) exhibits a large-valued impedance peak at 0.44 MHz
(0.42 MHz) when a circuit node (n = 70) is excited (the or-
ange line). However, the other circuit node (n = 24, illustrated
by the blue line) shows many impedance peaks with small
values. These results clearly manifest the characteristics of
eigenstates in the third regime of coexistence phase II. By
further increasing the disorder strength to CJ = 2.0nF (be-
longing to the localization phase), the measured impedance

spectra of two circuit nodes (n = 24 and 70) show the large-
valued impedance peaks at only a few frequencies of 0.29
and 0.44 MHz in both pseudospin subspaces (|↑〉 and |↓〉),
as presented in Fig. 6(d).

From above discussions, we find that impedance re-
sponses can display non-Abelian Anderson transition from
the delocalization phase to coexistence phases then to the lo-
calization phase in fabricated circuits with different strengths
of disorder.

To further illustrate the effectiveness on simulating the
non-Abelian AAH model with finite-precision capacitances,
the impedance spectra of electrical circuits, which precisely
match the quasiperiodic distribution, are also simulated, as
shown in Figs. 7(a)–7(d). Here, four subplots correspond to
results of the delocalization phase (CJ = 0.3nF ), coexistence
phase I (CJ = 0.8nF ), coexistence phase II (CJ = 1.2nF ), and
localization phase (CJ = 2.0nF ). It is shown that associated
impedance spectra are nearly identical to those in Fig. 6,
showing the effectiveness on the implementation of the non-
Abelian AAH model with finite-precision capacitances.

APPENDIX E: SIMULATION RESULTS OF VOLTAGE
DYNAMICS IN 1D NON-ABELIAN AAH CIRCUITS

In this part, we simulate the temporal dynamics of injected
voltage signals with different strengths of disorder. Here, the
circuit excitation is in the form of (V1,50↑ = V0eiωt , V2,50↑ =
−V0eiωt ) being consistent with the eigenmode of |↑〉50. The
excitation frequencies in different circuits are matched to
those of the impedance peaks. Figure 8(a) displays the sim-
ulated voltage signal with CJ = 0.3nF , and the excitation
frequencies at different circuit nodes are 0.35 and 0.45 MHz,
respectively. We can clearly see that, under both frequen-
cies, the voltage signals get spread quickly, indicating the

FIG. 8. Simulation results of voltage dynamics in one-dimensional (1D) non-Abelian Aubry-André-Harper (AAH) circuits. (a)–(d)
Simulation results of the temporal dynamics at two circuit nodes in the 1D non-Abelian AAH electrical circuits corresponding to the
delocalization phase (CJ = 0.3nF ), the coexistence phase I (CJ = 0.8nF ), the coexistence phase II (CJ = 1.2nF ), and the localization phase
(CJ = 2.0nF ), respectively. Here, the circuit excitation is in the form of [V1,50↑ = V0eiωt , V2,50↑ = −V0eiωt ] being consistent with the eigenmode
of |↑〉 at the 50th lattice site. The excitation frequency is shown in each subplot.
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delocalization effect with low disorder strengths. Then we
simulate the time dynamics of voltage signal in circuit with
CJ = 0.8nF , as shown in Fig. 8(b). Under the excitation
frequency of 0.35 MHz, the input voltages could exhibit
fast-extension behavior, indicating the delocalization effect.
Contrary to this result, the injected voltage is localized around
the input node with excitation frequency of 0.44 MHz. These
results demonstrate the coexistence of delocalization and
localization effect, which correspond with the property of co-
existence phase I. Furthermore, we set the strength of disorder
is set as 1.2nF, as shown in Fig. 8(c). In this case, the different

circuit nodes are excited by the frequencies of 0.42 and 0.38
MHz. We can clearly observe that the voltage signals localized
around the input nodes under the excitation frequency of 0.42
MHz. The voltage signals extend quickly when the excitation
frequency is 0.38 MHz. These phenomena clearly manifest
the characteristics of eigenstates in the third regime of coex-
istence phase II. Figure 8(d) presents the voltage evolutions
in the circuit with CJ = 2.0nF in simulation. Like the experi-
mental results, the strong localization of voltage signals with
excitation frequencies of 0.29 and 0.44 MHz can be clearly
observed, corresponding with the localization phase.
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and Ch. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011).

[12] S. Stützer, Y. V. Kartashov, V. A. Vysloukh, A. Tünnermann, S.
Nolte, M. Lewenstein, L. Torner, and A. Szameit, Opt. Lett. 37,
1715 (2012).

[13] M. Segev, Y. Silberberg, and D. N. Christodoulides, Nat.
Photon. 7, 197 (2013).

[14] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio,
L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, Nat.
Photon. 7, 322 (2013).

[15] C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and
R. F. Werner, Phys. Rev. Lett. 111, 160601 (2013).

[16] M. Lee, J. Lee, S. Kim, S. Callard, C. Seassal, and H. Jeon, Sci.
Adv. 4, e1602796 (2018).

[17] S. Weidemann, M. Kremer, S. Longhi, and A. Szameit, Nat.
Photon. 15, 576 (2021).

[18] R. L. Weaver, Wave Motion 12, 129 (1990).
[19] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A.

van Tiggelen, Nat. Phys. 4, 945 (2008).
[20] W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun, and X. Zhang,

Phys. Rev. Lett. 126, 146802 (2021).

[21] M. Cutler and N. Mott, Phys. Rev. 181, 1336 (1969).
[22] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287

(1985).
[23] R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman,

and S. L. McCall, Nature (London) 354, 53 (1991).
[24] I. Manai, J.-F. Clément, R. Chicireanu, C. Hainaut, J. C.

Garreau, P. Szriftgiser, and D. Delande, Phys. Rev. Lett. 115,
240603 (2015).

[25] P. Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955).
[26] S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 18 (1980).
[27] Y. G. Sinai, J. Stat. Phys. 46, 861 (1987).
[28] Y. E. Kraus and O. Zilberberg, Nat. Phys. 12, 624 (2016).
[29] J. B. Sokoloff, Phys. Rep. 126, 189 (1984).
[30] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N.

Davidson, and Y. Silberberg, Phys. Rev. Lett. 103, 013901
(2009).

[31] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Phys. Rev. Lett. 109, 106402 (2012).

[32] L.-J. Lang, X. Cai, and S. Chen, Phys. Rev. Lett. 108, 220401
(2012).

[33] S. Ganeshan, K. Sun, and S. Das Sarma, Phys. Rev. Lett. 110,
180403 (2013).

[34] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y.
Silberberg, Phys. Rev. Lett. 110, 076403 (2013).

[35] S. Weidemann, M. Kremer, S. Longhi, and A. Szameit, Nature
(London) 601, 354 (2022).

[36] H. Jiang, L. Lang, C. Yang, S. Zhu, and S. Chen, Phys. Rev. B
100, 054301 (2019).

[37] Y. Liu, Q. Zhou, and S. Chen, Phys. Rev. B 104, 024201
(2021).

[38] Z. Xu, X. Xia, and S. Chen, Sci. China: Phys. Mech. Astron.
65, 227211 (2022).

[39] Q.-B. Zeng and Y. Xu, Phys. Rev. Res. 2, 033052 (2020).
[40] S. Longhi, Phys. Rev. Lett. 122, 237601 (2019).
[41] C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
[42] S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B.

Spielman, Science 360, 1429 (2018).
[43] H. Terças, H. Flayac, D. D. Solnyshkov, and G. Malpuech,

Phys. Rev. Lett. 112, 066402 (2014).
[44] L. B. Ma, S. L. Li, V. M. Fomin, M. Hentschel, J. B. Götte,

Y. Yin, M. R. Jorgensen, and O. G. Schmidt, Nat. Commun. 7,
10983 (2016).

[45] A. Gianfrate, O. Bleu, L. Dominici, V. Ardizzone, M. De
Giorgi, D. Ballarini, G. Lerario, K. W. West, L. N. Pfeiffer,
D. D. Solnyshkov et al., Nature (London) 578, 381 (2020).

144203-13

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07071
https://doi.org/10.1126/science.1209019
https://doi.org/10.1038/nphys2256
https://doi.org/10.1038/nphys3339
https://doi.org/10.1038/37757
https://doi.org/10.1038/nature05623
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1126/science.1185080
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1364/OL.37.001715
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1103/PhysRevLett.111.160601
https://doi.org/10.1126/sciadv.1602796
https://doi.org/10.1038/s41566-021-00823-w
https://doi.org/10.1016/0165-2125(90)90034-2
https://doi.org/10.1038/nphys1101
https://doi.org/10.1103/PhysRevLett.126.146802
https://doi.org/10.1103/PhysRev.181.1336
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1038/354053a0
https://doi.org/10.1103/PhysRevLett.115.240603
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1007/BF01011146
https://doi.org/10.1038/nphys3784
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.108.220401
https://doi.org/10.1103/PhysRevLett.110.180403
https://doi.org/10.1103/PhysRevLett.110.076403
https://doi.org/10.1038/s41586-021-04253-0
https://doi.org/10.1103/PhysRevB.100.054301
https://doi.org/10.1103/PhysRevB.104.024201
https://doi.org/10.1007/s11433-021-1802-4
https://doi.org/10.1103/PhysRevResearch.2.033052
https://doi.org/10.1103/PhysRevLett.122.237601
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1126/science.aam9031
https://doi.org/10.1103/PhysRevLett.112.066402
https://doi.org/10.1038/ncomms10983
https://doi.org/10.1038/s41586-020-1989-2


WANG, ZHANG, SUN, AND ZHANG PHYSICAL REVIEW B 108, 144203 (2023)

[46] C. E. Whittaker, T. Dowling, A. V. Nalitov, A. V. Yulin, B.
Royall, E. Clarke, M. S. Skolnick, I. A. Shelykh, and D. N.
Krizhanovskii, Nat. Photon. 15, 193 (2021).

[47] K. Y. Bliokh and V. D. Freilikher, Phys. Rev. B 74, 174302
(2006).

[48] M. Fruchart, Y. Zhou, and V. Vitelli, Nature (London) 577, 636
(2020).

[49] Y. Yang, B. Yang, G. Ma, J. Li, S. Zhang, and C. T. Chan,
arXiv:2305.12206.

[50] J. Wu, Z. Wang, Y. Biao, F. Fei, S. Zhang, Z. Yin, Y. Hu, Z.
Song, T. Wu, F. Song et al., Nat. Electron. 5, 635 (2022).

[51] W. Zhang, H. Wang, H. Sun, and X. Zhang, Phys. Rev. Lett.
130, 206401 (2023).

[52] Y. Chen, R. Zhang, Z. Xiong, Z. Hang, J. Lin, J. Shen, and C.
T. Chan, Nat. Commun. 10, 3125 (2019).

[53] Y. Yang, C. Peng, D. Zhu, H. Buljan, J. D. Joannopoulos, B.
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