
PHYSICAL REVIEW B 108, 144110 (2023)

Dynamics of pinned quantized vortices in superfluid 4He in a microelectromechanical oscillator
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We numerically studied the vortex dynamics at zero temperature in superfluid 4He confined between two
parallel rough solid boundaries, one of which oscillates in a shear mode. This study was motivated by the
experimental work by Barquist et al. [Phys. Rev. B 101, 174513 (2020); 106, 094502 (2022)] which employed a
microelectromechanical systems (MEMS) oscillator operating in superfluid 4He at a near-zero temperature. Their
experiments suggest that the motion of the MEMS oscillator is damped by quantized vortices. In our study, we
postulated that this damping effect was closely associated with vortex pinning phenomena and developed pinning
models. Our primary objective is to understand the vortex dynamics in the presence of pinning and to provide
insight into the experimental observations regarding the damping mechanism. We confirmed that Kelvin waves
were excited in the pinned vortices when the oscillation frequency of the solid boundary matched with the
mode frequency of the Kelvin wave. Additionally, we examined the formation and evolution of vortex tangles
between the boundaries. The vortex tangle was suppressed in the presence of pinning, while the absence of
pinning allowed to form well-developed vortex tangle resulting in turbulence. Finally, by evaluating the tension
of pinned vortices we extracted the damping force acting on the solid boundaries.
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I. INTRODUCTION

Vortex pinning is a prevalent phenomenon observed in var-
ious quantum condensed matter systems, including superfluid
helium, superconductors [1–7], and neutron stars [8–11]. Pin-
ning of quantized vortices can occur due to inhomogeneities
present on the boundaries or in the volume. This pinning
significantly influences the motion of the vortices, alongside
the dynamics within the bulk system, sometimes resulting
in practical consequences such as the critical current in su-
perconducting wires. In superfluid 4He, the phenomenon of
quantized vortex pinning arises from the presence of surface
roughness, notably in the form of bumps on solid bound-
aries [12–23]. While a significant body of research has been
dedicated to investigating the dynamics of quantized vortices
in a bulk system, such as quantum turbulence generated by
thermal counterflow [24–29], it is imperative to recognize that
local effects resulting from surface roughness and pinning
cannot be disregarded in some cases. The core of a quantized
vortex in superfluid 4He is so thin (∼0.1 nm) that any realistic
surface is rough for quantized vortices and, consequently,
pinning is ubiquitous. Experimental investigations have con-
firmed the influence of pinning and surface roughness in
various phenomena, including phase-slip phenomena [12,20],
spin up [14], and vortex motion along the surfaces [21]. In
numerical studies, the pinning and surface roughness have
been studied using the vortex filament model [13,15–19] and
the Gross-Pitaevskii model [23].

Recently, the experimental group at the University of
Florida (Florida group) observed interesting phenomena that,
they claim, are related to pinning [30,31]. They employed

microelectromechanical systems (MEMS) for experiments in
both 3He [32–34] and 4He [30,31,35–38]. MEMS are mechan-
ical devices with dimensions in the micrometer scale and low
mass, affording them high sensitivity for force, position, and
mass sensing [39]. The MEMS device of the Florida group
consists of a 125×125 µm2 thin plate, suspended above a
substrate by serpentine springs forming a uniform gap of 2
µm between them [30]. This device is a mechanical oscilla-
tor in which the thin plate oscillates in a shear mode at its
resonance frequency of ≈24 kHz. The Florida group inves-
tigated the influence of quantized vortices on the damping
of the MEMS by measuring its response in superfluid 4He
at 14 mK, both with and without quantum turbulence being
actively generated by a nearby quartz tuning fork (QTF). They
observed a few interesting and new phenomena. The first was
the unexpectedly higher damping than what was expected at
this low temperature. The second was a phenomenon that
the Florida group called annealing: a hysteresis in damping
as a function of device velocity, i.e., oscillation amplitude.
The annealing effect was only observed in the absence of
quantum turbulence, and disappeared when turbulence was
actively generated. The third was the enhanced phase noise
in the presence of quantum turbulence.

They argue that the underlying cause of all of these
phenomena is associated with vortex pinning and the vortex-
vortex interaction. If the vortices, trapped between the plate
and substrate, are not pinned, they just slip along the plate’s
surface and do not impede its motion. However, in the pres-
ence of pinning, the vortices are stretched by the plate’s
motion, resulting in the transfer of oscillation energy to the
vortices and leading to damping. They also claimed that this
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energy transfer was efficient when the two mechanical sys-
tems, the oscillator and the vortex line, are resonantly coupled.

When measuring the hysteresis, the Florida group pre-
pared a quiescent state of superfluid helium, in which no
turbulence was actively generated, but remnant vortices were
present [40]. Then the velocity of the oscillator was gradually
increased, and then decreased back to its original value, while
measuring the damping in the oscillator. It was found that the
damping decreased after the excitation sweep, and remained
lower until quantum turbulence was generated near the device.

The Florida group provided an explanation for this hystere-
sis in terms of the remnant vortices. During the upward sweep,
the remnant vortices that are trapped and pinned in the gap
contribute to the damping. As the upward sweep progresses,
some of these remnant vortices are eliminated, resulting in a
reduction in the damping during the downward sweep. This
elimination is thought to be promoted by a combined pro-
cess of vortex depinning and annihilation of vortex-antivortex
pairs. This was further supported by repeating the experiment
in the presence of quantum turbulence generated by a QTF.
With the continuous injection of additional vortex rings, the
system reached a statistically steady state and erased the hys-
teresis.

In this paper, we develop a couple of models for vortex
pinning to understand the vortex dynamics and the experi-
mentally observed phenomena. We attempt to describe the
vortex dynamics in such a system and perform single and
multiple vortex simulations to elucidate the effects of vortex
interaction.

II. FORMULATION

Dynamics of quantized vortices is described by the vortex
filament model [13,15] where a vortex line is modeled as a
one-dimensional filament. This model cannot describe phe-
nomena related to its finite core such as vortex creation and
annihilation and vortex reconnection. However, it has been
highly successful in revealing fundamental physics of vortex
dynamics in superfluid 4He [41,42].

The motion of vortex filaments at s(ξ0) obeys the Biot-
Savart law:

ds(ξ0)

dt
= κ

4π

∫
L

s′(ξ ) × [(s(ξ ) − s(ξ0)]

|s(ξ ) − s(ξ0)|3 dξ + vs,b, (1)

where κ and s(ξ ) denote the quantum circulation and the
position of the vortex filaments parametrized by ξ ; s′ refers
to ds/dξ ; vs,b is the velocity induced by boundaries. The
Biot-Savart integration is performed over all vortex filaments
L.

To numerically calculate the equation of motion, a vortex
filament is discretized as connection of points along the fil-
ament. The separation of the adjacent points �ξ = si+1 − si

is set between �ξmin and �ξmax. The equation of motion
is solved by the fourth-order Runge-Kutta scheme. Because
the reconnection events cannot be described directly in this
model, the vortices are algorithmically reconnected when the
distance of vortices becomes less than �ξmin. Short vortices
consisting of less than six points are removed from the system
resulting in dissipation. This is the main channel for dissipa-
tion in the simulation. The proposed dissipation mechanism

is justified because such short vortex lines are isolated from
the other vortices. Furthermore, such short vortex lines can
never grow to influence the vortex dynamics since their Kelvin
wave modes are at much higher frequencies compared to the
oscillation frequency. This aspect will be discussed further
later.

In addition to the inherent dynamics within the bulk, it is
imperative to account for the intricate effects of pinning. We
employ two models to incorporate pinning in the simulation:
the critical angle model (Sec. II A) and the hemispherical
pinning site model (Sec. II B). The former model, introduced
by Schwarz [17], successfully described the effect of pin-
ning on vortex dynamics particularly for vortices partially
attached to a wire in accordance with the findings of Zieve
et al. [43]. It effectively captures the dynamics in the pres-
ence of highly irregular boundaries. While the critical angle
model may not provide an explicit description of pinning and
depinning events, it remains valuable in characterizing vortex
dynamics on rough surfaces, irrespective of the intricacies
of surface geometry. On the other hand, the latter model
addresses the dynamics of vortices in the presence of hemi-
spherical pinning sites through exact solutions of boundary
conditions. Schwarz [15] explored the static boundary con-
ditions of (hemi)spherical surfaces using the vortex filament
model. Fujiyama et al. [44] resolved the boundary conditions
for a moving sphere using the vortex filament model, enabling
the study of turbulence generation. This model offers insights
into the pinning and depinning phenomena, although it en-
counters challenges when dealing with boundaries featuring
multiple irregularities. Utilizing these two models, we analyze
the dynamics of pinned vortices in the system.

A. Critical angle model

The ends of a vortex are forcibly fixed on the boundary
when pinned. Except for the ends, the motion of the vortex is
governed by the equation of motion, Eq. (1). When the vortex
is in motion, the vortex line tilts away from its static angle,
normal to the boundary. The vortex undergoes depinning at a
critical angle θc. Here, we use θc = π/6. The specific choice
of θc does not influence the results of the simulation [45]. The
depinned vortex promptly becomes pinned again by another
nearby point, analogous to the scenario depicted in Fig. 1(a).
The exact location of this “repinning” point is determined by
a point si adjacent to a boundary and a neighboring point si+1

on the opposite side of the boundary: the intersection point
on the boundary by the line drawn perpendicularly from the
midpoint between si and si+1. In simulation, the end of the
vortex appears to jump from one position to another.

This algorithm allows a physical representation of vortex
dynamics in the presence of a rough surface [Fig. 1(b)]. When
a vortex pinned on one of the bumps tilts beyond a critical
angle, it undergoes a reconnection process with an adjacent
bump. This reconnection event results in the splitting of the
vortex into two: a short segment vortex bridging the bumps
and the original vortex shortened by the length of the short
segment. In this model, we ignore the influence of the short
segment because Kelvin waves cannot be excited in this short
segment, and it eventually dissipates away through the re-
peated reconnection events. We refer to this mechanism as
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FIG. 1. Basic idea of the critical angle model. (a) When the angle
between the pinned vortex and the solid boundary is less than the
critical value, the end of the vortex jumps to another point and pinned
again. (b) The sufficiently tilted vortex reconnects with another bump
on the rough surface. The vortex splits into a short segment and a line
vortex shorter than the original one. The segment is ignored in this
model.

rough surface-induced dissipation (RSID). In our simulation,
we assume an extremely rough surface, and the vortex orien-
tation is not normal to the averaged flat boundary. Although
the precise velocity field in the vicinity of the boundary is
not accurately described, we believe that velocity fluctuations
at the scales smaller than the spatial resolution have minimal
impact on the dynamics of the whole system.

B. Hemispherical pinning site model

In this model, hemispherical pinning sites are added on a
flat boundary. This model can describe the depinning events
and the dynamics of the short segment. The superfluid velocity
normal to the pinning site should vanish. The boundary con-
dition of a static sphere is solved in terms of the associated
Legendre polynomial [15]. Moreover, when the pinning site
moves, a potential flow vu(r) is applied [44]:

�u(r) = −1

2

(a

r

)3
up · r, (2)

vu(r) = ∇�u(r). (3)

Here, a and up are the radius and velocity of the pinning site.
We use a = 0.03 µm [45].

The vortices that come close enough to flat boundaries or
pinning sites, specifically within �ξmin, undergo reconnection
with them. When a part of a pinned vortex gets sufficiently
close to the flat boundary, it reconnects with the boundary and
becomes free from pinning; this phenomenon is referred to
as depinning in our model. The reverse is also true: a free
vortex can reconnect with a pinning site and gets pinned on
it. The model itself does not yield dissipation. However, the
dissipation mechanism on the rough surface, such as RSID,
can be incorporated in this model without algorithmically
removing the contribution of short vortex segments.

C. System

We study numerically the experimental configuration using
the pinning models described above. Specifically, we examine
the behavior of pinned vortices situated between two parallel

v

y x

z

FIG. 2. Initial state of a single vortex trapped between two paral-
lel solid boundaries. The arrow indicates the direction of oscillation
of the top boundary.

solid boundaries realized in the MEMS oscillator. The separa-
tion distance L between the boundaries is 2 µm, and one of the
boundaries oscillates in the x direction with the velocity vector
v(t ) = 2π f A cos(2π f t )x̂. Here, A represents the amplitude
of the oscillation, while f denotes the oscillation frequency.
The pinned ends of the vortices also oscillate in the same
manner. The excitation of the vortex line is described by the
Kelvin waves whose dispersion relation is given by

f (k) = 1

2π

κk2

4π
ln

(
1

ka0

)
, (4)

where a0 and k are a vortex core size and the wave number
of the Kelvin wave [46]. In our simulation, unless otherwise
mentioned, we use f1 = 23 625 Hz for the oscillation fre-
quency of the moving boundary. This frequency is the first
resonant frequency of the Kelvin wave mode specified by
kn = nπ/L with n = 1, which is close to the value used in
the experiment [30].

III. RESULTS

We present the results of the simulations in two cases:
single-vortex case (Sec. III A 1) and multiple-vortex case
(Sec. III A 2). Subsequently, in Sec. III B, we revisit the exper-
imental observations in an effort to make physical connections
with our simulations. The specific parameters used in the
simulations are outlined in Tables I and II.

A. Vortex dynamics with pinning

1. Single-vortex case

First, we perform single-vortex simulations. In this case,
a rectilinear vortex is placed between the solid boundaries as
an initial state as shown in Fig. 2. Both ends of the vortex
are pinned on the boundaries. The orientation of the vortex
is from bottom to top along the z direction, +ẑ. Assuming
the presence of rough boundaries on both sides, we apply the
critical angle model to describe their behavior. As the upper
boundary initiates oscillation, the vortex becomes stretched
and curved gradually. Simultaneously, the vortex begins to
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TABLE I. Parameters in the critical angle model.

Parameters in the critical angle model Symbol Value

Single-vortex case
Distance between plates L 2 µm
Time resolution (n = 1 mode) �t 2.5 ns
Minimum spatial resolution (n = 1 mode) �ξmin 0.01 µm
Maximum spatial resolution (n = 1 mode) �ξmax 0.03 µm
Time resolution (n = 3 and n = 10 mode) �t 0.5 ns
Minimum spatial resolution (n = 3 and n = 10 mode) �ξmin 0.004 µm
Maximum spatial resolution (n = 3 and n = 10 mode) �ξmax 0.01 µm
Oscillation frequency (n = 1 mode) f1 23 625 Hz
Oscillation frequency (n = 3 mode) f3 23 625×32 Hz
Oscillation frequency (n = 10 mode) f10 23 625×102 Hz
Oscillation amplitude A 0.1 µm

Multiple-vortex case
Distance between plates L 2 µm
Time resolution �t 2.5 ns
Minimum spatial resolution �ξmin 0.01 µm
Maximum spatial resolution �ξmax 0.03 µm
Oscillation frequency (n = 10 mode) f 23 625 Hz
Oscillation amplitude A 0.1 µm

rotate around its initial configuration due to its self-induced
velocity. Looking from the top, the rotation direction is clock-
wise reflecting the vortex orientation as depicted in Fig. 3. The
temporal evolution of the vortex line length is illustrated in
Fig. 4 for the amplitude of A = 0.1 µm. When the frequency
f matches the resonant value of 23 625 Hz, the vortex line
length increases from its initial value of 2 µm until reaching
a statistically steady state of approximately 2.13 µm. This
steady state corresponds to the Kelvin wave of the n = 1
mode. The vortex continues to rotate due to its self-induced
velocity with the oscillation period of 1/ f .

The statistically steady state represents an equilibrium be-
tween excitation and dissipation mechanisms. The excitation
arises from the driven oscillation, while the dissipation comes
from the rough surface-induced dissipation (RSID) discussed
in Sec. II A. As the vortex is sufficiently tilted, it reconnects
with another bump, effectively shortening in length. Repeat-
ing this process, the vortex gets shorter. When the excitation
from the oscillation is counterbalanced by RSID, the system
reaches a statistically steady state. The simulation clearly con-
firms the effectiveness of RSID.

Next, we examine the frequency dependence of vortex dy-
namics. When the system is driven at the resonant frequency

f given by Eq. (4), it reaches a steady state corresponding to
the mode. Figure 5 shows the snapshots of the steady states
for the n = 3 and 10 modes. On the other hand, when the os-
cillation frequency does not match with a resonant frequency,
the degree of stretching in the vortex diminishes, as observed
in Fig. 4.

In contrast, the simulation in the hemispherical pinning
site model demonstrates the depinning process. With only one
pinning site on each boundary, the vortex is also gradually
stretched, exciting the first Kelvin wave mode. However, the
vortex does not reach a steady state as it lacks dissipation.
Consequently, the vortex continues to elongate, causing the
angle between the boundary and the vortex to decrease. Even-
tually, the vortex reconnects with the boundary and becomes
free from pinning. Figure 6 shows the snapshots at the three
different stages discussed.

2. Multiple-vortex case

Since multiple vortices must be present in the real system,
we extend our simulation involving 100 line vortices within
a volume V = 20×20 ×2 µm3 defined by the two bound-
aries. The orientations of the vortices are initially prepared
randomly with the half of them oriented upward (+ẑ) and the

TABLE II. Parameters in the hemispherical pinning site model.

Parameters in the hemispherical pinning site model Symbol Value

Distance between plates L 2 µm
Pinning site size a 0.03 µm
Time resolution �t 0.05 ns
Minimum spatial resolution �ξmin 0.001 µm
Maximum spatial resolution �ξman 0.003 µm
Oscillation frequency (n = 1 mode) f 23 625 Hz
Oscillation amplitude A 0.1 µm
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FIG. 3. Snapshots of the statistically steady state in the single-
vortex case. The first Kelvin wave mode is excited, and the vortex
continues to rotate by its self-induced velocity. The arrows indicate
the rotation direction.

other half oriented downward (−ẑ). The ends of the vortices
are pinned on the surfaces as described by the critical angle
model. The lower boundary remains stationary, while the top
boundary is in motion. The vortices located outside the 2-µm
boundary from the volume V are removed as they hardly affect
the vortex dynamics of interest.

To simulate the experiment [30,31] where the vortex rings
were produced by a nearby QTF, we inject vortices into the
gap between the boundaries from the opposite sides in the y
direction. The blue arrows in Fig. 7 indicate the direction of
the ring injection. The position of entrance into the volume
is randomly determined. The vortex ring injection is charac-
terized by two parameters: the injection frequency and the
size distribution. The injection frequency is set to 106 Hz,
significantly higher than the oscillation frequency of the QTF,
which is the order of 104 Hz. The high injection frequency is
justified by our previous simulation in which we investigated
the emission of vortices from a localized vortex tangle gener-
ated by the injection of vortex rings [47]. In that simulation,
the local vortex tangle was formed through the collisions of
the vortex rings injected into the system. We verified that
the frequency of vortex ring emission from the local tangle
exceeded the actual injection frequency.

Additionally, we assume that the size distribution of the
emitted vortices from a vortex tangle follows a power law.
This power law was confirmed in both the experiment [48] and
the numerical work [47]. Yano et al. experimentally extracted
the power-law statistics of the size of vortices emitted from a
vortex tangle generated by a vibrating wire [48], which was
also confirmed numerically [47]. In this case, the radius of

FIG. 4. Time development of the vortex line length in the
single-vortex case for three different oscillation frequencies. If the
excitation frequency does not match with the Kelvin wave resonance,
the length of the vortex does not increase.

n = 3n = 3 n = 10n = 10

y x

z

y x

z

FIG. 5. Snapshots of the single vortex when oscillated at the
frequencies of the (a) n = 3 mode and (b) n = 10 mode. Each clearly
shows the corresponding Kelvin wave excited in the vortex. Both
snapshots were taken at t = 0.027 ms.

the vortices is ranging from 0.25 to 10 µm, following the
power-law distribution with the exponent −1.7 observed in
Ref. [48]. However, since this distribution is cumulative, we
applied an exponent of −2.7 obtained by differentiating the
distribution by the size. Although the shape and oscillation
frequency are expected to depend on the tuning forks or the
generators used, we apply the same power distribution [48]
because this is the only study on the size distribution of the
vortex loops emitted from a local vortex tangle made by a
vibrating object. The vortex rings entering the volume interact
with the existing vortices and the boundaries in two different
ways. If the diameter of a ring is smaller than the plate gap
of 2 µm, the vortex ring enters into the system freely and
interacts with the existing vortices. However, if the diameter
exceeds the gap, the ring interacts with the boundaries. In this
case the injected vortex may be converted into a line vortex
pair [Fig. 8(a)] or a single line vortex [Fig. 8(b)] inside the gap.
Thus, we effectively inject a pair of antiparallel line vortices
[Fig. 8(a)] or a single line vortex [Fig. 8(b)], respectively. The
flowchart for the vortex injection is shown in Fig. 9.

It is interesting to note that despite the continuous injection
of vortex rings, a dense tangle is not generated in the pinned
case, as shown in Fig. 10(a) (also, see Ref. [45]). The total
vortex line length in the volume V actually decreases from
the initial value of 200 µm to a statistically steady value of
180 µm. The number of vortices bridging the boundaries also
decreases to about 30 within the volume, inhabiting mostly
near the edge of the boundary. Note that the calculations for
the total vortex line length and the number of bridging vortices
are performed only within the specified volume V . During
the simulation, the vortices frequently undergo reconnections

y x

z

y x

z

y x

z

FIG. 6. Snapshots of the single-vortex case in the hemispherical
pinning site model. The red spots on the upper and bottom bound-
aries refer to the pinning sites. The vortex is gradually stretched and
eventually depinned from the upper pinning site.
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FIG. 7. Initial state of the multiple-vortex simulation in the crit-
ical angle model. 100 vortices are prepared randomly with the equal
probability of up or down orientation. The upper boundary oscillates
in the x direction. The vortices are injected from the both sides along
the y direction. See the text.

and topological changes. The vortices that undergo reconnec-
tions tend to adopt configurations that are more susceptible to
dissipation through the RSID mechanism. We identified two
types of dissipation mechanisms associated with the recon-
nections: (i) line-line reconnection, (ii) line-ring reconnection.
The examples of these events are shown in Fig. 11. (i) Line-
line reconnection: A pair of antiparallel vortices reconnect
with each other and split into a pair of half-loops that are
attached to the boundaries. These loops gradually shrink due
to RSID, as they tilt under the influence of their self-induced
velocity. Eventually, they completely disappear. (ii) Line-ring
reconnection: An injected vortex ring reconnects with a line
vortex. After the reconnection, they form a fluctuating or
kinked loop and line [49]. While the kinked structure along
the line vortex is often dissipated through RSID, it sometimes
experiences significant fluctuations due to the multiple col-
lisions with vortex rings in a short time. In such cases, the
highly fluctuating line vortex can emit a vortex loop through
self-reconnection. The loops generated by the reconnection

FIG. 8. Schematic diagrams for vortex line injection in the sim-
ulation shown in Fig. 7. When a large vortex is injected, the vortex
may interact with the boundaries to produce line vortices bridging be-
tween them. In (a), the vortex undergoes reconnection at two distinct
points on the plate and the substrate, resulting in the formation of an
antiparallel line vortex pair. In (b), the vortex undergoes reconnection
at only one point on each boundary, leading to the formation of a
single line vortex within the gap.

FIG. 9. Flowchart for determining the position and shape of the
injected vortices in the simulation of Fig. 7. The parts after R > L
correspond to the large vortex injections illustrated in Fig. 8.

of a ring and a line, as well as those generated by the self-
reconnection of a line vortex, tend to approach the boundary
and eventually attach to it, experiencing the dissipation pro-
cess similar to the case (i). Some loops escape from the system
without interacting with the boundaries and consequently con-
tribute to dissipation.

Let us examine the behavior near the wall in the (i) line-
line reconnection and (ii) line-ring reconnection scenarios. To
provide a more accurate description, we employ the hemi-
spherical pinning site model, which offers greater detail than
the critical angle model. In this model, we place four pinning
sites on each boundary and initialize an antiparallel vortex
line pair whose ends are pinned, as shown on the left side
of Fig. 12. The upper boundary is in motion. The snapshots
illustrating the process are displayed on the lower right side
of Fig. 12. When the upper boundary starts to oscillate, the
termination point of the vortex line moves around on the pin-
ning site while maintaining pinning. The antiparallel vortices
are stretched and rotate in the opposite directions, reconnect
with each other, and split into two half-loops attached to the
pinning sites, one on each boundary, and a closed loop be-
tween the boundaries. The half-loop subsequently reconnects
with other pinning sites and splits into the smaller ones. The
splitted vortices propagate on the surface of the boundary and
do not affect the vortex dynamics so much. This continuous
splitting and reconnection process leads to the dissipation.
These results support the concept of RSID described in the
critical angle model. We note that this simulation does not
perfectly satisfy the boundary condition, as the small distance
between the sites is comparable to the radius of the pinning
site, thereby breaking the boundary condition at each site.
Nevertheless, we believe that this result is qualitatively cor-
rect.

In addition, we simulate the multiple-vortex case without
pinning, where the boundaries are just flat. The dynamics
observed in this case is completely different from that with
pinning. The snapshots and the time development of the

144110-6



DYNAMICS OF PINNED QUANTIZED VORTICES IN … PHYSICAL REVIEW B 108, 144110 (2023)

FIG. 10. Time developments of the vortex line length (solid line) and the number of vortices (dotted line) of the multiple vortex case
(a) with pinning and (b) without pinning in the critical angle model.

vortex line length in the absence of pinning are illustrated in
Fig. 10(b) (also, see Ref. [45]). In the presence of pinning,
the vortex line length decreases from the initial value to a
statistically steady state (approximately 180 µm). However,
in the absence of pinning, the vortex line length increases
significantly, and a dense tangle is developed (the length is

FIG. 11. Snapshots representing dissipation mechanism in the
multiple vortex simulation in the critical angle model. In (i), a pair of
antiparallel vortices reconnect with each other and split into two half-
loops attached to the boundaries. The half-loops eventually dissipate
by RSID. The upper of (ii) shows the collision of an injected vortex
ring with a pinned line vortex. The reconnection event induces fluc-
tuations and/or kinks on the line and the ring. The fluctuating loop
becomes a half-loop when in contact with a boundary and eventually
dissipates away by RSID. The kinked structure along the line also
dissipates by RSID. The lower of (ii) depicts the pinned line vortex
under heavy fluctuations after multiple collisions with vortex rings.
This vortex line can emit vortex loops through self-reconnection,
which also get dissipated eventually.

approximately 600 µm). Obviously, the number of vortices
is larger compared to the case with pinning. Thus, pinning
can effectively prevent the generation of turbulence. This is
consistent with the experimental observation [31] that they
could not induce turbulence with the MEMS oscillator while
the turbulence could be readily generated with the QTF.

B. Comparison with experiment

1. Damping mechanism

Our simulations provide overall consistent pictures with
the observations and interpretations made by Barquist
et al. [30,31]. At the heart is the resonant energy transfer from
the oscillator to the pinned vortex line exciting the Kelvin
waves. In their experiment, the oscillation frequency was ac-
cidentally matched with the first mode of the Kelvin wave for
the given geometry. We confirm that the coupling between

y x

z

FIG. 12. Vortex dynamics in the hemispherical pinning site
model. Four pinning sites are placed on each boundary. Two an-
tiparallel line vortices whose ends are pinned are initialized. The
upper plate is in motion. The rotating line vortices reconnect with
each other and split into two half-loops attached to each boundary
and a closed loop separated in the gap. The half-loop subsequently
reconnects with the other bumps, splits into smaller vortices, and
finally dissipates.
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Fx

F

Fx

F

Fx

FIG. 13. Force acting on the boundary along the direction of the oscillation in the single-vortex case in (a) the critical angle model (Fig. 3)
and (b) the hemispherical pinning site model (Fig. 6). The left sides of (a) and (b) are the force diagrams of the tension acting on the boundary
by the real and imaginary vortices. The right sides of (a) and (b) show the time development of the force.

the two mechanical systems (oscillator + vortices) is throttled
when the two frequencies are not matched. Furthermore, by
introducing pinning-depinning effects in our models we estab-
lish the proper dissipation in the vortex system, which appears
as damping in the oscillator (oscillating boundary). Therefore,
in the presence of pinning, i.e., dissipation, the oscillator and
the pinned vortex system reach a steady state, preventing
vortex tangle. Our simulation also successfully showed how
the injected rings interact with the trapped vortices and the
boundaries.

In an attempt to establish a connection between the damp-
ing force measured in the experiment and the numerical
results, we adopt the assumption that the damping force on
the oscillator is caused by the tension of the pinned vortex
lines [30]. This allows us to estimate the damping force, which
is directly proportional to the oscillation velocity. The tension
is equivalent to a vortex energy per unit length [14,46]

ε = ρsκ
2

4π
ln(R0/a0), (5)

where ρs and R0 are the superfluid density and a characteristic
length. We choose L = 2 µm between the boundaries as R0,
which produces ε = 1.12 pN. We calculate the force Fx by
multiplying the x component of the unit tangent vector on the
edge of the vortex attached to the pinning site on the upper
boundary (in the hemispherical pinning site model) or the up-
per boundary itself (in the critical angle model). It is important
to note that we calculate the force for both the real and image
vortices, taking into account the boundary conditions in our
analysis.

We can compare the time development of the force from a
single vortex in the two models. Let us start with the critical

angle model. As shown in Fig. 13(a), once the boundary is
set in motion, the vortex is gradually stretched and reaches a
steady state as previously described. In this process, the angle
between the vortex and the boundary decreases to the critical
angle θc. Consequently, the amplitude of the force approaches
a constant value Fx ≈ 2ε cos θc. The oscillation in the force
is due to the vortex rotation around its symmetry axis. On
the other hand, in the hemispherical pinning model as shown
Fig. 13(b), the force gradually increases but when the vortex
is sufficiently stretched, it becomes depinned and the force
abruptly disappears. Note that Fig. 13(b) shows the results in
a much narrower time duration.

In both models, the force strongly depends on the oscilla-
tion frequency as expected. When the oscillation frequency is
close to the resonant frequency, the vortex experiences signifi-
cant stretching; the angle becomes smaller, leading to a higher
force (see Fig. 13). However, when the frequency deviates
from any resonant frequencies, the vortex is not stretched as
much, resulting in a relatively smaller force. It is worth to note
that even in these nonresonant frequencies, the force oscilla-
tion can still excite a mode at other than the actual oscillation
frequency. For example, the spectra for 10 000 and 40 000 Hz
exhibit the peaks at their own oscillation frequencies as well
as at the Kelvin wave mode frequencies as shown in Fig. 14.
In contrast, the spectrum for 23 625 Hz shows only a high
resonant peak.

The force shown in the simulation is composed of two
quadrature components: Fx = F1 sin(2π f t ) + F2 cos(2π f t ).
In our simulation, F1 and F2 correspond to the component
proportional to the acceleration and the velocity, respectively.
Therefore, F2 is the damping force. Based on this we obtained
the values for F1 = −0.63 pN and F2 = −1.44 pN from the
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FIG. 14. Fourier transform of the time development of the force
in Fig. 13(a).

23 625 Hz force oscillation in the critical angle model. Using
the velocity amplitude v0 = 2π f A, the damping coefficient
is calculated to be η = 9.7×10−11 kg/s where Fx = ηv0. This
value is an order of magnitude larger than the rough estimation
of 5.4×10−13 kg/s, given in Ref. [31]:

η = 2
ε f

v2
0

δl. (6)

where δl is the vortex length stretching in a cycle of oscilla-
tion.

In the case of multiple vortices, Fig. 15 shows the time de-
pendence of the force and the number of the bridging vortices.
The orange dashed line represents the estimated total force
obtained from the single-vortex simulation by multiplying
the total number of vortices. The estimated force turns out
to be greater than the total force observed in the multiple-
vortex simulation (blue solid line). It is notable that strong
fluctuations in the the number of the bridging vortices are
present, which is directly related to the processes described
in Sec. III A 2. The number of bridging vortices fluctuates due
to the population of the new vortices from the injected rings
and the annihilation of the existing vortices. The enhanced
noise in the presence of vortex ring injection was observed
in the experiment in the form of the phase noise [31]. The dif-
ference between the estimated force and the total force in the
multiple-vortex case can be attributed to vortex interaction. To
illustrate this, we consider an example involving an antiparal-
lel rectilinear vortex pair. Each vortex is located at coordinates
(x, y) = (0.9 µm, 0.9 µm) and (−0.9 µm,−0.9 µm), respec-
tively. These vortices are pinned between the boundaries, and
the upper boundary is oscillated. Figure 16(a) illustrates the

FIG. 15. Time dependence of the force acting on the plate, Fx ,
and the number of the bridging vortices (dotted line) in the critical an-
gle model. The estimated force is calculated by multiplying the force
in the single-vortex case with the oscillation frequency 23 625 Hz
and the number of the bridging vortices shown by a dotted line.

FIG. 16. (a) Comparison of the force in the pair-vortex case
and the single-vortex case [Fig. 13(a)] by the critical angle model.
The lower figures show the dynamics of the pair vortices with the
oscillation frequency 23 625 Hz. In the pair-vortex case, the shown
force is calculated by dividing the total force by two. (b) Time
development of the pair vortices. The virtual rectangle depicted by
the black lines is 3.6 µm in x and y directions and 2 µm in z direction,
and its center is the origin. They initially rotate independently by
their self-induced velocity. They gradually get closer in interaction,
and the interaction becomes more dominant compared to rotation by
self-induced velocity. Finally, the vortices reconnect with each other,
and are dissipated by RSID.

force per vortex in the pair-vortex case compared to the force
in the single-vortex case. The time development of the dy-
namics is shown in Fig. 16(b). Initially, each vortex moves
independently because their interaction is weak, and the force
acting on the plate is approximately equal to their sum. How-
ever, as the amplitude of the Kelvin wave increases and the
distance between the vortex pair decreases, the interaction
between the two vortices gets dominant, causing disturbances
in their rotational motion. The phases of the vortex rotation
became out of sync, and the orientations of the forces by the
vortices are not aligned anymore. As the result, the total force
exerted by the vortex pair decreases. This local mechanism
occurs extensively over the whole vortices, leading to the
discrepancy between the total force and the estimated force.

In this study, we have exclusively concentrated our atten-
tion on vortices residing within the gap between the plate
and the substrate. Nevertheless, within the real system, it is
plausible that vortices pinned to the sides facing the bulk
could potentially impact the motion of the plate. We con-
sider that their influence is negligible. Typically, these vortices
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FIG. 17. Total force acting on the plate along the x direction,
estimated force and number of bridging vortices (dotted line) in
the multiple-vortex simulation without injection by the critical angle
model. The inset of this figure is a snapshot of the dynamics at the
time 0.6455 ms, where the vortices are degenerate.

have much longer than those within the gap, and they are
energetically less favorable in a vortex nucleation process.
Furthermore, the oscillation frequency generally does not
match with their Kelvin wave resonance modes. As illustrated
in Fig. 13, the tension with off-resonance oscillation has a
relatively minor effect. Consequently, these vortices exert only
a modest influence on the damping.

2. Origin of the force hysteresis

We propose that the force hysteresis observed in the ex-
periment can be explained by the multiple-vortex simulation
(Sec. III A 2). The force hysteresis is observed only when
vortices are not externally injected. The Florida group sug-
gested that this implies that the damping is directly related
to the number of pinned vortices, and the number of vortices
decreases for some reason when the oscillator was driven hard
in the absence of external vortex injection. We performed a
multiple-vortex simulation without injection. The total force
and the estimated force are presented in Fig. 17. Unlike the
case with the vortex injection, the amplitude of the total force
is smaller than that of the estimated force in the beginning, but
as time goes by, the difference between them disappears. This
is due to the decrease in the vortex density, which allows each
vortex to move independently without reconnection processes.
This process leads to a gradual decrease in the total force and
the number of vortices. Such a mechanism contributes to the
observed force hysteresis. Furthermore, the fluctuations in the

force and the number of bridging vortices are significantly
smaller compared to the case with the vortex injection.

IV. CONCLUSION

We conducted extensive numerical simulations to study the
dynamics of quantized vortex systems with pinning within the
framework of two pinning models: the critical angle model
and the hemispherical pinning site model. The critical angle
model, although phenomenological, is suitable for describing
the vortex dynamics with rough solid boundaries. Dissipation
mechanism is successfully incorporated in this model even at
0 K through reconnection of vortices with rough boundaries,
referred to as rough surface-induced dissipation (RSID). On
the other hand, the hemispherical pinning site model provides
a more accurate representation of pinning-depinning process
by correctly solving the boundary conditions. Although this
model does not inherently include vortex dissipation, it can
lead to dissipation when vortices interact with rough bound-
aries, as illustrated in Fig. 12.

Using these models, we performed calculations to simulate
vortex dynamics with pinning in the geometry closely emulat-
ing the experimental setup. We confirmed that the dissipation
of the pinned vortices is the main damping mechanism of the
oscillator at zero temperature when the oscillator was driven
at a frequency matched to a Kelvin wave mode of the vor-
tices. In the presence of multiple vortices, the pinned vortices
interacted with each other and also with the injected vortex
rings, and experienced dissipation due to a combination of
interaction and RSID. This dissipation prevented the devel-
opment of turbulence in the system, which would otherwise
occur in the absence of pinning. Additionally, we performed a
multiple-vortex simulation without any injection. In this case,
the number of vortices and the force on the plate decreased
over time, which may explain the origin of the force hysteresis
phenomenon.
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