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Complex energy eigenvalues and the non-Hermitian skin effect are two notable properties of non-Hermitian
systems. These properties result in the localization of all eigenstates at the system boundaries, which can under-
mine the dynamic stability and experimental detection of topological edge states. In this paper, we investigate the
one-dimensional non-Hermitian Su-Schrieffer-Heeger model with next-nearest-neighbor nonreciprocal hopping.
By examining the energy spectrum and state distributions of the system, we demonstrate that the zero energy
topological edge state and nonzero energy gap state can be distinguished from the non-Hermitian skin states.
Additionally, we analyze the localization properties of these two states using the directional inverse participation
ratio and investigate the non-Hermitian skin effect through the energy spectrum on the complex plane and
the spectral winding number. Furthermore, we present phase diagrams of separation factor that illustrate
the separation phenomenon between the edge or gap state and skin states. This work reveals the intriguing
relationship between topological properties and non-Hermitian skin effects in one-dimensional nonreciprocal
systems.
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I. INTRODUCTION

Condensed matter physics is a field that has emerged from
solid-state physics and has gained significant importance in
modern physics. As early as 1980, Von Klitzing discovered the
quantum integer Hall effect in the two-dimensional electron
gas system, which is a typical topological phase of matter in
the two-dimensional electron gas system [1–4]. Subsequently,
the concept of the Berry phase leads to the vigorous devel-
opment of the study of the topological phase and topological
phase transition [5,6]. The discovery of topological insulators
has garnered extensive attention and has become a new re-
search field in condensed matter physics [7–11]. Topological
insulators exhibit unique physical properties, including non-
conductive bulk states and a conductive zero mode on their
surface. These conductive edge states are protected by the
energy gap and are robust to local impurities, disorders, or
perturbations [12–18]. Topological insulators possess unique
topological invariants, such as winding number [19,20], Zak
phase [21,22], and Chern number [23,24], which charac-
terize their topological properties. These materials exhibit
unidirectional transmission and back scattering suppression of
electrons on their surface, making them ideal for applications
in quantum information processing [25–27].

Recently, non-Hermitian systems have had a more compre-
hensive range of applications in efficiently describing classical
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or quantum open systems than Hermitian systems [28,29].
In constructing non-Hermitian systems, gain-loss, and non-
reciprocal coupling methods are typically used. Recently, the
study of non-Hermitian topological systems has further ad-
vanced the understanding of topological insulators [30,31].
However, introducing non-Hermitian terms can break the tra-
ditional bulk-boundary correspondence, which makes all of
the eigenstates of the system localized at the boundary in the
form of exponential decay [32]. Nevertheless, this issue can
be overcome by creating a generalized Brillouin zone, thus
restoring the bulk-boundary correspondence [33]. Further-
more, many kinds of research focused on using a new method
for describing the topological properties of the non-Hermitian
skin effect (NHSE) and the design of multidirectional trans-
port topological devices [34–36]. On the other hand, the
Su-Schrieffer-Heeger (SSH) model is a widely studied one-
dimensional (1D) lattice system that describes the hopping
of electrons in a chainlike structure [37]. Initially used to
describe polyacetylene, this model is simple in structure and
has rich topological properties. Hence, the non-Hermitian ex-
tension of the SSH model has again become a research hot
area in theory and experiment [38–40]. For example, intro-
ducing balanced gain and loss creates a non-Hermitian system
that satisfies the parity-time symmetry [41–46] or asymmetric
coupling to create a nonreciprocal hopping [47–51]. More-
over, the SSH model has been simulated in many physical
systems, such as electronic circuit systems [52], acoustic sys-
tems [53], optical superlattice [54], atomic systems [55], and
quantum dot arrays [56].

In the non-Hermitian topological system, the experimental
detection of topological edge states with complex energies
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FIG. 1. Diagrammatic sketch of the 1D non-Hermitian SSH
model with next-nearest-neighbor nonreciprocal hopping. Each unit
cell has two sites, labeled as aj and bj , respectively. Blue and
red arrows denote the nearest-neighbor hopping strengths t1 and t2.
Yellow and green arrows represent the next-nearest-neighbor nonre-
ciprocal hopping strengths with t3 = t + δ cos θ and t4 = t − δ cos θ ,
respectively.

is challenging due to dynamic instability. Another challenge
is distinguishing between topological edge states and bulk
states, as NHSE causes all bulk states localized at the bound-
aries with exponential decay. In this paper, we study the 1D
non-Hermitian SSH model with next-nearest-neighbor nonre-
ciprocal hopping. Through analysis of the energy spectrum
and state distributions, the zero energy topological edge state
and nonzero energy gap state can be distinguished from the
non-Hermitian skin states. The localization properties of the
zero energy topological edge state and nonzero energy gap
state under OBC are investigated using the directional in-
verse participation ratio (dIPR). Additionally, the localization
behavior of the non-Hermitian skin states is connected to
the surrounding directions of the spectrum on the complex
energy plane under periodic boundary conditions (PBC). Fur-
thermore, a phase diagram of separation factor is shown to
visually illustrate the separation phenomenon between the
edge or gap state and the skin states.

The paper is organized as follows. In Sec. II, we give
the model and Hamiltonian of the system. In Sec. III, we
investigate the energy spectrum and state distributions of the
1D non-Hermitian SSH model with next-nearest-neighboring
hopping. In Sec. IV, we analyze and demonstrate the separa-
tion phenomenon between the zero energy topological edge
state, nonzero energy gap state, and non-Hermitian skin states
by using phase diagrams with separation factor. Finally, a
conclusion is given in Sec. V.

II. MODEL AND HAMILTONIAN

We consider a 1D non-Hermitian SSH model with next-
nearest-neighbor nonreciprocal hopping, as illustrated in
Fig. 1. The total Hamiltonian of the system can be described
as follows:

H (η) = H0 + H (η)
1 , (1)

with

H0 =
N∑

j=1

[t1(a†
j b j + b†

ja j ) + t2(b†
ja j+1 + a†

j+1b j )

+t3a†
j+1a j + t4a†

j a j+1], (2)

H (η)
1 = η[t2(a†

N+1bN + b†
N aN+1)+ t3a†

N+1aN + t4a†
N aN+1], (3)

FIG. 2. Energy spectrum of the system as a function of θ under
OBC. The parameters are set as t1 = 0.2, t2 = 0.9, δ = 1.3, η = −1,
and L = 40, respectively.

where a†
j (a j ) and b†

j (b j ) represent the creation (annihila-
tion) operators of the jth site of the system. For η = −1, it
means the even-sized system L = 2N , and η = 0 indicates
the odd-sized system L = 2N + 1, in which N is the num-
ber of unit cells. t1 and t2 are the nearest-neighbor hopping
strengths. t3 = t + δ cos θ and t4 = t − δ cos θ are the next-
nearest-neighbor nonreciprocal hopping, where θ ∈ [0, 2π ] is
the periodic parameter and δ is the nonreciprocal amplitude.
When the nonreciprocal hopping terms in Eq. (1) are equal
to 0 (t3 = t4 = 0), the current system can be identified as
a standard SSH model. As a result of the odd-sized lattice
sites, the system exhibits zero energy topological edge states
throughout the whole parameter space. For even-sized lattice
sites, two degenerate zero energy topological edge states lo-
calized at the end of the system. Here, we aim at the situation
for t3 �= t4. For simplicity, we choose t = 1 as the energy unit
in all of the paper.

III. ENERGY SPECTRUM AND STATE DISTRIBUTIONS

In this section, we first explore the energy spectrum
and state distributions of the 1D non-Hermitian SSH model
with next-nearest-neighbor nonreciprocal hopping. The cur-
rent system exhibits the NHSE due to the introduction of
next-nearest-neighbor nonreciprocal hopping. As shown in
Fig. 2, we demonstrate the energy spectrum of the even-sized
SSH model as a function of θ under open boundary con-
ditions (OBC) with t1 = 0.2, t2 = 0.9, δ = 1.3, and L = 40,
respectively. It is found that the current system holds one zero
energy topological edge state throughout the whole parameter
regions θ . Additionally, one nonzero energy gap state exists
in the system within 0.16π < |θ | < 0.84π . To characterize
the localization properties of all eigenstates, we introduce the
dIPR featuring the energy spectrum as [51]

dIPR(ψn) = P (ψn)

∑L
j=1 |ψn, j |4(∑L

j=1 |ψn, j |2
)2 , (4)

with P (ψn) defined as

P (ψn) = sgn

⎡
⎣ L∑

j=1

(
j − L

2
− α

)
|ψn, j |

⎤
⎦, (5)
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FIG. 3. State distributions of the system with t1 = 0.2, t2 = 0.9,
δ = 1.3, L = 40, and η = −1. Other parameters are taken as (a) θ =
0.5π , (b) θ = 0.55π , (c) θ = 0.18π , (d) θ = π , and (e) θ = 0.37π .
The red, green, and blue lines present the nonzero energy gap state,
the bulk state, and the zero energy topological edge state distribu-
tions, respectively.

where |ψn〉 j is the jth eigenstate of the system with energy
eigenvalue En. α is a constant value, which is normally de-
termined as 0 < α < 0.5. sgn(x) denotes the sign function,
making sgn(x) = 1 for x > 0 and sgn(x) = 1 for x < 0. The
value of dIPR is positive or negative corresponding to the right
or left localization, respectively. One can see that the values of
dIPR for bulk states are positive within |θ | < 0.5π , indicating
the right localization of the eigenstates; the negative case for
|θ | > 0.5π , indicating the left localization of the eigenstates.
When |θ | = 0.5π , the dIPR of the bulk states is close to 0, rep-
resenting that the bulk states converge toward extended states.
However, the value of dIPR for the zero energy topological
edge state is close to 1 throughout the whole parameter region
θ , corresponding to the highly localized at the right boundary
of the system. We further reveal that the nonzero energy gap
states will be shifted from right localization to left localization
as |θ | increases with the critical value |θ | = 0.207π .

Furthermore, we present the state distributions of the sys-
tem in Fig. 3. We find that the zero energy topological edge
state, nonzero energy gap state, and bulk states coexist. For
θ = 0.5π , the current system reduces to a Hermitian SSH
model with next-nearest-neighbor hopping. It is found that
the nonzero energy gap state and the zero energy topological
edge state are localized at opposite boundaries of the system
and the bulk states are extended, as shown in Fig. 3(a). Then,
for θ = 0.55π , the current system is a non-Hermitian sys-
tem with next-nearest-neighbor nonreciprocal hopping. From
Fig. 3(b), it is found that the gap state and edge state are also
localized at opposite boundaries of the system. However, for
θ = 0.18π , all the eigenstates are right localization, the same
as general NHSE with all the states localized at one boundary
in Fig. 3(c). Interestingly, for the non-Hermitian case with
θ = π , we can reveal the separation of the zero energy topo-
logical edge state from skin states and the nonzero energy
gap state, highly localizing at the end of the lattice, as shown
in Fig. 3(d). One can see that the zero energy topological
edge state is localized at the right boundary of the system,

FIG. 4. Energy spectrum on the complex plane under PBC with
t1 = 0.2, t2 = 0.9, δ = 1.3, L = 40, N = 20, and η = −1. The other
parameters are set as (a) θ = 0.4π , (b) θ = 0.5π , and (c) θ = 0.6π ,
respectively. The arrow represents the surrounding direction of the
energy spectrum on the complex plane.

and the skin states are localized at the left boundary of the
system. The topological edge state with zero energy ensures
dynamic stability and experimental detection. Moreover, for
θ = 0.37π , the nonzero energy gap state can be separated
from skin states and the zero energy topological edge state,
localizing with opposite directions in Fig. 3(e). One can see
that the nonzero energy gap state is left localization, and the
skin states are right localization.

IV. CHARACTERIZATION OF SEPARABLE ZERO
ENERGY TOPOLOGICAL EDGE STATES AND NONZERO

ENERGY GAP STATES

In this section, we investigate non-Hermitian skin phase
transition of system and its characterization in the even-
sized SSH model under PBC. In momentum space, the
Bloch Hamiltonian of the system can be written as H =∑

k ψ (k)†H (k)ψ (k) with ψ (k) = (ak, bk )T , and H (k) is

H (k) = h0I + hxσx + hyσy + h0σz, (6)

where h0 = cos k − iδ cos θ sin k, hx = t1 + t2 cos k, and hy =
t2 sin k. The energy eigenvalue of the system can be obtained
by

E±(k) = h0 ±
√

h2
0 + h2

x + h2
y . (7)

For k = 0 or k = π , there are four points with pure real ener-
gies, which are independent of the value of θ . In the following,
we calculate the four fixed points and determine the range of
the energy reference point to calculate the winding number.

We first focus on the energy spectrum on the complex plane
of the system with t1 = 0.2, t2 = 0.9, δ = 1.3, and L = 40, as
shown in Fig. 4. The energy eigenvalues of the system have
been obtained by Eq. (7). For an invertible non-Hermitian
H (k), if and only if the real or imaginary part of all the
eigenenergies is nonzero, H (k) is defined to have a line gap
(real or imaginary band gap) in the real or imaginary part
of its complex spectrum [57]. When θ = 0.4π , there are two
loops with clockwise rotation on the complex energy plane
holding a line gap in Fig. 4(a), corresponding to all the bulk
states localized at the right boundary of the system shown
in Fig. 4(a). For θ = 0.5π , the nonreciprocal terms become
t3 = t4, resulting in the Hamiltonian of the system becoming
Hermitian. Correspondingly, two line-gapped bands exist on
the real axis of the complex energy plane. When θ is up
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FIG. 5. Phase diagram of the spectral winding number for phase
transition of the non-Hermitian skin effect of the system with t1 =
0.2, t2 = 0.9, N = 20, η = −1, and L = 40. The spectral winding
numbers W = −1 with blue areas and W = 1 with yellow areas
represent right and left localization of NHSE, respectively.

to 0.6π , it can be observed that the eigenenergies form two
loops on the complex energy plane, and the energy spectrum
holds a line gap, as shown in Fig. 4(c). However, different
from Fig. 4(a), the corresponding complex spectrum profiles
are surrounded with counter-clockwise rotation, and all the
bulk states are localized at the left boundary of the system.
Hence, the eigenenergies of the system undergo a complex-
real-complex phase transition accompanied by the closing
and reopening of band gaps on the complex energy plane.
Furthermore, it is found that the skin effect exhibits phase
transition with the bulk states shifted from right localization
to left localization accompanied by the clockwise rotation
shifted to counterclockwise rotation of the energy spectrum.

In order to present an accurate description of the above
phase transition of NHSE, we adopt a method to establish
the connection between the spectral winding number and the
localization of bulk states. The spectral winding number is
defined as [58,59]

W =
∫ π

−π

dk

2π i
∂k ln det[H (k) − E0], (8)

where E0 is the energy reference point. The winding number
under PBC can accurately predict the localization directions
of bulk states under OBC. The case of W = −1 and W = 1
represent that the energy reference point is surrounded in
clockwise and counter-clockwise directions on the complex
energy plane, respectively. The energy reference point is not
surrounded, indicating no loop structure in the spectrum, re-
sulting in W = 0. Then, we choose the appropriate range of
energy reference points. By calculating Eq. (5), four pure real
energies exist on the complex energy plane, with

E±(0) = 1 ±
√

1 + (t1 + t2)2,

E±(π ) = −1 ±
√

1 + (t1 − t2)2, (9)

where the values of the energy reference points are in the
range of E0 ∈ [E+(π ), E+(0)] ∪ [E−(π ), E−(0)]. As shown
in Fig. 5, we plot the phase diagram for the spectral wind-
ing number of the system versus θ with t1 = 0.2, t2 = 0.9,
δ = 1.3, and L = 40. For E0 ∈ (−1 + √

1.49, 1 + √
2.21)

FIG. 6. Localization phase diagram of (a) zero energy edge state
and (b) nonzero energy gap state, respectively. The color bar indi-
cates the dIPR of the eigenstates. The parameters chosen are the same
as Fig. 5.

or E0 ∈ (−1 − √
1.49, 1 − √

2.21), and the winding num-
ber can correctly predict the localized directions of the bulk
states. For the regions of 0.5π < |θ | < π within δ > 0, and
|θ | < 0.5π within δ < 0, the winding number W = 1 for the
yellow regions of the phase diagram corresponds to the energy
reference point surrounded by the complex spectrum profile
in a counter-clockwise direction. It represents that the bulk
states are localized at the left boundary of the system. When
|θ | < 0.5π within δ > 0, and 0.5π < |θ | < π within δ < 0,
the right localization of bulk states corresponds to the energy
reference point, which is surrounded by the complex spectrum
profile in a clockwise direction, resulting the winding num-
ber W = −1 for the blue regions in the phase diagram. For
θ = ±0.5π , the energy reference point is not surrounded by
the complex spectrum profiles, indicating W = 0. The above
results indicate that W = 1 and W = −1 represent the left and
right localization of bulk states, respectively. Moreover, the
system undergoes skin phase transition with θ = ±0.5π and
δ = 0, which together constitute the phase transition boundary
of the system.

Next, we turn to the localization phase of zero energy
topological edge state and nonzero energy gap state, as shown
in Fig. 6. It is found that the dIPR of the zero energy edge
state is constantly close to 1 in Fig. 6(a). This phenomenon
indicates that the zero energy topological edge state is highly
localized at the right end of the lattice through the whole
parameters regions, which differs from the case of bulk states
possessing both right localization and left localization, as
shown in Fig. 5. The different localization behavior of the
zero energy topological edge state and bulk states implies
that the zero energy topological edge state can be separated
from the bulk states in certain parameter regions. On the other
hand, we demonstrate the localization phase of the nonzero
energy gap state in Fig. 6(b). The blue and yellow regions
correspond to the right and left localization of the nonzero
energy gap state in Fig. 6(b), respectively. It is found that
the system holds the right localized nonzero energy gap state
within 1.04 < |δ| < 1.5. Compared with Fig. 5, one can see
that the phase boundary for the nonzero energy gap state
is different from that for the bulk states, which implies the
system holds a separable nonzero energy gap state for specific
parameter conditions. The transition of the localization phase
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FIG. 7. Phase diagram of separation factor S(ψn) for (a) zero
energy topological edge state and (b) nonzero energy gap state,
respectively. The color bar indicates the value of separation factor
for the eigenstates. The parameters chosen are the same as Fig. 5.

for the nonzero energy gap state is due to the introduction of
the next-nearest-neighbor nonreciprocal hopping.

To further characterize the separable zero energy topolog-
ical edge state and nonzero energy gap state, we define the
separation factor as S(ψn) = W · dIPR(ψn), whose essence
originates from the localized direction information of eigen-
states of the system. ψn represents the zero energy topological
edge state or nonzero energy gap state. As mentioned above,
W = −1 (W = 1) represents the right (left) localization of
bulk states, and the value of dIPR is positive (negative) for the
eigenstate exhibiting right (left) localization. For S(ψn) > 0,
the zero energy topological edge state and nonzero energy gap
state are separated from the bulk states. Otherwise, these two
states and bulk states are both localized at one boundary of the
system for S(ψn) < 0. As shown in Fig. 7(a), we demonstrate
the separable phase for the zero energy topological edge state.
For the red regions of 0.5π < |θ | < π within δ > 0, and
|θ | < 0.5π within δ < 0, S(ψn) is close to 1, corresponding
to the right localization phase of the zero energy topological
edge state. It is indicated that the zero energy topological
edge state is always localized at the opposite boundary of the
system, which is consistent with the results of our previous
analysis in Figs. 3(b) and 3(d). For |θ | < 0.5π within δ > 0,

and 0.5π < |θ | < π within δ < 0, the blue regions represent
the zero energy topological edge state and bulk states are

both localized at one boundary of the system, discussed in
Figs. 3(c) and 3(e). As shown in Fig. 7(b), we show the phase
diagram of separation factor S(ψn) for the nonzero energy gap
state of the system. We find that the orange and yellow regions
correspond to the S(ψn) > 0, which represents the separated
nonzero energy gap state shown in Fig. 3(e). The blue regions
with S(ψn) < 0 represent the nonzero energy gap state, and
bulk states are both localized at one boundary of the system,
discussed Figs. 3(b)–3(d).

V. CONCLUSIONS

In conclusion, we have investigated the 1D non-Hermitian
SSH model with next-nearest-neighbor nonreciprocal hop-
ping. By examining the energy spectrum and state distri-
butions, we found that the system holds a zero energy
topological edge state and nonzero energy gap state in an
even-sized system. We analyzed the localization properties
of these two states using the directional inverse participation
ratio. Under specific parameter conditions, these two states
can be distinguished from the non-Hermitian skin states. We
also studied the energy spectrum on the complex plane and
utilized the spectral winding number to illustrate the phase
transition of the NHSE of the system. We constructed a phase
diagram of separation factor S(ψn) = W · dIPR(ψn) to further
reveal the separation phenomenon between the edge or gap
state and the skin states. Our work further reveals the intrigu-
ing combination of topological properties and non-Hermitian
skin effects in 1D nonreciprocal systems.
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