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Recently, the emergence of polarity of so-called hard antiphase boundaries in strontium titanate was in-
vestigated using atomistic simulations based on machine-learned force fields. Comparing the resulting order
parameter (OP) and polarization profiles to those obtained from numerical solutions based on a well-established
Landau-Ginzburg-Devonshire (LGD) parametrization produces good agreement of the structural OP amplitudes
but fails dramatically in reproducing the shape and pressure behavior of the domain wall (DW) polarization.
While the atomistic simulations yield a nonzero DW polarization up to at least 120 kbar, LGD theory would
predict a sharp transition to zero at a pressure as low as 4.6 kbar. A semiquantitative agreement can be restored
by adding so-called rotopolar couplings to the LGD potential and by considering the effects of nuclear quantum
fluctuations. Additional evidence for the correctness of our extensions of the LGD approach is provided by
comparing the temperature dependence of the DW polarization to recent experimental depolarization pyrocurrent
measurements. Our results illustrate the importance of accounting for nuclear quantum effects beyond standard
atomistic approaches in the investigation of DW properties.
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I. INTRODUCTION

The electric and magnetic properties of domain walls
(DWs) continue to attract a great deal of attention in
contemporary solid-state research. In contrast to the static
heterointerfaces between metal-oxides in existing electronic
devices, DWs in ferroics constitute highly reactive interfacial
structures that may be created, annihilated, recreated, and
moved around while exhibiting a number of exciting physical
properties that are absent in the bulk phases. The current
fundamental research in this field, for which the term domain
wall engineering has been coined [1], may pave the way
for the development of exciting types of ferroelectric devices
that could offer enormous flexibility as well as performance.
The flurry of recent scientific activity on DWs and other
topological defects in polar oxide nanostructures was recently
reviewed in Ref. [2], and it is safe to predict that research on
the intriguing properties of DWs and other inhomogeneous
structures will only intensify in the years to come.

Among the many fascinating topics of this field, the
possibility of the emergence of a nonzero polarity in the
vicinity of a DW separating nonpolar bulk phases constitutes
a particularly interesting subject. A prototypical example to
study this scenario is that of DWs in strontium titanate (STO)
and other perovskites, a key material class for nanoelectronics.
A variety of modern theoretical and computational methods
has been applied to analyze such problems. Layer group
analysis [3,4] can provide valuable insights into the symmetry
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constraints governing the physical phenomena that can
emerge in the vicinity of the DW. Based on the phenomenol-
ogy and symmetry analysis of the thermodynamics of the
bulk phases and their fluctuation behavior, Landau-Ginzburg-
Devonshire (LGD) theory offers the possibility to predict DW
profile shapes numerically [5]. As to atomistic simulations,
the case of hard antiphase boundaries (APBs; this terminology
is explained in detail in Sec. II) in STO is particularly chal-
lenging due to their width, which may span over many lattice
constants at low pressures. Hence, structural relaxations
based on standard density functional theory (DFT) [6], while
confined to zero temperature, are difficult to converge since
both large supercells and tight force thresholds are required.
To mitigate computational bottlenecks of fully atomistic
approaches, sophisticated extensions [7,8] of effective
Hamiltonian models [9–12] have been worked out, and such
models were also applied to study DWs in STO [13,14].

Recent advancements in applying machine-learning strate-
gies to learn energies and forces in condensed matter systems
[15,16] offer an attractive alternative to overcome the limita-
tions of fully atomistic approaches. In Ref. [17], DW profiles
for hard APBs in STO were computed from structural relax-
ations in which forces calculated from DFT were replaced
by a machine-learned force field (MLFF). Interestingly, the
properties of the resulting structural order parameter (OP) and
polarization profiles disagreed with those of earlier ab initio
results of Ref. [6]. In contrast, however, excellent agreement
was found between the structural OP profiles obtained using
the MLFF and those resulting from an analytic approximation
derived from LGD theory above pressures of 20 kbar. In
this analytic approximation, however, polarization effects had
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been neglected. In this paper, we undertake a full numerical
analysis of the pressure behavior of the DW profiles of both
structural OP and polarization as calculated from LGD theory.
We demonstrate that the pressure behavior of the polariza-
tion profiles numerically calculated from the well-established
LGD parametrization of Ref. [5] is not only completely in-
compatible with that reported in Ref. [6] but also with what is
observed in Ref. [17].

LGD theory and atomistic simulations based on first-
principles methods are complementary and often even mu-
tually supportive methods in the science of ferroelectric
phenomena. Understanding the underlying reasons for the
disagreement of these two indispensable tools and restoring
compatibility of both approaches is therefore vital. In this
paper, we disentangle the reasons for the inconsistencies listed
above and give a correct interpretation of the underlying
physics. In doing so, we highlight (i) the effects of quan-
tum fluctuations so far neglected in atomistic simulations of
DW properties, and (ii) the importance of including rotopolar
couplings (RPCs), providing guidelines for systematic studies
of DW properties via both atomistic simulations and phe-
nomenological theories.

II. SURVEY OF HARD APB PROFILES OBTAINED
FROM SIMULATIONS AND LGD THEORY

As mentioned in the introduction, the DW profiles ob-
tained from the DFT simulations of Ref. [6], the MLFF-based
atomistic simulations of Ref. [17], and the profiles obtained
from numerically minimizing the LGD potential discussed in
Ref. [5] are in mutual disagreement in several key aspects.
Following a short introduction to the basic LGD description of
hard APBs, we start with a brief review of these approaches.

At room temperature, STO exhibits the simple cubic per-
ovskite structure with space group G = Pm3̄m, but at Tc =
105 K, it undergoes an antiferrodistortive structural phase
transition to a tetragonal phase of I4/mcm symmetry with a
doubling of the unit cell. It had been recognized [18] and ver-
ified in countless following papers that this transition is due to
static rotations of the TiO6 octahedra around one of the cubic
axes ai, i = 1, 2, 3 in an alternating pattern with wave vector
kR = 2π

a ( 1
2

1
2

1
2 ), whose respective rotation angles φi represent

the components of a three-dimensional OP φ = (φ1, φ2, φ3)
(see Fig. 1 for an illustration) transforming according to the
active irreducible representation R+

4 (for more details see, e.g.,
Ref. [19]).

With three possible orientations S = 1, 2, 3 and two
choices of alternating phase i = 1, 2, the symmetry reduction
at the transition will therefore produce one out of 3 × 2 = 6
possible domain states which we label as Si. Two different
domains Si, S′

i′ may therefore differ in their OP direction,
i.e., their direction of tetragonal axis, and/or their phase.
Since the transition is also accompanied by the appearance of
spontaneous strain along the respective tetragonal axis, DWs
between pairs of domains with unequal orientations S �= S′
and thus conflicting spontaneous strains are generally accom-
panied by inhomogeneous strain patterns and are therefore
called ferroelastic. In this paper, we instead focus on DWs
between pairs of domains S1, S2 with equal orientation but a
jump in the alternating rotation pattern.

FIG. 1. Illustration of the physical meaning of the three-
dimensional structural order parameter (OP) φ of STO and the
doubling of the unit cell passing from (a) cubic Pm3̄m to (b) tetrago-
nal I4/mcm symmetry (shown is the conventional unit cell). ac, bc, cc

and at , bt , ct refer to the directions of the cubic and tetragonal basis
vectors, respectively. Drawings done with VESTA [20].

As in our previous work [17], we shall without loss of
generality follow the convention S = 3, i.e., we shall assume
that the equilibrium OPs (0, 0,±φ̄) of both domains 31, 32

point along the 3 axis of our coordinate system. In principle,
this still leaves an infinite number of possible DW configu-
rations, which are further characterized by the unit vector n
normal to the DW and its atomic positioning. However, most
of these geometrically possible configurations are energeti-
cally extremely unfavorable, and in practice, only very few
relevant possibilities remain. Assuming n to point along the
1 direction and placing the DW central plane at a layer of
Sr atoms, the jump in the octahedral rotation pattern across
the DW would obviously conflict with the requirement that
neighboring oxygen octahedra always must share a common
oxygen atom [Fig. 2(b)]. Hence, a kind of geometric frustra-
tion effect emerges in this setting, which would lead to severe
deformations of the oxygen octahedra. Distorting their cova-
lent bonds would create enormous energy costs. In reality,
therefore, the profile of such a hard [5] APB spreads out over
many lattice constants since distributing the associated strain
energy smoothly over a larger region is much more favorable

FIG. 2. (a) Sketch of an easy antiphase boundary (APB).
(b) Sketch of the geometrical frustration underlying the formation
of a hard APB. Drawings done with VESTA [20].
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energetically than creating a sharp and abrupt profile with
severe covalent distortions. It is precisely the considerable
width of such a hard APB that makes it so difficult to tackle its
properties with conventional ab initio methods. In contrast, if
we consider a wall with unit normal n parallel to the bulk OP
direction, such a competition for shared oxygen positions does
not arise [cf. Fig. 2(a)], leading to a much thinner easy APB
[5], as has been directly verified experimentally using electron
diffraction in transmission electron microscopy [21]). To in-
vestigate the types of APBs discussed with ab initio methods,
suitable supercells must be prepared. Therefore, it should be
obvious that simulating hard APBs is computationally much
more demanding than easy ones. With this in mind, let us
briefly review the previous work devoted to this problem.

In Ref. [6], initial guesses for the DW profiles were
structurally relaxed in supercells using forces derived from
ab initio simulations using the PBE exchange-correlation
functional [22]. The authors observed not only a tanh-like
profile of the resulting main structural OP component φ3(r1),
but in the vicinity of the DW, they also detected a much
smaller symmetric OP component φ1(r1). In addition, while
the polarization component P2(r1) remained identically zero,
they found a nonzero in-plane polarization component P3(r1)
that decreased with pressure, vanishing >70 kbar. Hence, they
were led to propose the existence of a sharp pressure-driven
phase transition inside the DW. However, a number of aspects
of these simulations are puzzling. For instance, the width of
the DWs seems to be practically independent of pressure,
which may hint at severe finite-sized effects due to insufficient
supercell sizes. In addition, STO being an incipient ferroelec-
tric (see below), it is well known that its tetragonal phase
should exhibit ferroelectric instability in conventional DFT
simulations with a PBE functional [23]. The apparent absence
of any related anomalies in the simulations of Ref. [6] may
only be explained by a combination of insufficient supercell
size and a too-large force tolerance factor chosen for the
structural force relaxations.

Such a polar instability was indeed encountered in the
simulations of Ref. [17], which were based on a MLFF trained
on data produced from DFT simulations with the PBEsol
functional [24]. A stable nonpolar tetragonal bulk phase in
STO at T = 0 could only be observed by applying a hydro-
static background pressure p in excess of some 10 kbar, as
was also verified by tracing out the energy double well of
the unstable polar mode at low pressures. Apart from this, a
number of interesting features of the local DW polarization
profiles were observed, as illustrated in Fig. 3. In fact, P2(r1)
still remained identically zero, but both a nonzero in-plane
polarization P3(r1) and a much smaller but well-defined out-
of-plane component P1(r1) were detected. While decreasing
in amplitude, the polarization component P3(r1) persists up to
the highest imposed pressure of 120 kbar with no tendency
to decay to zero (see Fig. 4). In addition, it was also ob-
served that the in-plane polarization can be switched upon
reversing the sign of the out-of plane OP component. Fur-
thermore, in the DW profiles P3(r1) shown in Ref. [17], one
notices well-defined oscillations (wiggles) at the onsets of the
DW region, whose amplitudes decrease but seem to level off
at a constant nonzero value with increasing pressure. Their
origin and proper interpretation remained unclear. Finally, a
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FIG. 3. Illustration of the typical polarization profile features
observed in the T = 0 K atomistic simulations of Ref. [17] (example
taken p = 60 kbar).

somewhat smaller but definitely nonzero polarization com-
ponent P1(r1) = −P1(−r1) that is odd with respect to spatial
reflection about the center of the DW was detected. This is
puzzling, since numerically we found that such a longitudinal
polarization component, which resembles a localized charge
distribution in the vicinity of the DW, should be suppressed
by the accompanying dipole-dipole free-energy penalty given
by Eq. (S59) in the Supplemental Material (SM) [25].

Somewhat surprisingly, the pressure dependence of the
polarization profiles of a hard APB in STO computed from nu-
merically minimizing the LGD Gibbs free energy of Ref. [5]
is at odds with either one of these simulation results. Indeed,
a straightforward numerical minimization of the LGD free
energy functional at T = 0 K, according to the prescription
of Sec. II in the SM [25], results in a steep decay of the DW
polarization. The polarization already vanishes at a critical
pressure as low as 4.6 kbar (see Fig. 5), and below this pres-
sure, neither a P1 component nor any wigglelike features of the
P3 profiles are visible. On the other hand, a stable tetragonal
bulk phase at 0 K is produced. The above observations clearly
indicate that the LGD parametrization of Ref. [5] is partially in
contrast with ab initio-based simulations. In what follows, we
discuss the steps necessary to reconcile atomistic simulations
and phenomenological theory.
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FIG. 4. Pressure dependence of polarization profile features ob-
served in the T = 0 K atomistic simulations of Ref. [17].
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FIG. 5. Pressure dependence of T = 0 K polarization amplitudes
as computed from Landau-Ginzburg-Devonshire (LGD) theory,
calculated using a partial Legendre transform and Tagantsev’s
parametrization (i.e., without rotopolar couplings).

III. THE ROLE OF NUCLEAR QUANTUM FLUCTUATIONS

The experimental observation that the tetragonal phase
of pure STO remains paraelectric down to 0 K dates back
to a long time ago. Historically, a pronounced softening of
a transverse polar phonon mode and a steep increase of
the dielectric constant upon lowering the temperature had
been observed [26,27], suggesting a ferroelectric transition
at a small but nonzero temperature. However, in the sem-
inal work of Müller and Burkard [28], it was found that
the dielectric constant starts to level off ∼35 K, reaching
a finite positive limiting value at 0 K. It was conjectured
that only the presence of nuclear quantum fluctuations in
STO prevents a transition to a ferroelectric ground state.
Nowadays, it is well established that STO is a member of
a class of materials known as incipient ferroelectrics, potas-
sium tantalate (KTaO3), calcium titanate (CaTiO3), and rutile
TiO2 being other prominent examples [29,30]. Indeed, STO
can be driven to the ferroelectric phase by imposing a va-
riety of small external disturbances like isotope substitution
[31], electric fields [32], uniaxial [33,34], and epitaxial [35]
strain. In the present context, strain-triggered ferroelectricity
is of particular relevance given the fact that DWs always
induce local inhomogeneous strain fields. Fully consistent
with this reasoning, authors of Refs. [36–38] demonstrated
that a straightforward calculation of tetragonal STO based
on conventional DFT would predict ferroelectric instability
at T = 0, and the correct physics may only be restored by
including the effects of nuclear quantum fluctuations via a
subsequent quantum path-integral Monte Carlo simulation.
This instability within DFT was corroborated in numerous
subsequent works employing more sophisticated exchange-
correlation functionals (see, e.g., Ref. [23]).

Within phenomenological LGD theory, the impact of nu-
clear quantum fluctuation effects on a LGD parametrization
has been studied extensively in, e.g., Refs. [39–43]. It was
found that they manifest themselves through a pronounced
nonlinear temperature behavior of the quadratic coefficients
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FIG. 6. Comparison of different estimates for the octahedral
tilt angle φ̄ at zero pressure. Experimental data (black dots) from
Hayward et al. [44] fitted by the parametrization of Ref. [5]
(red), prediction from linearization (green), and calculations using
DFT/PBEsol (blue) and DFT/HSE [23] (magenta).

a1(T ), b1(T ) governed by the so-called Barrett formula [40],
while all other coupling coefficients may still remain T in-
dependent, in line with traditional Landau theory [44]. The
LGD potential parametrized in Ref. [5] was obtained from
fitting experimental data to a LGD theory of this type and
indeed concisely reproduces the low-temperature behavior of
the structural OP, as seen in Fig. 6. On the other hand,
the atomistic simulations of Ref. [17] lack the effects of
nuclear quantum fluctuations. In principle, these can be in-
cluded by using path-integral quantum simulation methods
[45] or the stochastic self-consistent harmonic approximation,
as recently demonstrated for quantum paraelectric materi-
als [46,47]. Given the complexities resulting from the large
supercell sizes and the inhomogeneity, here, we resort to a
different strategy to reconcile the pressure dependence of the
profiles observed in our previous MLFF calculations with
numerical results obtained using LGD theory. Specifically, we
reverse-engineer the above Barrett-like temperature depen-
dence of the phenomenological parametrization of Ref. [5].
To do so, we linearize the T dependence of the quadratic
coefficients a1(T ), b1(T ) by simple Taylor expansions around
the cubic-to-tetragonal transition temperature Tc = 105 K, as
shown in panels (a) and (b) of Fig. 7. This should result
in effectively switching off the effects of quantum fluctua-
tions in the LGD description. While such a shirt-sleeved
replacement may seem rather drastic, its validity can be
checked by, e.g., comparing the resulting predictions of sev-
eral bulk observables from LGD to those obtained from DFT.
As panels (a) and (b) of Fig. 7 illustrate, a prominent con-
sequence of the linearization is that the zero temperature
values a1(0), b1(0) obtained for the linearized versions of
the LGD coefficients a1(T ), b1(T ) are much lower than the
original ones. Since these two coefficients directly control the
phase stability in LGD theory, this has profound consequences
in the low-temperature regime. For example, we study the
zero-temperature limit of the modulus of the structural OP
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FIG. 7. (a) Original and linearized temperature dependence of Landau-Ginzburg-Devonshire (LGD) parameter function a1(T ). (b) Same
for LGD parameter function b1(T ). (c) Pressure dependence of lowest transverse polar phonon mode in the cubic and tetragonal phase of STO
at T = 0 as computed from density functional theory (DFT) with the PBEsol exchange-correlation functional. (d) Pressure dependence of the
inverse susceptibility component χ−1

11 in the tetragonal and cubic phases of STO at T = 0 (continued into unstable regions) as calculated from
LGD theory using the original parametrization of Ref. [5] (black and blue curves) and the present linearization of the functions a1(T ), b1(T )
(green and red curves).

represented by the tilt angle φ̄ of the TiO6 octahedra in the
tetragonal phase. Figure 6 shows a comparison of different
values for φ̄ obtained from DFT, experiment, and LGD the-
ory, the latter with and without the above linearization. As
expected, the linearization results in a much larger value of φ̄

than the experimental one and is closer to the results obtained
from DFT. On the other hand, since the values of φ̄ ob-
tained using various exchange-correlation functionals differ,
it is difficult to assess this comparison on a more quantitative
level.

Further evidence for the at least semiquantitative valid-
ity of our approach to switch off quantum fluctuations in
LGD theory is provided by a comparison of the pressure
dependence of the squared transverse optical phonon fre-
quencies in the cubic and tetragonal phases calculated from
DFT at zero temperature with that of the inverse dielectric
susceptibility components χ−1

11 calculated from LGD the-
ory in both parametrizations. These quantities are shown in
panels (c) and (d) of Fig. 7, respectively. Upon lineariza-
tion, the agreement between DFT and LGD theory improves
significantly. In the tetragonal phase, the transverse optical
(TO) phonon becomes unstable around p = 13 kbar. Based
on Tagantsev’s LGD parametrization, χ−1

11 remains stable
down to p = 0 in the tetragonal phase due to the nuclear
quantum fluctuations, whereas in our linearized version, the

instability sets in at p = 10 kbar, in much better agreement
with DFT.

If we calculate pressure-dependent polarization profiles at
T = 0 using the linearizations of a1(T ) and b1(T ) discussed
above, we obtain the results shown in Fig. 8. In comparison
with Fig. 5, the pressure at which P3(r1 = 0) vanishes has

18 20 22 24 26
p (kbar)

0.00

0.02

0.04

0.06

P
ol

ar
iz

at
io

n
(C

/m
2
)

max(P3)

max(P1)

wiggles(P3)

FIG. 8. Pressure dependence of polarization amplitudes at T =
0 as calculated from a partially Legendre-transformed Landau-
Ginzburg-Devonshire (LGD) free energy in the parametrization of
Tagantesv et al. [5] but with linearized temperature terms.
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been shifted from 4.6 kbar to ∼25 kbar, so this represents
a step in the right direction. To explain the emergence of
the large pressure tails of the polarization seen in Fig. 4,
the appearance of the nonzero longitudinal polarization com-
ponent P1(r1) and the wiggly features of P3(r1) seen in the
simulations of Ref. [17] (cf. Fig. 3), we still need to introduce
additional so-called RPCs to the free energy.

IV. RPCS

A key observation of Ref. [17] was that the in-plane po-
larization component profile P3(r1) can be switched upon
reversing the sign of the out-of plane OP component φ1(r1),
which provided compelling evidence to extend the LGD free
energy of Ref. [5] by including RPCs. In three dimensions,
the general structure of RPC density terms has been dis-
cussed before [4,19], where it was shown that they contain
precisely four independent coupling constants W1, . . . ,W4. In
the present quasi-one-dimensional setting, the corresponding
coupling density reduces to

FR = W1

(
P2

∂φ2

∂r1
+ P3

∂φ3

∂r1

)
φ1

+W2(P2φ2 + P3φ3)
∂φ1

∂r1

+ P1

2

[
W3

∂
(
φ2

2 + φ2
3

)
∂r1

+ W4
∂
(
φ2

1

)
∂r1

]
. (1)

Unless the Wi’s are all zero, adding RPCs obviously induces
the observed symmetry breaking. It was also conjectured that
RPCs may be regarded as a kind of external field coupled to
P3(r1) only locally inside the DW, which only weakly depends
on pressure and acts to induce the large pressure tails in P3. In
fact, the existence and importance of RPCs for understanding
the properties of ferroelastic DWs in STO had been suggested
before [4,14,19].

In any phenomenological Landau-type approach, the
numerical values of the coupling constants Wi are a priori un-
known and must be determined to match the observed proper-
ties. Choosing the values W/GPa = (0.25, 0.30, 0.60,−0.80)
yields the pressure dependencies shown in Fig. 9 derived from
the purely local mixed elastic free energy potential (Eq. (S78)
in the SM [25]). These profiles display a number of inter-
esting features that underline the presence of RPCs. Indeed,
near the DW, both the side wiggles to P3(r1) and a nonzero
asymmetric amplitude P1(r1) that were detected in the atom-
istic simulations of Ref. [17], and whose origin had not been
understood, are now convincingly reproduced. The pressure
dependence of their amplitudes is also qualitatively like that
found in the simulation data. Moreover, considering the frac-
tion |φ1(0)/φ3(0)| of structural OP amplitudes φ1 and φ3 at the
center of the DW, we obtain the value |φ1(0)/φ3(0)| ≈ 0.92
using the present parametrization. This value remains roughly
constant for the whole pressure range from 0 to 120 kbar.
Remarkably, an identical value is observed in the simulations
of Ref. [17], while the corresponding ratio calculated from
the OP profile of Ref. [6] is much smaller. In contrast to
the pressure-independent DW widths reported in Ref. [6], our
LGD parametrization also yields DW widths monotonously
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FIG. 9. Main panel: Pressure dependence of polarization am-
plitudes at T = 0 as computed from Landau-Ginzburg-Devonshire
(LGD) theory: partial Legendre transform, linearized tempera-
ture term, rotopolar couplings W = (0.25, 0.30, 0.60, −0.80). Inset:
Sample polarization profiles P1(r1), P3(r1) at pressure p = 50 kbar
and T = 0.

decreasing from ∼15 pseudocubic lattice constants a0 at p =
30 kbar to roughly 8a0, like what is observed in the atomistic
simulations of Ref. [17].

V. EXPERIMENTAL EVIDENCE

Up to this point, we have analyzed the atomistic sim-
ulations in which nuclear quantum effects were absent,
monitoring their behavior as a function of pressure at zero
temperature. To compare the temperature behavior of the
polarization profile resulting from our LGD parametrization
with any real-world experimental data, we may now simply
switch on nuclear quantum fluctuations again by restoring
the original Barrett-type nonlinear temperature dependencies
of the quadratic LGD coupling terms a1(T ) and b1(T ). Un-
fortunately, however, up to now, firm experimental data on
the ferroelectricity of hard APBs are rare in the published
literature. Nevertheless, we believe that there is some, albeit
indirect, experimental evidence for a possible temperature
effect of hard APBs of ferroelectric origin. In Ref. [48], de-
polarization pyrocurrent measurements were carried out on
polycrystalline samples of STO at low temperatures. Around
T ≈ 45 K, a clear peak of ferroelectric origin in the mea-
sured pyrocurrent is observed. Interestingly, using the LGD
parametrization obtained above, the temperature derivative of
the polarization component P3(r3 = 0), which should be pro-
portional to the pyrocurrent, exhibits an extremum ∼41.2 K
(see Fig. 10). Hence, the presence of a DW polarization of
the described type may offer an excellent explanation of the
otherwise unknown origin of this ferroelectric temperature
anomaly in polycrystalline STO.

VI. DISCUSSION AND OUTLOOK

The interplay between experiment, phenomenological the-
ories, and first-principles atomistic simulations is the driving
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FIG. 10. Main panel: T -dependence of the modulus of the
temperature derivative dP3(r1 = 0)(T )/dT of the polarization
amplitude P3(r1 = 0)(T ) as calculated from LGD theory with
the partial Legendre transformation model, restored nonlin-
ear temperature parametrization and rotopolar couplings W =
(0.25, 0.30, 0.60, −0.80). Inset: plot of P3(r1 = 0)(T ). The temper-
ature T = 41.2 K of the extremum of the temperature derivative is
indicated by a dashed vertical line.

force for gaining insight into the physics of phase transitions
in condensed matter. The concise incorporation of symmetry
is the strength of phenomenological approaches like Landau
theory, which resembles an expansion in terms of symmetry-
allowed invariants. Its Achilles heel lies, however, in the fact
that the numerical values of the corresponding expansion
coefficients are unknown from the outset and must be de-
termined from fitting its predictions to results obtained from
experiment or simulation. Moreover, the expansion must nec-
essarily be truncated at some finite order, and if one thereby
fails to include physically relevant couplings, then it may yield
even qualitatively wrong predictions. In both of these aspects,
our present results demonstrate that STO represents a partic-
ularly delicate system. In fact, certain features like the OP
amplitude ratio φ1(0)/φ̄ ≈ 0.92 obtained in first-principles
simulations were already concisely reproduced by minimizing
the unmodified LGD free energy of Ref. [5]. However, to
reproduce the properties of the polarization profiles observed
in simulations, it is crucial to consider finite-sized effects
and to include additional couplings beyond those listed in
Ref. [5]. Indeed, for the incipient ferroelectric STO, when the
effects of nuclear quantum fluctuations inherently included in
the original LGD parametrization are turned off, semiquan-
titative agreement of the LGD calculation of DW profiles
of a hard APB in STO with the results of first-principles
simulations is obtained. With these modifications in place,
all described qualitative features of the polarization profiles
Pi(r1) are observed to emerge automatically. The inclusion
of RPCs simultaneously produces (i) the formation of the
peculiar side wiggles in P3(r1), (ii) the equally striking ap-
pearance of a nonzero asymmetric component P1(r1), which
in the absence of RPCs would be completely suppressed by
the counteracting dipolar interaction [Eq. (S59) in the SM
[25]] but had been clearly seen in the atomistic simulations of

Ref. [17], (iii) the large pressure tails in these amplitudes, and
(iv) a reasonable pressure dependence of the observed DW
widths, which are all in striking qualitative agreement with
the ones extracted from the atomistic MLFF simulations.

The most severe numerical discrepancy that prevents our
LGD analysis from being fully quantitative is the apparent
underestimation of the polarization amplitudes in the lin-
earized LGD theory in comparison with those calculated from
the atomistic theory. Moreover, the polarization obtained in
Ref. [48], which was estimated to be in excess of 10−2 C/m2,
was obtained by integrating pyrocurrents measured in poly-
crystalline STO pellets. Due to the implicit directional and
inhomogeneity averaging effects, we would therefore expect
the measured amplitude to be much smaller than the ideal
value calculated from LGD theory. Instead, it appears to be
of the same order of magnitude as the polarizations we obtain
from our model calculations (see the inset of Fig. 10).

While we can only speculate about the reasons for this
quantitative failure, there are several possible shortcomings
that may contribute to the observed discrepancies. First, our
search for optimal values of RPC parameters Wi was certainly
not exhaustive. Numerical tests indicate, however, that their
influence on the polarization amplitudes is rather modest for
reasonable choices of their values, and thus, we do not be-
lieve that the uncertainties in determining the couplings Wi

are the main source of the observed polarization magnitude
discrepancies. In this context, we should also remind the
reader of the plain fact that polarization in STO—being ab-
sent in the bulk—is already a second-order effect, and hence,
the corresponding numerical values for all polarization-
related LGD coupling coefficients are rather difficult to assess
from experiment. Therefore, one must be prepared to also
consider the possibility that these values may need some
revision.

In the closely related case of a ferroelastic DW in STO, the
authors of Ref. [14] emphasized that, in addition to the struc-
tural OP field φ, the polarization P, and the elastic degrees of
freedom, it should be essential to consider couplings to a local
displacement field U Ti. According to their description, these
displacements act exclusively on the titanium atoms in an al-
ternating fashion. They resemble the amplitude of an R-point
phonon which, even though not soft, assists in lowering the
energy cost of TiO6 octahedral rotations. As we show in the
SM [25], we have indeed been able to identify a corresponding
local nonzero amplitude in the atomistic displacement pattern
constituting the hard APB in our relaxed supercells. However,
in view of the smallness of this amplitude, we conclude that
this displacement mode seems to play no appreciable role in
shaping hard APB profiles in STO.

In addition, despite being qualitatively correct, our pro-
posed temperature linearization procedure used to switch off
the effects of nuclear quantum fluctuations in LGD theory
is rather crude. The fact that our linearized LGD model can
only reproduce the DFT results obtained with the PBEsol
functional on a semiquantitative level at best is also illustrated
by a comparison between Figs. 7(c) and 7(d).

These discrepancies are also illustrated by the system-
atic underestimation of inhomogeneous strains ηα (r1) by our
linearized LGD parametrization, as shown in Fig. 11. In
Ref. [17], local polarizations were approximately obtained
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FIG. 11. (a) Comparison of inhomogeneous strain profiles η1(r1)
and η5(r1) as obtained from the T = 0 K machine-learned force field
(MLFF) simulations of Ref. [17] at pressure p = 40 kbar to those
predicted from Landau-Ginzburg-Devonshire (LGD) theory with ro-
topolar couplings (RPCs) W = (0.25, 0.30, 0.60, −0.80), linearized
temperature dependence and mixed Legendre transform at the same
pressure and T = 0. The negative vertical offsets of both η1(LGD)
and η1(MLFF) are not due to numerical inaccuracy but represent an
inevitable finite-sized effect as discussed in Sec. B.2 of the SM [25].
(b) Pressure dependencies of the amplitudes of these inhomogeneous
strains at T = 0. Error bars in the MLFF data represent the square
root of the variances of strain data across the 2 × 2 cross-sections of
the supercells.

following the recipe of Ref. [49], i.e., by multiplying local
displacements calculated with respect to a nonpolar reference
structure by the corresponding Born effective charge (BEC)
tensor calculated for this reference structure. Therefore, un-
derestimating such displacements would linearly affect the
resulting polarization amplitudes. Moreover, such a pre-
scription is only numerically meaningful if one accepts the
assumption that the BECs are themselves independent of a

deformation path used to relate the final polar to the nonpolar
reference structure. There are, however, prominent examples
of perovskites for which a pronounced structural dependence
of the BECs has been observed (see, e.g., Refs. [50,51]).

We should also not lose sight of the well-known fact
[23] that different choices of exchange-correlation functionals
generally result in slightly different sets of structural param-
eters for the bulk unit cells of STO, which can be translated
into effective background pressures by which our atomistic
results may be shifted. While all of our present simulation
results were obtained using the PBEsol exchange-correlation
functional, switching to a different exchange-correlation func-
tional may also therefore severely impact the calculated OP
and polarization amplitude values, as we had illustrated in
Fig. 6, and even the calculated BEC tensor components. It has
only recently been recognized how delicate it is to reproduce
the anharmonic vibrational effects of STO in an ab initio
calculation with satisfactory precision [47].

In summary, in this paper, we show that nuclear quantum
fluctuations can have a dramatic effect on the low-temperature
pressure-dependent DW polarization. These effects must be
considered to achieve a quantitative description of DW
properties. In a typical LGD framework, in which coeffi-
cients are obtained by fitting of experimental data down to
low temperatures, such quantum nuclear effects are consid-
ered by assuming a Barrett-type temperature dependence of
the quadratic potential coefficients. In first-principles-based
atomistic studies of DWs, they have been ignored so far.
However, such simulations are routinely used to predict the
shape and stability of DW profiles or to determine numerical
values of LGD coupling parameters. Our findings demon-
strate that, to allow a meaningful comparison, one of the
two approaches must therefore be modified. In this paper, we
switched off nuclear fluctuation effects in the LGD poten-
tial by linearizing the corresponding temperature-dependent
terms. On the other hand, although this will certainly require
a considerable effort, effects of nuclear quantum fluctuations
can in principle be accounted for, e.g., with path integral
molecular dynamics simulations [37,45] thermostatted with
colored noise [52] or the stochastic self-consistent harmonic
approximation [47,53,54]. Work in this direction is currently
underway in our laboratories.
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