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Critical pressure values for graphene membrane covering a slit
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Graphene is impervious to gases, so the question arises of how much pressure can few-layer graphene covering
a slit withstand. Using the molecular dynamics model with a reduced number of degrees of freedom, a multilayer
graphene sheet lying on an h-BN substrate with a slit of width d is considered under external or internal pressure
p. It has been established that at p < p0, where p0 is the critical pressure, a graphene sheet under pressure
acquires a stationary profile and seals the slit. At p > p0, the graphene sheet loses its connection with the
substrate and the ability to seal the slit. The critical pressure is almost proportional to 1/d and decreases linearly
with increasing temperature. An increase in the number of graphene layers in a graphene sheet slightly reduces
p0 only at d < 10 nm, and for wider slits, the number of graphene layers does not affect p0. This fact is explained
by the membrane theory. The graphene sheet can seal the atmospheric pressure for a slit with a width of no more
than 0.01 mm. Presented results are of interest for nanotechnologies using graphene membranes as sensors or
resonators.
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I. INTRODUCTION

Layered two-dimensional (2D) materials such as graphene
(G) and hexagonal boron nitride (h-BN) are attracting
great interest from researchers due to their unique elec-
tronic [1–3] and mechanical [4–7] properties. Graphene has
a record high tensile Young’s modulus (1 TPa) and strength
(50–60 GPa) [8–11], a very high melting point (5000 K) [12],
thermal conductivity [13–15], and is chemically stable in the
absence of oxidizers [16–18]. To describe the mechanical
properties of multilayer nanomaterials, theoretical models are
being developed [19–21].

Currently, heterogeneous layered materials, which can
exhibit various new mechanical and physical properties com-
pared to their homogeneous counterparts [22–25], are of
increased interest. For example, the use of G/h-BN het-
erostructures makes it possible to obtain the desired electronic
properties [26,27], as well as to significantly reduce the fric-
tion [28,29] between layers [30]. Boron nitride is an attractive
substrate for graphene because it has an atomically smooth
surface free of dangling bonds, a lattice constant similar to that
of graphite, and a large band gap [31–33]. Van der Waals and
covalent interactions in a vertical heterostructure composed
of boron and carbon were analyzed in the work [34]. Non-
trivial mechanical properties of structural metamaterials were
reported in Refs. [35–38].

Dislocations and ripplocations in layered van der Waals
materials were studied using analytical and computational
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techniques to demonstrate that the ripplocation is the lowest-
energy structure of dislocation pileups, while large dislocation
pileups in bulk graphite demonstrate multilayer delamination
and voids [39]. Formation of ripplocations is a deformation
mechanism of multilayer graphene [40–42]. Dynamics and
collisions of surface ripplocations were analyzed numerically
in Ref. [43].

Using atomic force microscopy, mechanical folding in uni-
axially compressed single-layer graphene on a substrate was
studied, and various mechanisms of stress release during de-
lamination and folding were described [44].

Pressurized blister tests are used to measure the adhesion
energy of graphene sheets with a substrate and other mechan-
ical properties of layered materials [41,45,46].

The bending stiffness of circular multilayer van der Waals
material sheets under bulge tests can demonstrate relatively
high values [47]. The importance of taking into account ther-
mal fluctuations for modeling the mechanical properties of
multilayer graphene was demonstrated in Ref. [48]. Graphene
nanoribbons are supersoft in bending; they can slide over each
other, bend, filling in the unevenness of the substrate [7]. 2D
materials are actually not perfectly flat as they have wrinkles,
blisters, and other imperfections [49–52].

In a series of works [53–55], a theoretical model has been
developed to account for the effect of temperature on decohe-
sion and fracture at the micro- and nanoscale. The mechanical
model describes a chain interacting with a substrate through
a series of bonds that can be either breakable or bistable.
The pulling process can be initiated by an applied force or
controlled by a prescribed displacement at the end of the
chain. The model has been solved exactly to characterize the
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critical temperature corresponding to the complete detach-
ment of the chain in the fragile or ductile regime.

Very often, 2D materials suspended above a trench or
a round hole are considered as nanomechanical resonators
promising for biological and chemical detection and measure-
ment of ultralow masses and accelerations [56–58]. Similar
configurations are used as sensors [19] and to measure the
mechanical properties of two-dimensional materials and their
interaction with the substrate, friction, and adhesion. The
progress in the development of experimental techniques of
contact probing of mechanical, interfacial, and tribological
properties of 2D materials is summarized in the review [59].

A molecular dynamics simulation of a graphene sheet sus-
pended above a trench was carried out to study the effect
of self-tensioning in the sheet [60]. It was shown that the
depth in the middle of the sheet does not depend on the width
of the trench and is proportional to the temperature and the
strength of the interaction of graphene with the substrate.
Heating (cooling) of a graphene sheet was observed during
molecular dynamics simulation of the stamping (peeling) pro-
cess on (off) the (111) surface of a Pt substrate [61]. In
Ref. [62], a method was proposed to measure the stiffness
of a nanosheet using indentation or bulge tests. The authors
took into account such difficulties as slippage, pretensioning,
and substrate roughness. Thin film peeling was modeled in
Ref. [63] taking into account possible contact of the film
with a rough rigid surface. Rich dynamics in peeling and
sliding of graphene nanoribbons atop a graphite substrate was
studied numerically by a continuum model [64]. A cylindrical
chamber in SiO2 substrate sealed with a few-layer graphene
under external pressure was used to study friction at the in-
terface [65]. The mechanics of droplets covered with elastic
membranes was analyzed in the work [66], where bubble
pressure and interfacial energies were estimated.

Graphene is considered impermeable to all gases includ-
ing helium [67–69], except hydrogen [70]. This allows us
to produce from graphene molecular valves [71] or semiper-
meable membranes by artificially making angstrom-sized
holes [72,73] or using natural pores in grain boundaries [74].

In this work, the possibility of sealing nano- and mi-
crocracks with few-layer graphene sheets is analyzed. The
simulation setup is described in Sec. II, the numerical results
are presented in Sec. III, and the results of continuum mechan-
ics treatment in Sec. IV. Section V concludes our work.

II. SIMULATIONS SETUP

First, 3D model is analyzed and then the chain model is de-
scribed, which allows one to reduce the considered full-atomic
model to a 2D problem. Then methods for finding the ground
state of the structure and taken into account the influence of
temperature and pressure are described.

A. 3D model

Consider a rectangular (square) single-layer graphene
sheet of size 18.05×18.15 nm2 (the number of carbon atoms
is NC = 12726) on a two-layer substrate of h-BN. Let us take a
square substrate of size 20.76×20.69 nm2 and make a rectan-
gular hole of size dx×dy (dx = 6.14 nm, dy = 6.22, 12.01, and

18.09 nm) in its center. The graphene sheet is symmetrically
centered on the substrate, see Fig. 1 (the zigzag direction of
the sheet and the substrate coincides with the x axis). As a
result, the rectangular central part of the graphene sheet is
suspended, forming a single-layer rectangular membrane. Let
us consider the dynamics of this membrane under the action
of an external or internal pressure p.

The atoms of the substrate are considered stationary (fixed
at their lattice positions), and the dynamics of the graphene
sheet is modeled by the method of molecular dynamics using
the Langevin thermostat. The Hamiltonian of the graphene
sheet is

H =
NC∑

n=1

[
1

2
Mn(u̇n, u̇n) + En + P(un)

]
, (1)

where the vector un = (xn, yn, zn) defines the coordinates of
the nth carbon atom and the overdot means differentiation
with respect to time.

The first summand in Eq. (1) defines the kinetic energy.
It is assumed that hydrogen atoms are attached to the edge
atoms of the graphene sheet, so the masses of the inner atoms
are Mn = 12mp and of the edge atoms are Mn = 13mp (mp

is the mass of a proton). The second summand, En, sets the
interaction energy of the nth atom with neighboring carbon
atoms. Here the deformations of valence bonds, valence, and
dihedral (torsional) angles are taken into account; a detailed
description of the force field used is given in Ref. [75]. The
last summand, P(un), describes the energy of nonvalent inter-
action of the carbon atoms with the h-BN substrate atoms:

P(un) =
Ns∑

k=1

Wi(rn,k ),

where Ns is the number of atoms in the substrate, rn,k is the
distance from nth carbon atom to kth substrate atom. The
nonvalent interactions are described by the Lennard-Jones
potential,

Wi(r) = εi(ri/r)6[(ri/r)6 − 2], i = 1, 2,

where for a pair of interacting atoms C, N εi = 0.00369 eV,
ri = 3.756 Å (i = 1); for a pair C, B εi = 0.00596 eV,
ri = 3.967 Å (i = 2) [76].

The dynamics of the nanoribbon is described by a system
of Langevin equations

Mnün = − ∂H

∂un
− �Mnu̇n + �n + fn, n = 1, . . . , NC, (2)

where � = 1/tr is the friction coefficient characterizing the
intensity of energy exchange with the thermostat (relaxation
time tr = 1 ps), �n = {ξn,i}3

i=1 is the three-dimensional vec-
tor of normally distributed random forces normalized by the
following conditions:

〈ξn,i(t )ξk, j (s)〉 = 2MnkBT �δnkδi jδ(s − t ),

where T is the thermostat temperature, kB is the Boltzmann
constant. The vector fn in Eq. (2) models a constant pressure
acting orthogonally to the surface of the sheet. The pressure
force is assumed to act on the center of gravity of each valence
hexagon orthogonal to its plane, and the magnitude of the
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FIG. 1. Stationary configurations of a single-layer square graphene membrane on the h-BN substrate with a rectangular hole under
the pressure p slightly below the critical value p0: (a)–(c) external pressure, (d)–(f) internal pressure. The size of the graphene sheet is
18.05×18.15 nm2, while a two-layer h-BN substrate, shown in gray, has a size of 20.76×20.15 nm2. A hole in the center of the substrate has
a size of (a), (d) 6.14×6.22, (b), (e) 6.14×12.01, and (c), (f) 6.14×18.09 nm2. The zigzag direction of the graphene sheet and the substrate
coincides with the x axis. The atoms of the substrate are fixed in their lattice positions and only the atoms of the graphene sheet can move. In
(a)–(c), the external pressure is p = 41, 17.5, and 2.1 eV/nm3, respectively. In (d)–(f) the internal pressure is p = 4.6, 3.0, and 1.4 eV/nm3,
respectively. Temperature T = 300 K. For simplicity, only half of the system (y > 0) is shown, since the other half looks similar due to
symmetry. The atoms of graphene are colored according to their energy, as indicated by the color bar.

force is directly proportional to the hexagon area (this force is
distributed equally over the six atoms forming the hexagon).
When modeling the external pressure (from above), the force
fn is applied to all hexagons. When modeling the internal pres-
sure acting from the hole in the substrate, the force is applied
only to hexagons not adjacent to the substrate. As the pressure
pulls the sheet away from the substrate, see Figs. 1(d)–1(f),
the number of hexagons on which the pressure acts also
increases.

In our simulations, the pressure is applied quasistatically to
avoid the effect of viscous friction between the graphene and
the substrate.

The equations of motion Eq. (2) are solved numerically
using the fourth-order Verlet method [77]. A time step of 1 fs
is used in the simulations, since further reduction of the time
step has no appreciable effect on the results.

Numerical modeling has shown that the graphene sheet
can withstand pressure only up to a critical value p0, which
depends on the shape and size of the hole in the substrate.
When p < p0, the sheet bends in the hole region under the
action of pressure. A deformed steady state of the sheet is
formed in which the pressure is compensated by the sheet de-
formation forces. As the pressure p < p0 increases, the sheet
deformation increases. When the critical value of external
pressure, p = p0, is reached, either the sheet breaks or it is
pulled through the hole in the substrate. At critical internal
pressure, the sheet detaches from the substrate.

Under the action of external pressure, the sheet is pressed
into the hole of the substrate–see Figs. 1(a)–1(c). The de-
formation scenario depends on the shape of the hole. If the
hole is square, the deformation occurs symmetrically due to

stretching of the valence bonds. The largest bond deforma-
tions occur along the perimeter of the hole, see Fig. 1(a). Here,
valence bond rupture occurs when the critical pressure value
is reached. Such a scenario of graphene membrane rupture
under pressure was previously found for holes with the shape
of a circle [78] and a regular hexagon [79].

The sheet deformation scenario changes with increasing
hole asymmetry. A twofold increase in the length of the rect-
angular hole, see Fig. 1(b), causes the sheet to be pushed
into the hole, accompanied by sliding of the sheet edges on
the substrate. As a result, at a critical pressure, valence bond
rupture does not occur and the entire sheet is squeezed through
the hole in a crumpled form. If the hole length is increased
by a factor of three, see Fig. 1(c), the sheet width becomes
only slightly larger than the hole length. In this case, the
sheet is pressed into the hole without significant stretching
of the valence bonds, only by the bending and sliding of
the sheet on the substrate. The main resistance to pressure is
provided by the nonvalence interactions between the sheet and
the substrate.

Under the action of internal pressure, the sheet deformation
scenario does not depend on the shape and size of the hole. At
pressures below the critical value p < p0, the valence bonds
deform weakly and the sheet takes the shape of a bubble,
see Figs. 1(d)–1(f). At p = p0, the bubble starts to grow
dynamically, causing the sheet to detach completely from the
substrate. Here, the resistance to pressure is only due to weak
nonvalent interactions between the graphene sheet and the
substrate. Experiments on graphene sheet detachment due to
internal pressure allow us to estimate the adhesion energy of
the sheet to the substrate [80].
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FIG. 2. The stationary configurations of a single-layer graphene
membrane covering a straight slit of width d = 6 nm in a five-layer
h-BN substrate. The periodic boundary condition with period �y =
8ay ≈ 3.403 nm, is used along the y axis. The nanoribbon length is
L = 176ax = 43.08 nm, the number of carbon atoms is NC = 5632.
In (a) there is no pressure, p = 0, in (b) the external pressure is p =
1.24 eV/nm3, and in (c) the internal pressure is p = 0.92 eV/nm3

(these values are slightly below the critical value p0). Temperature
T = 300 K.

If the hole has the shape of an elongated rectangle, then the
bubble has an elongated form, see Figs. 1(c), 1(f). To model
the graphene sheet above an infinitely long straight slit in the
substrate, it is convenient to use periodic boundary conditions
along the y axis for the graphene sheet and the substrate. The
graphene sheet has the zigzag direction along the x axis, then
the armchair direction is along the y axis. The longitudinal
lattice spacing of graphene is ax = √

3r0 = 2.456 Å and the
transverse is ay = 3r0 = 4.254 Å, where r0 = 1.418 Å is the
length of the C-C valence bond.

To model the graphene sheet above the infinite slit, a zigzag
graphene nanoribbon of length L = Nxax and width �y =
Nyay is used, where Nx and Ny are integers. The nanoribbon
consists of NC = 4NxNy carbon atoms. The nanoribbon length
is fixed, L = 176ax = 43.08 nm, while different values of the
nanoribbon width are considered. Consider Ny = 1, 2, 4, 8, 16,
and 32 (nanoribbon widths �y = 0.425, 0.851, 1.702, 3.403,
6.806, and 13.613 nm). A five-layer h-BN substrate with a slit
of width d = 6 nm in the center is considered, see Fig. 2(a).

Modeling of the sheet dynamics showed that under the
external pressure, the sheet is always pressed into the slit due
to its sliding on the substrate, see Fig. 2(b). The graphene
nanoribbon slides on the substrate freely, with almost zero
traction force. The bending amplitude of the nanoribbon in-
creases monotonically with increasing pressure. When the
critical pressure value p0 is reached, the stationary deforma-
tion of the nanoribbon changes to the dynamic pressing into
the slit.

Under the internal pressure, the nanoribbon forms a bubble
above the slit due to sliding on the substrate, see Fig. 2(c). The
height of the stationary bubble increases monotonically with
increasing pressure p. When the critical value p0 is reached,
the nanoribbon is dynamically detached from the substrate.

TABLE I. The dependence of the critical external (p0,1) and
internal (p0,2) pressure on the nanoribbon width �y. The width of
the slit in the substrate is d = 6 nm.

Ny �y (Å) p0,1 (eV/nm3) p0,2 (eV/nm3)

1 4.25 1.14 0.88
2 8.51 1.24 0.90
4 17.02 1.24 0.92
8 34.03 1.24 0.92
16 68.06 1.25 0.93
32 136.1 1.25 0.93

Note that the stationary form of the nanoribbon above the
slit has a cross section that does not depend on the coordinate
y; this indicates that the plane strain conditions are realized.
Table I shows the dependence of the critical pressure p0,i

(i = 1 for external and i = 2 for internal pressure) on the
nanoribbon width �y. As can be seen from the table, the
critical pressure changes very little (about 10%) and saturates
rapidly with increasing nanoribbon width.

In the following, the dynamics of a graphene sheet cover-
ing an infinitely long slit in the h-BN substrate is analyzed
using a two-dimensional model shown in Fig. 3. In this
case, the bending of the graphene sheet is modeled un-
der the assumption of the plane strain condition, which
was justified by considering the 3D model. In the two-
dimensional model, the number of degrees of freedom is
significantly reduced, which allows us to simulate multilayer
membranes of large dimensions, taking into account the mo-
bility of the substrate. Despite significant simplifications, the
two-dimensional model correctly describes the behavior of
multilayer membranes and provides realistic estimates for
critical pressure values.

B. 2D model

In this study, a layered structure from nanoribbons of
graphene (G) and hexagonal boron nitride (h-BN) is consid-
ered under internal or external pressure p, see Fig. 3. It is

FIG. 3. Scheme for constructing a two-dimensional chain model
for a bilayer graphene (G) sheet lying on a flat surface of a boron
nitride (h-BN) crystal with a slit of width d = 4 nm under internal
pressure p. The zigzag direction of all nanoribbons is along the x
axis. The number of sheets in the substrate is K1 = 5 and in G sheet
K2 = 2. In (a) the full-atomic 3D model is shown, and in (b) its 2D
reduction is presented. Each node of the 2D model represents the
movement of atoms in a rigid chain parallel to the y axis and having
two degrees of freedom, coordinates (x, z).
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assumed that the plane strain conditions are satisfied and the
3D full-atomic model shown in Fig. 3(a) is replaced by a 2D
model of molecular chains moving in the xz plane [43,81,82],
as presented in Fig. 3(b). As a result, the number of degrees
of freedom in the system is significantly reduced.

It is assumed that the h-BN and G nanoribbons have the
zigzag direction coinciding with the x axis (see Fig. 3), then
the 2D chain model will describe the cross section of the
multilayer system by the xz plane. One node of the 2D model
represents all atoms of the nanoribbon having the same co-
ordinates (x, z). In other words, the atoms located along the
same line parallel to the y axis move synchronously, changing
only the coordinates (x, z).

In the model under consideration, graphene sheets are not
interconnected by covalent bonds, only weak van der Waalt
forces act between them, so that the sheets can slide relative
to each other.

The Hamiltonian of one h-BN (or G) nanoribbon has the
form of the Hamiltonian of the chain of nodes moving in the
xz plane:

Hi =
N∑

n=1

[
1

2
Mi(u̇n, u̇n) + Vi(Rn) + Ui(θn)

]
. (3)

Here the index i = 1 or 2 if h-BN or G nanoribbon is con-
sidered. The two-dimensional vector un = (xn, zn) defines the
coordinates of the nth particle of the chain. The particle
mass for the h-BN chain coincides with the average mass of
the boron and nitrogen atoms M1 = MBN = (MB + MN)/2 =
12.41mp, and for the G chain it coincides with the mass of the
carbon atom M2 = MC = 12mp (mp = 1.66 · 10−27 kg is the
proton mass).

The harmonic potential

Vi(Rn) = 1
2κi(Rn − Ri )

2, (4)

describes the longitudinal stiffness of the ith chain, where κi

is the tensile stiffness of the bonds, Rn = |un+1 − un| is the
length of the bond connecting the nodes n and n + 1, Ri is the
equilibrium bond length of the ith chain.

The anharmonic potential

Ui(θn) = εi[1 + cos(θn)], (5)

describes the bending stiffness of the ith chain, θn is the an-
gle between two neighboring bonds, cos(θn) = −(vn−1, vn)/
Rn−1Rn, vector vn = un+1 − un.

The parameters of the potentials Eqs. (4) and (5) for the
h-BN chain were determined in Ref. [83] and for the G
chain in Refs. [81,82] from the analysis of the dispersion
curves of the corresponding nanoribbons. For the h-BN chain
stiffness is κ1 = 480 N/m, pitch R1 = rBN

√
3/2 = 1.252 Å

(rBN = 1.446 Å is the length of B-N valence bond in h-BN
sheet), and ε1 = 1.10 eV. For the G chain longitudinal stiff-
ness is κ2 = 405 N/m, chain pitch is R2 = rCC

√
3/2 = 1.228

Å (rCC = 1.418 Å is the C-C valence bond length in graphene
sheet), and ε2 = 3.5 eV.

Note that the Hamiltonian of the chain Eq. (3) gives the
nanosheet deformation energy per longitudinal strip of width
�y = √

3Ri. Further, the energy of the chains will be normal-
ized by the graphene sheet width, so the energy of the h-BN

FIG. 4. Change in the shape of a bilayer graphene sheet under the
action of pressure p (the arrow indicates the direction of the applied
pressure): (a) the ground state of a multilayer system with a slit in the
substrate at p = 0; (b) equilibrium profile of the G sheet at internal
pressure p = 0.96 eV/nm3; (c) postcritical behavior, i.e., formation
of a rapidly growing bubble under the internal pressure p = 1.26
eV/nm3, the G-sheet is detached from the substrate; (d) equilibrium
sheet profile at external pressure p = 1.34 eV/nm3; (e) postcritical
behavior, i.e., fast pulling of the G sheet through the slit in the sub-
strate at external pressure p = 1.72 eV/nm3. The number of h-BN
layers is K1 = 5, the number of G layers is K2 = 2, the number of
chain nodes is NBN = 100 and NC = 250, width of the slit in the
substrate is d = 6 nm, temperature T = 300 K.

sheets must be multiplied by the normalizing factor

c = R2

R1
= rCC

rBN
= 0.9808. (6)

The nonvalent interactions of nodes in chains and be-
tween chains are described with high accuracy by the (5,11)
Lennard-Jones potentials

Wi(r) = εi[5(ri/r)11 − 11(ri/r)5]/6. (7)

Here r is the distance between the interacting nodes, εi is the
interaction energy, ri is the equilibrium bond length. Interac-
tions of three types are considered: i = 1 is the interaction of
the nodes of the h-BN chains, i = 2 is the interaction of the
nodes of the G chains, and i = 3 is the interaction of the nodes
of the h-BN chain with the nodes of the G chain. Parameters of
the potential Eq. (7) are: ε1 = 0.01511 eV, r1 = 3.642 Å; ε2 =
0.0083 eV [83], r2 = 3.61 Å [43]; ε3 = √

ε1ε2 = 0.01120 eV,
r3 = (r1 + r2)/2 = 3.626 Å.

When modeling the dynamics of a multilayer substrate,
it is necessary to limit the number of layers. Therefore, we
assume that the first (lowest) layer interacts with a stationary
flat surface of the crystal (this surface is shown in Figs. 3
and 4 by a black line). The interaction energy of nodes with
a fixed substrate can be described by the (k, l) Lennard-Jones
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potential

P(h) = e0[k(h0/h)l − l (h0/h)k]/(l − k), (8)

where h is the distance of the node to the plane of the fixed
substrate, e0 is the interaction energy (adhesion energy), h0 is
the equilibrium length, powers l = 10 and k = 3.75 are used.
For an h-BN sheet lying on a flat surface of an h-BN crystal
we set e0 = 0.0974 eV, h0 = 3.49 Å [43].

Consider the structure of K = 2K1 + K2 layers shown in
Fig. 3. Let the first 2K1 layers correspond to h-BN chains con-
sisting of Nk = NBN nodes, k = 1, . . . , 2K1. These layers lie
on a flat solid substrate and interact with it and have a vertical
slit of width d between them. We assume that the surface of
the solid substrate coincides with the z = 0 plane. The last
K2 layers consisting of Nk = NC nodes, k = 2K1 + 1, . . . , K ,
correspond to the G chains lying on the h-BN multilayer
substrate and covering the slit. The coordinates of nodes of
such a system of K chains are given by the vectors

{un,k = (xn,k, zn,k )}Nk ,K
n=1,k=1,

where n is the node number of the kth chain, Nk is the number
of nodes in the kth chain.

The Hamiltonian of the chain system has the form

H =
2K1∑
j=1

NBN∑
n=1

c

2
M1(u̇n, j, u̇n, j )

+
K∑

j=2K1+1

NC∑
n=1

1

2
M2(u̇n, j, u̇n, j ) + E1 + E2 + E3, (9)

where the first two terms give the kinetic energy of the h-BN
and G chains, respectively, and the potential energy of the
h-BN chains is

E1 = c
2K1∑
j=1

NBN∑
n=1

[V1(Rn, j ) + U1(θn, j ) + P(zn, j )]

+ c
2K1−1∑

i=1

2K1∑
j=i+1

NBN∑
n=1

NBN∑
k=1

W1(rn,i;k, j ), (10)

the potential energy of the G chains is

E2 =
K∑

j=2K1+1

NC∑
n=1

[V2(Rn, j ) + U2(θn, j )]

+
K−1∑

i=2K1+1

K∑
j=i+1

NC∑
n=1

NC∑
k=1

W2(rn,i;k, j ), (11)

the potential energy of interaction of h-BN chains with G
chains is

E3 =
2K1∑
j=1

K∑
i=2K1+1

NBN∑
n=1

NC∑
k=1

W3(rn, j;k,i ), (12)

distance rn, j;k,i = |un, j − uk,i|.
The chain model has been successfully used to simu-

late properties of scrolls [81] and folds [82] of graphene
nanoribbons, surface ripplocations [43], equilibrium struc-
tures [84,85], negative thermal expansion [86], partial auxetic-

FIG. 5. Change in the stationary shape of a single-layer graphene
sheet lying on a h-BN substrate with a slit of width d = 6 nm under
the action of (a) internal and (b) external pressure (the arrow indicates
the direction of the pressure p). Note that in (b) the ordinate has sign
opposite to the sign in (a), i.e., the structure is shown upside down.
The dependence of the shape of the cross section of the sheet on the
pressure p can be seen. Number of layers is K1 = 5, K2 = 1, number
of links in chains is NBN = 150, NC = 352. The maximum pressure
value at which the sheet can withstand the pressures is (a) p0 = 1.03
and (b) p0 = 1.19 eV/nm3. Temperature T = 0.

ity [87], and nonlinear excitations [88,89] of carbon nanotube
bundles.

C. Potential energy minimization

To find the ground state of a multilayer system with a slit
of width d in the substrate (see Fig. 5), it is necessary to
numerically find the potential energy minimum

E = E1 + E2 + E3 → min : {un, j}Nj , K
n=1, j=1, (13)

with the initial position of its nodes

xn,k = (n − 1)R1, zn,k = kh0,

xn,K1+k = a1 + (n − 1)R1, zn,K1+k = kh0,

k = 1, . . . , K1, n = 1, . . . , NBN,

xn,2K1+k = a2 + (n − 1)R2, zn,2K1+k = (K1 + k)h0,

k = 1, . . . , K2, n = 1, . . . , NC, (14)

where the shifts of the chains are a1 = (NBN − 1)R2 + d , a2 =
[2(NBN − 1)R1 + d − (NC − 1)R2]/2, NC = [2(NBN − 1)
R1 + d]/R2.

To fix the size of the slit in the substrate, when solving
the problem Eq. (13), the x coordinates of the edges of the
substrate chains x1,k and xNBN,K1+k , k = 1, . . . , K1, should be
fixed. The problem Eq. (13) was solved numerically by the
conjugate gradient method.
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D. Accounting for the effect of temperature

Next, the multilayer system in the ground state is placed
in a Langevin thermostat and its dynamics is considered. To
do this, we numerically integrate the system of Langevin
equations

Mkün,k = − ∂H

∂un,k
− �Mn,k u̇n,k + �n,k,

n = 1, . . . ., Nk, k = 1, . . . , K, (15)

where for chains k = 1, . . . , 2K1 the mass is Mk = cMBN,
the number of nodes is Nk = NBN, for chains k = 2K1 +
1, . . . , K , Mk = MC and Nk = NC. Here � = 1/tr is the
friction coefficient characterizing the intensity of energy ex-
change with the thermostat (relaxation time is tr = 1 ps),
�n,k = {ξn,k,i}2

i=1 is the two-dimensional vector of normally
distributed random forces normalized by the conditions

〈ξn1,k1,i(t1)ξn2,k2, j (t2)〉 = 2�Mn1,k1 kBT δn1n2δk1k2δi jδ(t2 − t1),

here T is the thermostat temperature and kB is the Boltzmann’s
constant.

In the numerical simulation of the dynamics for the sub-
strate chains, we will use the conditions of fixed outer ends of
h-BN chains (the ends that do not go into the slit)

u̇1,k ≡ 0, u̇NBN,K1+k ≡ 0, k = 1, . . . , K1, (16)

which ensure the stability of the slit in the substrate. Note that
the G chains (k = 2K1 + 1, . . . , K ) can freely slide over the
substrate, break away from it, or enter the slit.

E. Effect of pressure

To simulate the influence of pressure on the dynamics of
G chains, additional forces f are introduced, which act on
the nodes of the outer layer of the system orthogonally to its
surface. In fact, viscous friction exists between the graphene
sheet and the substrate, and this friction plays an important
role when modeling dynamically applied pressure. Since we
study quasistatic loading (slow increase of applied pressure),
viscous friction does not affect the critical pressure values.
Two cases will be considered: internal pressure acting from
the slit, which can lead to the separation of G chains from the
substrate [see Figs. 4(b), 4(c)], and external pressure, acting
from above, leading to pressing the G chains into the slit
[see Figs. 4(d), 4(e)].

In the first case, for the nodes of the inner G chain k =
2K1 + 1 not adjacent to the substrate (which are at a distance
r > 5 Å from the nodes of the h-BN chain) the force f wn,k is
added, where the unit-normalized vector

wn,k = (zn+1,k − zn−1,k, xn−1,k − xn+1,k )/|un+1,k − un−1,k|
defines a direction orthogonal to the chain at its node (n, k).
The magnitude of the force f characterizes the value of the
pressure p = f /

√
3R2

2.
In the second case, for the nodes of the upper G chain

k = K and for the atoms of the h-BN chains k = K1, 2K1 not
covered from above by the G chains, to the right side of the
equations of motion Eq. (15) the force − f wn,k is added.

III. SIMULATION RESULTS

After describing the ground state of a G sheet on an h-BN
substrate under internal and external pressure, the effect of
temperature is analyzed. Then the critical pressure p0 that can
be sealed with G sheets is calculated as a function of tem-
perature and slit width d . If the length of the graphene sheet
is only slightly larger than the width of the slit, the contact
area between them is very small. In this case, there is a certain
probability that the graphene sheet may lose contact with the
substrate due to thermal fluctuations, even if the pressure is
less than p0. To avoid this limiting case, graphene sheets with
a length much larger than the slit width are considered.

A. Ground state of the system

Let us first consider how the stationary state of G sheet
depends on internal or external pressure. As mentioned above,
the forces f are added to the right side of the system of
equations of motion Eq. (15), which describe the action of
pressure normal to the G sheet. The initial configuration is the
ground state of the multilayer system, i.e., the solution of the
minimum energy problem Eq. (13) at f = 0. The structure
of the system is modeled for a gradual and quasistatically
increasing pressure (increasing f ) at T = 0 K.

Simulation showed that the action of internal pressure first
leads to the appearance of a stationary bulge located above the
slit in the substrate, see Fig. 5(a). As the pressure increases,
the height of the bulge increases monotonically. The growth
of the bulge occurs not due to the stretching of the rigid
valence bonds, but due to the sliding of the G chains along
the substrate in the direction of the slit. As in the 3D case,
the graphene nanoribbon slides on the substrate freely, with
almost zero traction force. When the critical value of pressure
p0 is reached, the stationary bent state of the G chains ceases
to exist. At p > p0, the pressure from the substrate slit leads
to the formation of a rapidly growing in time bubble under
the graphene sheet, which leads to the separation of the sheet
from the substrate, see Figs. 4(c) and 6(b).

Under the action of external pressure, see Fig. 5(b), the
G chains bend inside the slit (note that here the direction of
the ordinate is reversed). With such a quasistatic bending of a
graphene sheet, its length practically does not change; bending
occurs due to the sliding of the ends of the sheet towards the
slit. Equilibrium profiles of the graphene sheet are possible
only at p < p0, where p0 is the critical pressure. For p > p0,
the graphene sheet is dynamically pressed into the slit, see
Figs. 4(e) and 7(b). Postcritical sliding of the graphene sheet
into the slit occurs due to the sliding of the edges of the sheet
into the slit at practically unchanged length of the sheet.

The critical values of internal pressure (p0 =
1.03 eV/nm3) and external pressure (p0 = 1.19 eV/nm3)
obtained with the chain model should be compared with the
values found in full-atomic simulations, see Table I. The
difference is 4.8% and 9.7% for the external and internal
pressures, respectively.

B. Effect of simulation parameters on critical pressure

To determine the critical pressure, the kinetic energy of the
system is monitored during the quasistatic pressure increase.
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FIG. 6. The dependence of the sheet cross-sectional shape on
time t for a single-layer graphene sheet under the action of internal
pressure (shown by the arrow) at (a) p = 0.766 and (b) p = 0.785
eV/nm3. Simulation temperature is T = 300 K, K1 = 5, K2 = 1,
NBN = 150, NC = 352, and d = 6 nm. The critical pressure is
p0 ≈ 0.775 eV/nm3.

FIG. 7. The dependence of a single-layer graphene sheet cross
section on time t under the action of external pressure (a) p = 0.957
and (b) p = 0.995 eV/nm3. Note that −zn is used as the ordinate.
Simulation temperature is T = 300 K, K1 = 5, K2 = 1, NBN = 150,
NC = 352, and d = 6 nm. The critical value of pressure is p0 ≈
0.976 eV/nm3.

0 100 200 300 400 500 600

0.5

1

1.5

2

1

2 3

4

5

6

T  (K)

p 0
  (

eV
/n

m
3 )

FIG. 8. Dependence of critical value of pressure p0 on tempera-
ture T for internal and external pressure (solid and dashed curves,
respectively). Curves 1 (4), 2 (5), and 3 (6) give the dependence
for a single-layer, bilayer, and three-layer graphene sheet lying on
a substrate with a slit of width d = 6 nm.

When the critical pressure is reached, the graphene sheet
begins to deform dynamically, resulting in a large increase
in the kinetic energy of the system. The critical pressure is
defined as the pressure at which the quasistatic regime of sheet
deformation changes to the dynamic regime, characterized by
a sharp increase in kinetic energy.

The critical pressure p0 depends on the temperature, the
slit width, the number of graphene layers, and on the direction
of the applied pressure (internal or external).

Modeling examples for T = 300 K are shown in Figs. 6
and 7 for constant internal and external pressures, respec-
tively. Cases p < p0 are shown in Figs. 6(a) and 7(a), and
in Figs. 6(b) and 7(b) p exceeds a critical value. Relatively
low pressure leads to the formation of a stable bulge of the
G sheet at the slit, see Figs. 6(a) and 7(a). While pressure
remains below the critical value, its increase leads only to an
increase in the height of the bulge. When the critical value
of internal pressure is reached, the stationary state of the G
sheet becomes unstable and, under the action of pressure, a
rapidly growing bubble is formed leading to the separation of
the sheet from the substrate, see Fig. 6(b). Under the action
of external pressure p > p0, the G sheet is pushed into the slit
of the substrate and a growing bubble is formed on its reverse
side, see Fig. 7(b). The growth of the bubble in this case leads
to the extrusion of the entire G sheet through the slit.

The dependence of the critical pressure on the number of
nanoribbons in G sheet and temperature is given in Fig. 8. As
can be seen, at any temperature, an increase in the number
of graphene nanoribbons leads to an increase in the critical
value of pressure p0 because it leads to an increase in the
flexural rigidity of the sheet, which leads to an increase in the
resistance of the sheet to bending under pressure. But the main
contribution to the pressure resistance comes from the energy
of the interaction of the sheet with the substrate; it is this
interaction that prevents the layer from being separated from
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FIG. 9. Dependence of the critical value of pressure p0 on the
width of the slit in the substrate d for a single-layer (curves 1 and 3)
and two-layer (curves 2 and 4) graphene sheet at internal (curves 1
and 2) and external (curves 3 and 4) pressure. The dashed straight
line extrapolates the numerical data to atmospheric pressure. The
equation of the line is p0 ≈ 1.8×10−5/d0.95 atm. Temperature is
T = 300 K.

the substrate. Thermal fluctuations lead to easier separation of
the sheet from the substrate (there is an effective decrease in
the interaction energy of one node with the substrate by kBT ),
therefore, with increasing temperature, the critical pressure
decreases almost linearly with temperature, see Fig. 8.

Numerical simulation showed that as the slit width in
the substrate d increases, the critical pressure decreases as a
power of the width: p0 ∼ d−0.95, for d → ∞, see Fig. 9. Note
that for external pressure its critical value is always higher
than that for internal pressure, but for d > 10 nm these values
differ only slightly. Therefore, the resulting approximation
of the dependence of the critical pressure on the slit width
p0 ≈ 1.8×10−5/d0.95 atm is valid for both internal and exter-
nal pressures. This dependence allows one to conclude that
at a temperature of T = 300 K, graphene sheets without their
valence attachment to the substrate can effectively seal only
cracks in the substrate with a width of d < 1 μm under excess
pressure p ∼ 1 atm.

IV. CONTINUUM MECHANICS TREATMENT

An understanding of the problem under consideration can
be obtained with the help of membrane theory. In the case of
d 
 h, where h is the thickness of the graphene sheet, the
graphene sheet can be considered as an inextensible mem-
brane, since the bending rigidity of graphene is much less than
its tensile stiffness.

First we demonstrate that the graphene sheet partly lying
on a substrate tends to slide onto the substrate and it can be
in equilibrium only under the action of force F as shown in
Fig. 10(a). Indeed, the energy of the van der Waals interaction
between G and h-BN is proportional to the length L of the
nanoribbon lying on the substrate,

U = eL, (17)

FIG. 10. (a) Scheme for calculating the force F pulling a
graphene sheet onto the substrate. (b) Scheme of interaction forces
between the graphene sheet under inner pressure and the substrate.

where e is the interaction energy per unit length. The force is

F = −dU

dL
= −e. (18)

The force F is constant, it depends only on the strength of van
der Waals interactions and does not depend on the length L.
The constancy of the shear cohesive force during peeling of a
graphene sheet from a (111) Pt substrate was demonstrated in
Ref. [61] using molecular dynamics.

The membrane under the action of internal pressure p
acquires a cylindrical shape of radius R, see Fig. 10(b). The
circumferential membrane force in the graphene sheet is

T = pR. (19)

The friction between G and h-BN is negligible due to the
incommensurability of the lattice pitch of G and h-BN, as well
as thermal vibrations of the atoms depinning G from the sub-
strate. Therefore, the graphene sheet is in the equilibrium due
to the action of a tensile circumferential force T = (Tx, Tz ),
and a force with components (−F,−Tz ), see Fig. 10(b). It is
clear that F = Tx, and the force component −Tz is due to the
van der Waals coupling between G and h-BN.

It can be seen from Fig. 10(b) that

cos α = d

2R
, cos β = F

T
, β = π

2
− α, (20)

and hence

R

d
= 1

2 cos
[

arcsin F
T

] . (21)

It is convenient to measure R and h in units of slit width
d and the membrane forces in units of F since d and F are
constants. In other words, the ratio T/F can be regarded as the
loading parameter of the system as it increases with increasing
p. Equation (21) gives R/d in terms of T/F . It is also possible
to express Tz/F and h/d in terms of this parameter,

Tz

F
= cos α = T

F

d

2R
,

h

d
= R

d
−

√(
R

d

)2

− 1

4
. (22)
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(a)

(b)

(c)

FIG. 11. As the functions of T/F shown are (a) R/d , (b) h/d ,
and (c) Tz/F .

In Figs. 11(a)–11(c) we present R/d , h/d , and Tz/F , re-
spectively, as the functions of T/F . The curves are defined
for T/F � 1 and T/F < 1 corresponds to the case of flat
sheet (R = ∞, h = 0, and Tz = 0). Since the force F does
not change when the graphene sheet is deformed by internal
pressure, the sheet radius approaches the value R = d/2 from
above, and h approaches the value d/2 from below. The radius
of a cylindrical graphene sheet cannot reach the value d/2 (it
corresponds to a half-cylinder), since in this case the mem-
brane force T would have a zero component Tx, but this is
possible only when the sheet is separated from the substrate,
i.e. in the regime of postcritical blowup. As for the component
Tz, for large values of T/F it increases proportionally to T ,
as follows from the first formula in Eq. (22) at R ≈ d/2.
An increase in this component will sooner or later lead to
separation of the graphene sheet from the substrate.

The behavior of a graphene sheet under the action of in-
ternal pressure, observed in molecular dynamics simulations,
agrees very well with the picture obtained in the framework of
membrane theory. In particular, the thickness of the G sheet
is not included in the equations describing the deformation
of the membrane under pressure. This agrees with the results
presented in Fig. 9, according to which the effect of the G
sheet thickness is noticeable only for d < 10 nm and does not
affect the critical pressure p0 for large d . This is due to the
fact that membrane theory assumes that the cylindrical part of
the G sheet is connected to the flat part lying on the substrate
without a transition zone, see Fig. 10. In fact, there is a smooth
conjugation between these two parts of the G sheet, see Fig. 4,
and the effect of this transition zone is noticeable only at
small d .

V. CONCLUSIONS

The problem of finding critical pressure that a few-layer
G sheet covering a slit of width d in h-BN substrate can
withstand is considered using molecular dynamics simulation.

First, the problem is approached using 3D atomistic modeling
(see Sec. II A) and then the 3D problem is reduced to a 2D
one, as shown in Fig. 3. The difference between the critical
pressures calculated using 2D and 3D models is less than 10%.

In the case of p < p0, where p0 is the critical pres-
sure, G sheet acquires an equilibrium curved profile, see
Figs. 4(b), 4(d) and Fig. 5. At p > p0, the equilibrium state of
the G sheet becomes impossible, and under internal pressure it
dynamically breaks away from the substrate, see Fig. 4(c), and
under external pressure it is pressed into the slit, see Fig. 4(e).

The effect of the number of graphene sheets, temperature,
and slit width on the critical pressure p0 was analyzed. With an
increase in the number of graphene sheets p0 increases due to
the increase in the bending stiffness of G sheet. However, this
increase is only noticeable for very narrow slits d < 10 nm
and for larger d the number of graphene sheets does not affect
the critical pressure. This is because only a local area of the
G sheet near the edge of the slit is strongly curved to ensure a
smooth connection between the cylindrical and flat portions of
the sheet. The curvature of the G sheet in this transition region
depends on the thickness of the G sheet, but the influence of
this region is noticeable only at small d . This conclusion is
supported by the membrane theory, which predicts that the
membrane thickness does not affect the critical pressure.

Increase of temperature leads to almost linear decrease in
critical pressure, see Fig. 8. This is because the temperature
effectively decreases the binding force between the G sheet
and h-BN substrate.

The results obtained can be discussed in the light of
theoretical works [53–55], in the sense of which type of
loading (assigned force or assigned displacement) is realized
in our simulation. According to the analysis presented in
Ref. [54], for assigned displacement of the chain end, the
force-extension curves have a maximum, and for assigned
force, they increase monotonically. In our simulation, the
detachment of the graphene sheet from the substrate occurs
dynamically when the critical pressure value p0 is reached,
which is characteristic of loading by assigned displacement.
It has also been shown that at a critical temperature the
chain can detach from the substrate even with zero external
force [53–55], but in our simulations we did not reach such a
high temperature.

The critical pressure is nearly inverse proportional to
the slit width, see Fig. 9, from which the approximation
p0 ≈ 1.8×10−5/d0.95 atm was extracted at a temperature of
T = 300 K.

Figure 9 shows the extrapolation of the dependence p0(d )
to a critical pressure of 1 atm. It can be seen that a pressure
of 1 atm can be sealed with a G sheet if the slit width is
d < 10−5 m, i.e., less than 0.01 mm. For such a wide slit the
number of graphene layers in the G sheet is not important.
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