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Influence of ferroelastic domain walls on thermal conductivity
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Enabling on-demand control of heat flow is key for the development of next-generation electronic devices,
solid-state heat pumps, and thermal logic. However, precise and agile tuning of the relevant microscopic
material parameters for adjusting thermal conductivities remains elusive. Here, we study several single crystals
of lanthanum aluminate (LaAlO3) with different domain structures and show that ferroelastic domain walls
behave as boundaries that act like efficient controllers to govern thermal conductivity. At low temperature (3 K),
we demonstrate a fivefold reduction in thermal conductivity induced by domain walls orthogonal to the heat
flow and a twofold reduction when they are parallel to the heat flow. Atomistic calculations fully support this
experimental observation. By breaking down phonon scattering mechanisms, we also analyze the temperature
dependence of the thermal conductivity to derive a quantitative relation between thermal conductivity variations
and domain wall organization and density.
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I. INTRODUCTION

Thermal switches, whose thermal conductivity can be
tuned by an applied field, are essential elements for
preventing degradation in electronic circuits [1], develop-
ing environmentally friendly refrigeration systems [2–4],
achieving high-efficiency thermoelectric devices [5,6], and
making computing mechanisms utilizing phonons a reality
(phononics) [7,8].

Their efficiency is parametrized through the ratio (R) of
their high (κhigh) and low (κlow) thermal conductivity states.
Some are based on fluids, but solid-state thermal switches
operating through conduction mechanisms are more appealing
because of their resilience and compactness. For example, a
single material such as VO2 exhibits a switching ratio R ∼
1.6, even though it works in a temperature range limited
by the temperature of its transition between thermally insu-
lating and conductive states [9,10]. Phase-change materials
exhibit larger thermal conductivity differences depending on
their crystallinity [11] but lack a demonstration of reversible
switching. Alternatively, multilayers of ferromagnetic and
nonmagnetic conductive layers can exhibit thermal conduc-
tivity ratios R ∼1.8 under a magnetic field [12]. However,
the main limitation of solid-state thermal switches operating
through conduction mechanisms remains their comparatively
low thermal conductivity ratios (R < 1.8).
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Recently, ferroic oxides have been proposed for obtaining
fast and reversible solid-state thermal switches with large
switching ratios in broad temperature ranges [13–16]. They
rely on interactions between phonons conducting heat and
spontaneously occurring topological defects known as domain
walls [17] that move in response to an electric field [18]
or uniaxial stress [19]. Molecular dynamics simulations re-
veal that the thermal conductivity could be divided by up to
R = 3.7 under the action of ferroelastic domain walls [14],
and first-principles calculations show a thermal conductivity
ratio R = 2 when the density of domain walls is increased
with an electric field [15]. Authors of seminal experimental
works, where the precise orientation and density of domain
walls are unknown, mention the influence of domain walls on
the thermal conductivity at low temperature [20–22]. More
recently, at room temperature, thermal conductivity variations
as high as R = 3 were demonstrated in ferroelectric thin films
with different densities of domain walls [23] and switching
ratios as high as R = 1.2 where obtained under the application
of an electric field [24–26].

Nevertheless, authors of some published results question
the influence of domain walls on the thermal conductivity,
e.g., in bismuth ferrite [27,28]. A reason behind these discrep-
ancies is that most measurements are performed only on thin
films at room temperature, with complex domain structures,
where the influence of residual strain, substrate, and defects
can be substantial. Furthermore, the thermal conductivity is
assessed by thermoreflectance, after removing the response
from the interface with the substrate that dominates the initial
signal, and only in one direction, missing out anisotropies
induced by different orientations of domain walls. These
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FIG. 1. Optical images in reflection of selected single crystals of LaAlO3. (a) After annealing, (b) and (c) as-received, and (e) and (f) after
quenching. Panels are oriented such that the heat flow in thermal conductivity measurements goes from left to right, as indicated by black
arrows. (d) Schematics of the domain structure showing two domains, where ellipses indicate the orientation of their axes of compression
(minor axis) and extension (major axis), projected into the plane of the schematic. Scale bars correspond to 100 µm. (g) Histogram of the
number of domains with given sizes, measured from optical images.

anisotropies are also excluded from current models relying
on an interfacial thermal resistance at the wall [23,27]. As
such, questions of how domain walls influence the thermal
conductivity and how their organization and density should
be tuned to have a large impact are still fully open.

In this paper, we investigate the thermal conductivity
of bulk single crystals of ferroelastic lanthanum aluminate
(LaAlO3) with different density and orientation of domain
walls. Here, we measure the thermal conductivity of five
samples in different directions and in a broad temperature
range—from room temperature down to 2 K. In this tem-
perature range, i.e., far from the phase transition occurring
∼850 K, domain walls in LaAlO3 have an estimated thickness
of 20 Å [29] and are pinned [30,31], which means that the
domain structure is stable and does not change. This unique
set of data reveals large thermal conductivity variations be-
low 10 K when the density of domain walls orthogonal to
the heat flow is varied, leading to a fivefold reduction in
thermal conductivity. It also reveals that domain walls have
an influence on heat flows even if they are parallel to them.
Still, the thermal conductivity in the material depends of the
direction of the heat flow with respect to domain walls, with
a twofold difference in thermal conductivity between both
directions. We account for these results by analyzing the full
temperature dependence of the measured thermal conductivity
within the framework of the Holland model by considering
all relevant phonon scattering mechanisms. We are thus able
to relate quantitatively the evolution of the thermal conduc-
tivity to ferroelastic domain wall densities and orientations,
successfully described by the Casimir limit, here calculated
numerically to account for finite-size effects. The influence of
domain walls on the thermal conductivity is also computed
using atomistic simulations of the heat transport (both paral-
lel and orthogonal to the walls) based on second-principles
models. By demonstrating that heat flows can be effectively
controlled by domain walls, these results provide a general
approach to model the influence of these planar defects on
thermal conductivity and pave the way for designing efficient,
microscopic thermal switches.

II. RESULTS

A. Ferroelastic domains engineering

Figure 1 shows images of the five commercial single crys-
tals of LaAlO3 studied, whose surfaces are orthogonal to
the [001]pc direction (pc stands for pseudocubic), obtained
with an optical microscope working in reflection (images in
transmission in Supplemental Material Note 1 [32]). Sam-
ple F [Fig. 1(a)] has been annealed in air at 1200 K for 6 h
with a heating and cooling rate of ∼10 K min−1 to obtain a
monodomain state, i.e., free of domain walls, which can be
achieved thanks to a redistribution of defects at high tem-
perature that act as pinning centers for domain walls [33].
Since there are no domain walls, the sample appears to be
uniform both in reflection and transmission (Fig. 1(a) and S1
in the Supplemental Material [32]). Note that faint structures
optically visible are not ferroelastic domains but negative
traces of previous domain patterns that remain as a surface
relief [34]. Figures 1(b) (sample A) and 1(c) (sample C) are
as-received single crystals with a very regular domain pattern,
clearly visible because of differences in reflectivity between
ferroelastic domains. Domain walls are strictly orthogonal to
the surface, indicating that they are planes orthogonal to the
[010]pc direction, in agreement with the literature [35,36].
Domain structures observed in Figs. 1(e) (sample B) and 1(f)
(sample D) result from quenches of single crystals from 680 K
to a room temperature silicon-oil/water mixture, implying a
large increase in the number of domain walls, which remain
mostly orthogonal to the [010]pc direction. For all samples,
the direction of the ferroelastic distortion in the domains is
indicated in Fig. 1(d). The size of the domains, and hence
the density of domain walls, has been measured directly from
optical images and is shown in Fig. 1(g) for all samples.
Samples A and C exhibit analogous distributions, with mean
sizes ∼19 ± 2 µm and 15 ± 2 µm, respectively. Samples B
and D exhibit smaller domains, and thus higher density of
domain walls, with mean size ∼9 ± 2 µm. The number of
domains is smaller in samples A and B, whose long lengths
are along the [100]pc direction, than samples C and D, but the
volume occupied by domain walls remains identical.
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FIG. 2. Thermal conductivity as a function of temperature of se-
lected LaAlO3 samples displaying distinct domain wall densities and
orientations. (a) Sample F is monodomain, whereas in samples A and
B, domain walls are parallel to the heat flow, and orthogonal to it in C
and D. Fitting lines in (a) originate from the Holland model includ-
ing the corresponding boundary length LB as explained in the text.
(b) The switching ratio R illustrates the enhancement of the mon-
odomain thermal conductivity compared with the others. (c) Specific
heat as a function of temperature measured in a single crystal of
LaAlO3. The line corresponds to the Debye model which accounts
for the contribution of the acoustic phonons. (d) Temperature depen-
dence of the mean free path L deduced from κ = 1

3CvolvL, with the
inferred sound velocity v = 4773 m s−1 and Cvol = Cp( M

V Mmol
).

B. Thermal measurements

The temperature dependence of the measured thermal con-
ductivity κ is shown in Fig. 2(a). It is probed in directions
where the ferroelastic distortion of domains is the same by
symmetry [Fig. 1(d)] and thus cannot influence the thermal
conductivity. The three regimes of transport usually ob-
served in insulating oxides are recovered: the low-temperature
boundary scattering region characterized by a power-law
T dependence, the presence of a high maximum at ∼25 K
that depends on the effects of impurities, followed by a de-
crease at higher temperatures due to Umklapp scattering. At
room temperature, thermal conductivity values lie between 11
and 13 W m−1 K−1, in agreement with literature [21]. In the
boundary scattering regime, a decrease of the thermal con-
ductivity is observed in samples with domain walls parallel to
the heat flow (A and B), which is even stronger when domain
walls are orthogonal to the flow (C and D). This is illustrated
in Fig. 2(b) by the strong enhancement of the switching ratio
R achieving values as high as 5, at ∼2 K, and demonstrate
the effect of domain walls on thermal transport. We verified
that annealing and quenching do not influence the thermal
conductivity if the samples stay monodomain (Supplemental
Material Note 3 [32]). In the optical images of quenched
samples, some cracks are visible (Supplemental Material
Notes 1 and 3 [32]). Even though these cracks are mostly
at the surface and do not extend across the thickness of the
samples, except on the edges, they are particularly visible
because the images are taken in transmission. We verified that

these cracks have little influence on the thermal conductivity
by comparing in Fig. S2 in the Supplemental Material [32]
the thermal conductivity of two monodomain samples: one
obtained after annealing (sample F) and one obtained after
quenching. At 3 K, the thermal conductivity of the quenched
sample is reduced by a factor of 1.4 only, far from the fivefold
reduction in thermal conductivity observed between samples
F and D.

To further analyze the influence of domain walls, we per-
formed specific heat measurements down to 2 K [Fig. 2(c)].
Below 10 K, the usual low-temperature Debye regime is
recovered with a well-defined T 3 behavior, characteristic
of acoustic phonon contribution. We calculate the Debye
temperature TD = 375 K according to the expected con-
tribution C(T � TD)= 12π4/5NAvkB (T/TD)3, with NAv the
Avogadro’s number and kB the Boltzmann constant. By us-
ing the mass density M/V = 6.52×106 g m−3, the molar mass
Mmol = 213.88 g mol−1, and N

V = M
V

NAv
Mmol

, the sound velocity

is deduced such that v = kBTD
h̄ (6π2 N

V )
−1/3 ≈ 4773 m s−1, in

agreement with literature [21,37] (h̄ = h/2π is the Planck
constant). The temperature dependence of the phonon mean
free path L, calculated as κ = 1

3CvolvL, is unveiled in Fig. 2(d).
In the low-temperature boundary scattering regime, it satu-
rates differently depending on the orientation and density of
domain walls. Here, L is more constrained when domain walls
are orthogonal to the heat flow and their density is high, as in
sample D compared with sample C, rather than in the case of
domain walls parallel to the heat flow as in samples A and B.
In the latter case, we obtain as well that a higher domain wall
density in sample B more efficiently reduces the mean free
path than in sample A. Whichever the orientation of domain
walls, L is always lower than in the monodomain sample F.

III. DISCUSSION

A. Simulations of heat transport with a domain wall

We first compare our results with atomistic heat transport
simulations. To this end, we derive a second-principles poten-
tial for LaAlO3 (see Appendix B), and we use it to optimize
cells with domain walls along the {001}pc direction, which we
find to be ∼25 Å wide in the low-temperature limit, close to
the experimental value of 20 Å [29]. We then make use of
nonequilibrium Green’s function techniques to compute the
thermal conductance of LaAlO3 in three configurations: mon-
odomain state and with domain walls orthogonal or parallel
to the heat flow [Figs. 3(a) and 3(b)]. We observe that domain
walls reduce the thermal transport moderately when parallel
to the heat flow and do so more markedly when orthogonal to
it. This agrees very well with our experimental results.

In the simulation, the fact that the difference in ther-
mal conductance increases with temperature indicates that
the thermal resistance is attributed mostly to optical modes.
This is corroborated by the simulated frequency-resolved
transmission curves [Figs. 3(c) and 3(d)], which show that
optical modes of low and medium frequencies (3–20 THz)
undergo a stronger scattering (and the scattering is more
pronounced in the orthogonal configuration). In contrast, the
experiments show that acoustic modes dominate at low tem-
perature. The discrepancy may arise from the fact that the real
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FIG. 3. (a) and (b) Thermal conductance as a function of tem-
perature and (c) and (d) mode transmittance as a function of
phonon frequency in the harmonic approximation, as simulated using
nonequilibrium Green’s function techniques. The black lines corre-
spond to LaAlO3 in the monodomain state, and blue (respectively
red) lines in (a) and (c) [respectively (b) and (d)] correspond to
LaAlO3 with domain walls orthogonal (respectively parallel) to the
heat flow.

(experimental) walls in the multidomain configuration induce
a local strain, especially in the high wall-density limit, while
in the simulations, we considered a relatively sparse regime.
This strain could induce large scattering in the acoustic modes
and hence reduce further the thermal conductivity. Also, the
experiments could be measuring partly additive scattering
by consecutive walls if the scattered phonons recover some
of their population through anharmonic interactions before
hitting the next wall. This effect would not be captured by
the simulations since they are carried out in the harmonic
approximation and do not account for phonon-phonon scat-
tering. For that same reason, the simulated thermal transport
curves increase monotonically as a function of temperature,
as phonons become increasingly populated. Including anhar-
monic scattering would recover the correct high-temperature
behavior, where the effect of the domain walls vanishes
because phonon-phonon scattering becomes dominant but
comes at a prohibitive computational cost given the sizes of
the simulation boxes employed. Still, our simulations give the
right trends for the thermal conductivity reduction caused by
domain walls in LaAlO3.

B. Thermal conductivity of the monodomain sample

In a more general framework, the thermal conductivity can
be described by using the semiclassical Boltzmann equation in
the frame of the relaxation time approximation τ for phonons
characterized by Bose-Einstein statistics with zero chemical
potential. It is written as the integral over the acoustic phonon
frequencies by using a Debye model [38]:

κ = kB

2π2v

(
kBT

h̄

)3 ∫ xD

0
τ

x4 ex

(ex − 1)2 dx. (1)

Here, frequencies are made dimensionless by introducing
variables x = h̄ω/kBT and xD = h̄ω/kBTD. The relaxation
time depends on phonon scattering mechanisms and is in most
cases a function of frequency and temperature such as τ =
τT ( kBT

h̄ω0
)
θ
xθ with a possibly T-dependent τT and an exponent θ

characteristic of the considered scattering process, ω0 being a
related characteristic frequency. At low temperature (typically
T < TD/20), the previous integral can be extended to infinity,
and in the simple case of one type of scattering, the thermal
conductivity can be calculated analytically by introducing �

and Riemann ζ functions:

κ ≈ kB

2π2v

(
kBT

h̄

)3+θ
τT

ωθ
0

∫ ∞

0

x4+θex

(ex − 1)2 dx

= kB

2π2v

(
kBT

h̄

)3+θ
τT

ωθ
0

ζ (4 + θ )�(5 + θ ). (2)

It follows in the case of a boundary scattering, for which the
relaxation time is neither frequency nor temperature depen-
dent (θ = 0 and τ = τB), that the thermal conductivity varies
as T 3 and κ = 1

3CvolvLB with the temperature-independent
mean free path LB = vτB.

For the monodomain sample of LaAlO3, this regime is
never reached since the measured thermal conductivity varies
as T 2 at low temperature in Fig. 2(a). Already observed in
some perovskite oxides [20], this behavior is the signature
of phonon scattering by dislocations [39] with a linear fre-
quency dependence of τ−1, namely, with θ = −1 and no
temperature dependence of the relaxation time. Therefore, it
follows from Eq. (2) that κ varies as T 2 at low temperature,
which explains why the mean free path in Fig. 2(d) is not
constant. Within the model of Holland [40], which considers
two types of phonon polarization with one longitudinal (L)
and two transverse (T) modes, κ = 1

3κL + 2
3κT where κL and

κT are both defined as in Eq. (1) and the factors 1
3 and 2

3
originate from the numbers of longitudinal and transverse
modes, respectively. Additional scattering processes are con-
sidered within the model by including crystalline boundaries,
impurities through mass differences, the three-phonon normal
processes (L and T) as well as the Umklapp ones (L and T),
and dislocations, such that the relaxation time entering Eq. (1)
is τ−1 = ∑

j τ
−1
j , where each τ j is the relaxation time for a

single scattering mechanism [40].
The transverse contribution is further decomposed as κT =

κTN + κTU to consider the specific frequency range of trans-
verse Umklapp scattering [40], which has been adjusted
numerically to fit the thermal conductivity. The best ad-
justment is reached here with a transverse cutoff frequency
ωD/1.5, as summarized in Table I. As shown in Fig. 4(a), the
thermal conductivity measured in the monodomain sample F
is successfully described by these three contributions, L, TN,
and TU. According to their definition in Table I, the total
relaxation times used for the calculations are

τ−1
L = τ−1

B + τ−1
I + τ−1

D + τ−1
NL + τ−1

UL , for 0 < ω < ωD,

τ−1
TN = τ−1

B + τ−1
I + τ−1

D + τ−1
NT , for 0 < ω < ωD/1.5,

τ−1
TU = τ−1

B + τ−1
I + τ−1

D + τ−1
UT , for ωD/1.5 < ω < ωD.
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TABLE I. List of scattering mechanisms of the Holland model extended with the dislocation term. The Debye frequency is deduced from
the Debye temperature TD = 375 K determined experimentally from the specific heat measurements as ωD = kBTD/h̄ ≈ 4.9×1013 ms−1. The
inverse of the relaxation time of the boundary term is given by the ratio of the sound velocity v ≈ 4773 ms−1 to the boundary length related to
the Casimir limit LC as discussed in the text.

Scattering mechanism Relaxation time τ−1 (s−1) Factor Ai Frequency range (s−1)

Boundary τ−1
B = AB AB = v/LB 0 − ωD

Impurities (mass difference) τ−1
I = AIω

4 AB = 3×10−44 0 − ωD

Dislocations τ−1
D = ADω AD = 0; 1.15; 2.6×10−5 0 − ωD

Normal 3-phonon
Longitudinal τ−1

NL = ANLω2 T 3 ANL = 1×10−21 0 − ωD

Transverse τ−1
NT = ANTωT 4 ANL = 4×10−11 0 < ωD/1.5

Umklapp
Longitudinal τ−1

UL = AULω2 T 3exp(−TD/αT ) AUL = 1.2×10−22, α = 3 0 − ωD

Transverse τ−1
UT = AUTω2

sinh(h̄ω/kBT ) AUT = 9.3×10−17 ωD/1.5 − ωD

FIG. 4. Casimir limit and frequency-dependent specularity
parameter. (a) Temperature dependence of the thermal conductivity
measured in the monodomain sample F compared with the calculated
one according to the Holland model as κ = 1

3 κL + 2
3 (κTN + κTU).

Dashed lines display the three contributions due to longitudinal
and transverse modes, the latter resulting from normal and Umk-
lapp processes. The different scattering processes are summarized in
Table I. The boundary length used here is LB = 827 µm. (b) Temper-
ature dependence of the dominant phonon wavelength λ ≈ hv

2.821kBT
compared with the root mean square (rms) roughness η0 = 7 nm.
The intersection of both curves defines a crossover from a purely
diffusive regime at high temperatures and a low temperature one
where boundary reflections become specular. (c) It follows that the
mean free path L increases by exceeding the boundary length when
the temperature is lowered, as for sample D with its inferred mean
free path L compared with the calculated ones with and without
specular reflection. The inset displays the variation of the boundary
lengths including (L′

B) or not (LB) a frequency-dependent specularity
parameter p(ω), as a function of the calculated Casimir limit related
to the five investigated samples. (d) Variation of the Casimir limit
as a function of c according to Eqs. (F2), (F4), and (F5) for a
finite rectangular rod compared with the result obtained with Eq.
(F3) for an infinite one [59]. The inset displays the variation of the
Casimir limit LC

∞ as a function of the width a according to the latter
equation.

C. Thermal conductivity of multidomain samples

We have refined the parameters listed by numerically cal-
culating the integrals defined in Eq. (1) at each temperature
and for each component to fit the measured thermal conduc-
tivity in all samples. The found factors Ai (Table I) agree
quantitatively with the ones reported for several insulating
oxides [41]. We must also emphasize that the only parameters
that have been varied from one sample to the other are the
dislocation factor and the boundary length LB, which depends
on the density and orientation of ferroelastic domains in the
samples. Since dislocations act as nucleation or pinning cen-
ters for domain walls, one may assume that the contribution
from the walls likely takes over the contribution from dislo-
cations. This could then explain why it has been found that
the dislocation factor decreases from 2.6×10−5 (sample F)
down to 1.15×10−5 (samples A and C) and 0 (samples B and
D) when the domain wall density increases. While it remains
difficult to ascribe a precise dislocation density from the AD

factor [42], it is known to be proportional to the dislocation
density [42,43], and similar values have been found in ma-
terials with dislocation densities ranging from 1×107 up to
5×107 cm−2, which seems a reasonable order of magnitude.

D. Specularity parameter

Boundary scattering has been described here within the
framework of Casimir [44,45]. It assumes that the temperature
is so low that phonons interact only with the boundary and that
the scattering is completely diffuse. This implies that incident
phonons which are absorbed by the various surfaces of the
sample are then re-emitted with the equilibrium distribution
corresponding to the local temperature. However, it appears
in Fig. 2(d) that the mean free paths still increase at low
temperatures in contrast to the expected constant boundary
regime behavior. This is because the boundary scattering of
phonons as described by Casimir assumes perfectly diffusive
surfaces where phonons are scattered with equal probability
into any directions, which is only ensured if the roughness
of the surface is higher than the phonon wavelength. Never-
theless, the latter increases typically as λ ≈ hv

2.821kBT when the
temperature is lowered, and the previous diffusive criterion is
inevitably no longer valid for a sufficiently smooth surface,
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TABLE II. Boundary lengths. Average domain size measured
on optical images. Boundary lengths with constant specularity
parameter p for LB (η0 = 7 nm) or with a frequency-dependent one
p(ω) for LB

′ (η0 = 4 nm). Casimir limit LC inferred from the optically
determined domain distribution and Fig. 4(d).

Samples F A B C D

Domain size (µm) Monodomain 19 9 15 9
LB (µm) 827 79 45 22 15
LB

′ (µm) 827 70 38 20 13
LC (µm) 827 78 47 12 8

as shown in Fig. 4(b). In this case, phonons undergo specular
reflection on the boundary rather than diffuse scattering, and
their effective mean free path increases beyond the boundary
length usually referred to as the Casimir limit. This effect has
been described by Ziman who has proposed to account for it
through an average specularity parameter p dependent on the
roughness (η) distribution P(η) and the phonon wavelength λ

[46]:

p =
∫

P(η)exp

(
−16π2η2

λ2

)
dη ≈

∫ λ/4π

0
P(η)dη

and Leff
B = 1 + p

1 − p
LB. (3)

Accordingly, an effective mean free path Leff
B is related to

the boundary length LB in Eq. (3) by considering multiple
specular reflections, which lead to a strong enhancement if
p → 1 (perfectly smooth surface) or to the bare boundary
length if p = 0 (diffuse scattering). Whereas the roughness
distribution is a priori unknown, one may assume that,
for a polished surface, this is a strongly decreasing func-
tion of η which can be approximated by an exponential
form such as P(η) ≈ exp(−η/η0 )

η0
[47]. This specularity pa-

rameter then becomes p ≈ 1 − exp(−λ/4πη0) and Leff
B =

[2exp(λ/4πη0) − 1]LB, by considering the dominant phonon
wavelength λ ≈ hv

2.821kBT . As an example, a comparison is
made in Fig. 4(c) between the mean free path inferred from
thermal conductivity measurements in sample D without spec-
ularity and the expected ones for a boundary length of 15 µm
with a root mean square (rms) roughness η0 = 7 nm. The
effect of specular reflections appears for T � 10 K which
corresponds to the expected crossover in Fig. 4(b) between
the high-temperature diffuse scattering regime (when λ < η0)
and the low-temperature specular regime (when λ > η0). It
follows that, instead of saturating up to the boundary length,
the mean free path still increases if temperature decreases
[Fig. 4(c)]. Another comparison is also made by considering a
frequency-dependent specularity parameter [48] (as explained
in Appendix E) to consider the different effects of the rough-
ness depending on the short or long phonon wavelengths.
Shorter and likely more realistic boundary lengths LB

′ are then
inferred (Table II).

E. Casimir limits from domain distributions

To quantitatively discuss the role of the density and orienta-
tion of domain walls, the optically measured sizes of domains
must be converted into a relevant boundary length that can

be precisely compared with the boundary length LB (or L′
B)

inferred from the analysis of the thermal conductivity. For
this, as explained in Appendix F, we have calculated the so-
called Casimir limit which accounts for the finite-sized effects
in the samples (e.g., size of ferroelastic domains) as a function
of their length c in Fig. 4(d), by using their experimental
dimensions (width a = 1600 µm, thickness b = 500 µm).

For small rectangular rods of extension <100 µm, it
appears that the Casimir limit is mainly given by one con-
figuration factor (see Appendix F) such as 3Fzz/2π according
to Eq. (F4), due to the smallness of the lateral surfaces. This
factor will thus be used to analyze the effect of domain walls
orthogonal to the heat flow. The variation of the Casimir limit
as a function of the width a in the inset helps to understand
the effect of domain walls parallel to the flow because, in this
case, the limit of an infinite rod appears justified. In fact, we
find that each domain can be considered as an independent
rectangular rod with its own thermal conductivity. If walls are
orthogonal to the flow, the sample can be represented by a col-
lection of domains in series from the transport point of view,
whereas if walls are parallel to the flow, domains must be con-
sidered in parallel. It follows that, in the former case, thermal
resistance is additive, whereas in the latter, thermal conduc-
tance is additive. By writing the total thermal conductivity in
the boundary regime as κ⊥,‖ = 1

3CvolvLC⊥,‖, depending on the
orientation of the walls (orthogonal or parallel), with the do-
main sizes ci or ai, respectively, the macroscopic Casimir limit
LC⊥,‖ is then related to the distribution of domains through
their size and respective Casimir limit LC,i:(

κ⊥
ab

c

)−1

=
∑

i

(
κi

ab

ci

)−1

κ‖
ab

c
=

∑
i

κi
aib

c

⇒
LC⊥ = c∑

i ci/LC,i

LC‖ =
∑

i

ai

a
LC,i

. (4)

The resulting macroscopic Casimir limits LC are summa-
rized in Table II and compared with the boundary lengths LB

(and LB
′) found experimentally from the fit in Fig. 2(d).

IV. CONCLUSIONS

Thermal conductivities of the monodomain sample and the
samples with domain walls orthogonal or parallel to the heat
flow [Fig. 2(a)] are successfully reproduced in the frame of
the Holland model, by using boundary lengths indicated in
the caption with a specular enhancement factor with a rms
roughness η0 = 7 nm (or 4 nm for the frequency-dependent
specularity). Accordingly, the mean free paths of the five
samples appear suitably described in Fig. 2(d) with boundary
lengths originating from different domain sizes in agreement
with the inferred Casimir limits for samples F, A, and B (LB ≈
LC) or consistent with LB ≈ LC×(1.7 ± 0.1) for samples C
and D. These results demonstrate that domain walls behave
as boundaries that act as thermal conductivity controllers ac-
cording to their orientation. The distribution of domain walls
implies a distribution of thermal conductivity considered ei-
ther in series or in parallel depending on the orientation of the
walls with respect to the heat flow. The fact that the found
boundary length in the orthogonal configuration gets closer
to the Casimir limit if one considers a frequency-dependent
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specularity parameter likely suggests that a more precise
description of domain walls, including roughness distribu-
tions, is required in these conditions of very short domain
sizes.

Overall, we demonstrated that tuning the number and ori-
entation of ferroelastic domain walls is a powerful way to
govern thermal conductivity, and we provided a general ap-
proach to model the influence of these planar defects on
thermal conductivity, paving the way for efficient and compact
thermal switches in ferroic materials.
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APPENDIX A: DOMAIN ENGINEERING

Single crystals of LaAlO3 10×10×0.5 mm were ob-
tained from Pi-Kem Ltd, with surfaces orthogonal to the
[001]pc direction and edges along {001}pc directions. They
were cut with a diamond wire saw (Well 3500 Precision)
in smaller pieces (∼1.6×8×0.5 mm), keeping edges along
{001}pc directions. Their main surfaces (∼1.6×8 mm) were
optically polished by the supplier, leading to rms roughness
<1 nm (measured by atomic force microscopy). Samples F,
A, C, and D come from the same single crystal of 10×10×
0.5 mm.

At room temperature, LaAlO3 exhibits a rhombohedral
structure, with space group R3̄c [49]. It thus exhibits eight
domain states: four related to the loss of point group sym-
metry and four related to the loss of translational symmetry
(antiphase boundaries) [34,50,51]. The former leads to six
possible pairs of domains. For each of the six pairs, there
are two possible orientations of domain walls (Supplemental
Material Note 2 [32]). The domain structure was observed
with an optical microscope (Olympus BX60) operating in re-
flection with a polarizer and an analyzer, and a 10× objective.

Quenches of single crystals from 680 K to a room-
temperature silicon-oil (Fisher Scientific)/distilled water mix-
ture (∼10/90 volume ratio) came after several attempts at
different temperatures with other quenching mediums. Typ-
ically, quenching in air and liquid nitrogen did not affect

the domain structure, contrary to quenching in oil and water.
However, the latter led to the formation of significant cracks in
the samples; hence, the choice of an oil/water mixture as the
best option to reach a high density of domain walls without
breaking samples.

APPENDIX B: NUMERICAL SIMULATION OF
THE THERMAL CONDUCTANCE REDUCTION

IN THE HARMONIC APPROXIMATION

We derive a second-principles [52,53] model for LaAlO3

based on first-principles simulations. The density functional
theory calculations used to fit the data were carried out
using VASP [54,55], making use of the PBEsol [56] imple-
mentation of the generalized gradient approximation for the
exchange-correlation functional. The model can be viewed
as a multivariable Taylor series of the potential energy of
LaAlO3, taking the perovskite cubic phase as the reference
structure and treating all atomic distortions explicitly; we
work with an effective potential that includes harmonic and
anharmonic interatomic couplings up to fourth order.

Domain walls were optimized by seeding an abrupt domain
wall in simulation cells elongated in the direction perpendicu-
lar to the domain wall and performing Monte Carlo simulated
annealings starting from 10 K, which yield smooth profiles for
the octahedra rotation pattern. Two domain walls are included
in the simulation box to conform with periodic boundary
conditions.

The thermal conductance was calculated using nonequilib-
rium Green’s function techniques, as described in Ref. [57],
where the second-order interatomic force constants (IFCs)
were computed with the help of the PHONOPY package
[58]. For the configuration with domain walls orthogonal
(respectively parallel) to the heat transport (taken as the
[100]pc direction), a simulation box of 28×2×2 (respectively
3×14×2) pseudocubic 40-atom unit cells was used to com-
pute the IFCs. The latter were Fourier transformed in k space
over the [010]pc and [001]pc directions, and the thermal con-
ductance along [100]pc was evaluated with a supercell of
28×1×1 (respectively 3×14×1) over a grid of 9×9 (respec-
tively 1×15) transverse k points. The contacts were defined at
both extrema of the supercell with symmetric regions made of
2×1×1 (respectively 1×14×1) pseudocubic cells.

APPENDIX C: SPECIFIC HEAT AND THERMAL
CONDUCTIVITY MEASUREMENTS

The specific heat has been determined with a calorimeter
of a Physical Properties Measurements System from Quantum
Design using a relaxation method with a temperature rise of
2% of the sample temperature. Each measurement has been
duplicated without the sample to compensate for the temper-
ature dependence of the specific heat of the grease used for a
good thermal contact between the sample and the calorimeter
platform. The parameter indicating the quality of the thermal
contact between the sample and the platform, the so-called
sample coupling, remained between 98 and 100% during each
measurement, thus ensuring the reliability of the results. The
sample measured was a small piece of 1.7×1.7×0.5 mm cut
from the same single crystal as sample B.
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To perform thermal conductivity measurements, 100 nm
gold electrodes have been deposited through a mask to ensure
low contact resistances by using silver paste. Thermal conduc-
tivity measurements have been performed under a maintained
secondary vacuum (P < 10−5 mbar) by using a four-points
configuration with a Physical Properties Measurements Sys-
tem from Quantum Design and temperature rise of 1%. All
the measurements have been performed at decreasing and
then increasing temperatures to avoid thermal hysteresis by
averaging both measurements.

APPENDIX D: DEBYE MODEL OF THE SPECIFIC HEAT

We emphasize that the Debye model used here accounts for
the three expected acoustic phonon modes: one longitudinal
and two transverse, which lead (as expected from a physical
point of view) to a high-temperature asymptotic specific heat
C(T � TD)= 3NavkB of the order of 25 J K−1 mol−1, the rest
being ascribed to the 12 optical phonon modes, which do not

contribute at low temperatures. This explains the difference
between the inferred Debye temperature here and those that
can be found in the literature where the authors frequently
use an effective temperature-dependent Debye temperature to
account for the overall variation of the specific heat. Then
their values need to be divided by 51/3 due to the 5 atoms
in the unit formula LaAlO3 to recover the Debye temperature
found here. Both models lead to the same value when this
extra term is compensated for in the calculation of the sound
velocity. The experimental determination of TD allows us to
numerically compute the full temperature dependence of the
Debye contribution as defined below:

CDebye = 9NAvkB

(
T

TD

)3 ∫ TD/T

0

x4 ex

(ex − 1)2 dx. (D1)

Therefore, the knowledge of the specific heat and the sound
velocity allows us to infer the mean free path from the thermal
conductivity.

APPENDIX E: FREQUENCY-DEPENDENT SPECULARITY PARAMETER

Instead of using a constant specularity parameter, as explained in the main text, the introduced formalism can be extended to
account for its frequency dependence by using the same roughness distribution P(η) ≈ exp(−η/η0 )

η0
without the approximation for

Eq. (3) as below:

p(λ) =
∫ ∞

0

exp(−η/η0)

η0
exp

(
−16π2η2

λ2

)
dη = λ

8
√

πη0
exp

[(
λ

8πη0

)2
]

Erfc

(
λ

8πη0

)
, with Erfc(x) = 2√

π

∫ ∞

x
exp(−u2)du.

(E1)
By relating the wavelength to the frequency as λ = 2πv

ω
, one can therefore introduce a frequency-dependent specularity parameter

p(ω) in the effective boundary length Leff
B (ω) = 1+p(ω)

1−p(ω) L
′
B entering Eq. (1) which is then integrated numerically.

APPENDIX F: CALCULATION OF THE CASIMIR LIMIT FROM DOMAIN DISTRIBUTIONS

The Casimir regime assumes that incident phonons which are absorbed by the various surfaces of the sample are then
re-emitted with the equilibrium distribution corresponding to the local temperature. Since the emitted energy varies as T 4,
the temperature can be expanded as T 4 (z) = T 4 (0) + 4T 3 (0)z(dT/dz) by assuming a constant temperature gradient in the z
direction, with z = 0 the center of the sample. By dividing the emitted energy flux by the cross-section S and (dT/dz), one can
then write the thermal conductivity κC in the Casimir limit regime:

κC = 1

S
4T 3 π4k4

B

15h3

(
3

v2

) ∑
i

∫∫
zcosθzicosθxy

r2
zi

dSzidSxy = π

10

kB

v2

(
kBT

h̄

)3 ∑
i

Fzi. (F1)

Here, dSxy is an element of the cross-section, and the sum runs over all the surfaces of the sample by involving the corresponding
configuration factor Fzi = 1/S

∫∫
cosθzicosθxyz/r2

zidSzidSxy, with rzi the distance between dSxy and dSzi, and θxy and θzi the angles
between rzi and the normal vectors to the elements dSxy and dSzi [43–45]. Also, it is assumed that the sound velocity v is
isotropic. It follows then that the classical relation between the thermal conductivity and the mean free path in the Casimir
regime is recovered by relating the latter to the configuration factors Fzi:

κC = 1

4π

CD

V
v

∑
i

Fzi = 1

3

CD

V
vLC ⇒ LC = 3

4π

∑
i

Fzi. (F2)

In the case of an infinite circular cylinder, LC is equal to its diameter. If it is an infinite square rod, LC is ∼1.12 times the side of
the square [44,45], and Harrison and Pendrys [59] have provided an analytical expression in the case of an infinite rectangular
rod of thickness b and width a which is slightly simplified below, with the ratio r = b/a:

L∞
C = 3

4π
(2F∞

zx + 2F∞
zy ) = a

4

[
3ln

(√
r2 + 1 + r

)
+ 3rln

(√
r2 + 1 + 1

r

)
+ 1 + r3 − (1 + r2)3/2

r

]
(F3)

In the currently interesting case of the finite rectangular rod, the Casimir limit can be further simplified by symmetry as LC =
3

2π
(Fzx + Fzy + Fzz ) by introducing the configuration factors associated to the three kinds of surfaces. Here, Fzz is defined below
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with the width a (along x), the thickness b (y), the z-length c, with the notation α = 2a/c and β = 2b/c:

Fzz = c

αβ

{
β

[√
α2 + 1arctan

(
β√

α2 + 1

)
− arctan(β )

]
+ α

[√
β2 + 1arctan

(
α√

β2 + 1

)
− arctan(α)

]

+ 1

2
ln

[
(1 + α2)(1 + β2)

(1 + β2 + α2)

]}
. (F4)

The other configuration factors Fzx and Fzy are symmetric, and the former can be inferred from the latter according to Eq. (F5)
with the replacement of b by a and vice versa. Since the last term in the following equation appears difficult to integrate
analytically in contrast to the first two terms, Fzy remains below as an integral form which can be numerically computed:

Fzy = 2

ab

∫ c/2

0
dz

{
z2

2
ln

[
z2(a2 + b2 + z2)

(a2 + z2)(b2 + z2)

]
+ bz arctan

(
b

z

)
− bz2

√
a2 + z2

arctan

(
b√

a2 + z2

)}
. (F5)

The use of Eqs. (F4) and (F5) allows us then to compute the Casimir limit for finite-sized samples.
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