
PHYSICAL REVIEW B 108, 144103 (2023)

General analytical algorithm of mechanical properties for 1H-MX2 transition
metal dioxides and dichalcogenides

Dong Li ,1,2 Junfei Zhao,1 Yonggang Zheng,1 Hongwu Zhang,1 and Hongfei Ye 1,*

1International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis,
Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics,

Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, People’s Republic of China
2State Key Laboratory Mine Response and Disaster Prevention and Control in Deep Coal Mine,

Anhui University of Science and Technology, Huainan 232001, People’s Republic of China

(Received 13 July 2023; revised 20 September 2023; accepted 22 September 2023; published 11 October 2023)

2D transition-metal dioxides and dichalcogenides with 1H phase (1H-MX2) have a large number of members
and a wide range of material properties, making them promising candidates for numerous applications. The
comprehensive, accurate, and rapid evaluation on the mechanical properties of the 1H-MX2 family has been an
important and challenging issue. Here, a general theoretical model is constructed based on molecular mechanics,
which provides an accurate and rapid analytical algorithm for calculating the mechanical properties of the entire
family of 1H-MX2. The validity of the constructed model is verified by molecular dynamics simulations upon the
scale effect on the mechanical behavior of 1H -MoS2. Notably, we report a library composed of the mechanical
properties of 34 types of 1H-MX2. It is found that the mechanical performances of 1H-MX2 depend on the period
and group numbers of elements. The obtained results are in good agreement with the existing experimental and
numerical results. Furthermore, the roles of molecular structure and force field on the mechanical properties
are elucidated, which is beneficial in predicting the mechanical performances of the potential and unreported
1H-MX2. The findings offer an important theoretical basis for the reverse design and optimization of 1H-MX2

material-based nanodevices through nanostructure-property relationships.
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I. INTRODUCTION

In recent years, two-dimensional (2D) materials have
sparked great interest from the perspective of basic physics
and applied science [1–4]. Graphene, a typical 2D material, is
quite popular because of its many fascinating properties, but
the lack of electronic band gap stimulates the search for other
2D materials with semiconducting performances [5–7]. The
latest studies have revealed that 2D transition-metal dioxides
and dichalcogenides with the generalized formula MX2 (M is
a transition metal atom, and X is a chalcogen atom) might
offer properties superior to graphene [2,8,9]. More than 60
transition metal dichalcogenides have been discovered, and at
least 40 of them have layered crystal structures [8,10]. It is
notable that MX2 exists in several structural phases accord-
ing to different coordination spheres of the transition metal
atoms. Some of the monolayer MX2 have D3h point group
symmetry and are specified as 1H phase [11,12]. Compared
to the 1T phase with D3d point group symmetry, the 1H phase
has higher stability and wider application [13,14]. Among the
1H-MX2 materials, 1H-MoS2 is the most presentative material
due to its robustness and the high availability of raw materials
[14,15].

The 1H-MX2 compounds often exhibit many excellent
properties and hold promise for a broad range of appli-
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cations in integrated circuits and nanoelectronics [2,16,17].
Interestingly, mechanical strain can strongly perturb the band
structure of these materials, which opens up a new avenue to
further improve material properties and prepare on-demand
devices [18,19]. Therefore, a full understanding of the me-
chanical properties and deformation behaviors of 1H-MX2 is
essential to design and adjust their mechanical and electrical
performances reasonably. The probe microscopy technique
provides an effective way to operate and measure 2D materials
at the nanoscale [20–22]. Cooper et al. measured the surface
elastic modulus and intrinsic strength of 1H-MoS2 based on
the nanoindentation experiments, and the results are close to
Griffth’s prediction on strength limit [21]. Yang et al. con-
ducted tensile tests on 1H-MoSe2 based on the developed in
situ nanomechanical platform and observed the brittle fracture
processes of crack initiation, propagation, and final failure in
real time [22]. Although considerable progress has been made
in the control accuracy of equipment, it is still a formidable
task to directly determine the mechanical properties of 2D
materials at the nanoscale based on experimental methods,
especially for so many family members [23,24].

With the improvement of computer performance, nu-
merical calculations play an increasingly important role in
exploring the mechanical property and its underlying mech-
anism of 2D materials, such as first-principles calculations,
molecular mechanics (MM), and molecular dynamics (MD)
simulations [25–28]. Çakır et al. predicted the mechanical
and thermal properties of 1H-MX2 (M = Cr, Mo, W; X =
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O, S, Se, Te) based on the density functional theory, and
the obtained results are quite consistent with the experiments
[25]. Kang et al. examined the in-plane mechanical proper-
ties of 1H-MX2 by utilizing the first-principles calculation.
The research indicates that the in-plane stiffness decreases
when X changes from S to Te and M changes from W to
Mo [29]. Jiang et al. evaluated the mechanical properties of
1H-MoS2, including the elastic modulus, Poisson’s ratio, and
bending stiffness, using an analytic formula on the basis of
the MM method [30,31]. Li et al. investigated the bending
behaviors of 1H-MoS2 based on MD simulations and revealed
the size-dependent bending stiffness caused by the boundary
effect [32]. The above researches provide valuable insights
into the mechanical behavior of several representative 1H-
MX2 materials. However, 1H-MX2 covers a large family of
materials, and there are still many members whose mechani-
cal properties have not yet been reported. Furthermore, there
are also considerable costs associated with developing and
designing specific experiments and algorithms for individual
materials. Therefore, it is of great significance to construct a
general model for the comprehensive and rapid evaluation on
mechanical properties of the 1H-MX2 family based on their
molecular structures.

In this work, based on the MM framework, a general
analytical algorithm (theoretical model) is proposed for evalu-
ating the mechanical properties of 1H-MX2, including surface
elastic and shear moduli and in-plane and out-of-plane Pois-
son’s ratios. On the basis of the study of mechanical behaviors
of 1H-MoS2, the constructed model is verified by MD sim-
ulations. Moreover, we predict the mechanical properties of
34 types of 1H-MX2, and the obtained results are in good
agreement with the existing experimental, DFT, and MD
methods. Furthermore, the effects of geometrical structure
and force-constant parameters on mechanical performances
are examined here. This work offers an effective and rapid
computational method to assess the mechanical properties of
1H-MX2 materials.

II. MODELS AND METHODOLOGY

A. Theoretical basis

The general theoretical model is established based on a
MM framework. In the MM method, the molecule is regarded
as a group of atoms held together by interatomic interaction,
and the intermolecular interactions are calculated through the
van der Waals and electrostatic potentials [33,34]. Hence, the
total system potential can be expressed as a sum of several
individual energy terms,

Etotal = Ebond + Eangle + Einv + Etor + EvdW + Eele, (1)

where Ebond, Eangle, Einv, and Etor are the energies associated
with bond stretching, bond angle bending, inversion, and tor-
sion, respectively. EvdW and Eele are associated with van der
Waals and electrostatic interactions, respectively. It should be
noted that bond stretching and bond angle bending are typical
motion styles for most covalent bonding materials, which play
dominant roles in the total system potential. Thus, the total
system potential can be reduced to the sum of the two energy
terms (Ebond and Eangle) [30,33,35].

FIG. 1. The molecular configuration of 1H-MX2. (a) The struc-
ture of 1H-MX2 with different chiral directions. (b) The selected unit
cell is in the red rectangle. (c) The perspective view of the unit cell
with geometrical variables.

According to the Born-Oppenheimer approximation, the
system potential can be expressed as a function of atomic
coordinates. Figure 1(a) shows the molecular configuration of
1H-MX2 with D3h point group symmetry, which consists of
three atomic layers with a transition metal atom sandwiched
between two chalcogen atoms. Based on the boundary
characteristics of 1H-MX2, the chiral directions can be divided
into the armchair and zigzag types. For the convenience of
calculation, we select a representative unit cell labeled by the
red rectangle in Fig. 1(b), and the corresponding geometrical
variables are shown in Fig. 1(c). There are one type of
bond length and three types of bond angles in the unit cell,
which are defined as M-X bond length (r), M-X-M intralayer
angle (φ), X-M-X intralayer angle (θ ), and X-M-X interlayer
angle (ψ), respectively. In this work, we examine the elastic
properties of 1H-MX2 materials under the small deformation
conditions and find that the harmonic function is sufficient
to characterize the related mechanical properties [30,33,34].
Thus, the total potential energy (E) of 1H-MX2 can be further
expressed as follows:

Etotal = 1

2

∑
Krdr2 + 1

2

∑
Kφdφ2

+ 1

2

∑
Kθdθ2 + 1

2

∑
Kψdψ2, (2)

where Kr , Kφ , Kθ , and Kψ are the force-constant parameters
of bond length and bond angles.

It is worth noting that the potential energy of the unit cell at
the inner and boundary is different due to the dangling bonds
[32,36]. Hence, for 1H-MX2 with the nonperiodic boundary,
the potential energy is calculated by considering the effective
bond lengths and bond angles without taking into account the
dangling bonds, which means that the proposed computational
model can describe the size-dependent mechanical properties.
Under the external loading (W), the total energy (U) can be
given as

U = Einner + Ebound − W, (3)

where Einner and Ebound are the potential energies of the unit
cell at the inner and boundary. It should be noted that due
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FIG. 2. The distribution of different types of bond lengths and
bond angles of unit cell under the tension deformation. The black
arrows represent the directions of the loadings. The red dashed lines
are auxiliary lines.

to the controversial thickness of 2D materials, the surface
modulus (unit: N/m) is calculated here to characterize the
mechanical performance of the relevant materials. Based on
the principle of minimum potential energy (δU = 0), the an-
alytical algorithms are constructed for evaluating the surface
elastic and shear moduli, in-plane and out-of-plane Poisson’s
ratios under the uniaxial tension, and pure shear conditions,
respectively.

B. Tension model

The uniaxial tension loading is applied along different chi-
ral directions of the unit cell, as shown in Fig. 2(a). Based on
the structural symmetry of 1H-MX2, the tension deformation
of the unit cell can be characterized by two groups of variables
(ri, φi, θi, and ψi, where φi = θi, i = 1, 2), as depicted in
Fig. 2(b). During the tensile process, the structural relation-
ship of 1H-MX2 satisfies the small deformation assumption.
Subsequently, we will derive the geometrical relationships
between these variables to construct expressions for the total
energy. According to the consistency of thickness, the vari-
ables (ri and ψi) should satisfy

r1 sin
ψ1

2
= r2 sin

ψ2

2
. (4)

Differentiating both sides of Eq. (4) leads to

dr2 = A1dψ1 + A2dψ2 + A3dr1, (5)

where

A1 = r1 cos ψ1

2

2 sin ψ2

2

, A2 = − r2 cot ψ2

2

2
, A3 = sin ψ1

2

sin ψ2

2

. (6)

Based on the geometrical relationships, the distance l be-
tween adjacent M atoms in the unit cell can be expressed as

l2 = r2
1 + r2

2 − 2r1r2 cos φ2

=
⎡
⎣r1 cos

ψ1

2
+

√(
r2 cos

ψ2

2

)2

−
(

r2 sin
φ1

2

)2
⎤
⎦

2

+
(

r2 sin
φ1

2

)2

. (7)

Equation (4) is substituted into Eq. (7), and then differenti-
ating Eq. (7) leads to

dψ2 = B1dφ1 + B2dφ2 + B3dψ1, (8)

where

B1 = − (1 + cos ψ1) sin φ1

2
(
sin ψ2 − 2 cos φ2 sin ψ1

2 cos ψ2

2

) ,

B2 = −4 sin φ2
(
sin ψ1

2 sin ψ2

2 − cos φ2
)

sin ψ2 − 2 cos φ2 sin ψ1

2 cos ψ2

2

,

B3 = − sin ψ1(1 + cos φ1) − 4 cos φ2 cos ψ1

2 sin ψ2

2

2
(
sin ψ2 − 2 cos φ2 sin ψ1

2 cos ψ2

2

) . (9)

Substituting Eq. (8) into Eq. (5),

dr2 = C1dφ1 + C2dφ2 + C3dψ1 + C4dr1, (10)

where

C1 = A2B1,C2 = A2B2,C3 = A1 + A2B3,C4 = A3. (11)

In the unit cell, la and lz are the sizes along the armchair
and zigzag directions, respectively. Lh is the thickness of
monolayer 1H-MX2. For 1H-MX2-[m, n] with a finite size (m
and n are the amounts of unit cell in two chiral directions), the
sizes of the whole 1H-MX2 can be written as

La = m

(
2r1 cos

ψ1

2
+

√
2r2

√
cos ψ2 + cos φ1

)
− r1 cos

ψ1

2
,

Lz = 2nr2 sin
φ1

2
,

Lh = 2r1 sin
ψ1

2
. (12)

Differentiating Eq. (12), and combining Eqs. (8) and (10)
leads to

dLa = D1dφ1 + D2dφ2 + D3dψ1 + D4dr1,

dLz = D5dφ1 + D6dφ2 + D7dψ1 + D8dr1,

dLh = D9dφ1 + D10dφ2 + D11dψ1 + D12dr1, (13)

where

D1 = m

[
C1

√
2(cos ψ2 + cos φ1) − r2(sin φ1 + B1 sin ψ2)√

2(cos ψ2 + cos φ1)

]
,

D2 = m

[
C2

√
2(cos ψ2 + cos φ1) − B2r2 sin ψ2√

2(cos ψ2 + cos φ1)

]
,
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D3 = m

[
−r1 sin

ψ1

2
+ C3

√
2(cos ψ2 + cos φ1) − B3r2 sin ψ2√

2(cos ψ2 + cos φ1)

]
+ 1

2
r1 sin

ψ1

2
,

D4 = m

[
2 cos

ψ1

2
+ C4

√
2(cos ψ2 + cos φ1)

]
− cos

ψ1

2
,

D5 = n

[
r2 cos

φ1

2
+ 2C1 sin

φ1

2

]
, D6 = 2nC2 sin

φ1

2
, D7 = 2nC3 sin

φ1

2
, D8 = 2nC4 sin

φ1

2
,

D9 = 0, D10 = 0, D11 = r1 cos
ψ1

2
, D12 = 2 sin

ψ1

2
. (14)

Under the uniaxial tension loading (F), the total energy of the 1H-MX2-[m, n] with the nonperiodic boundary can be expressed
as

U = Einner + Ebound − FdL,

Einner = N
[
2Kr

(
dr2

1 + 2dr2
2

) + 2
(
Kφ + Kθ

)(
dφ2

1 + 2dφ2
2

) + Kψ

(
dψ2

1 + 2dψ2
2

)]
,

Ebound = (m − n − 1)Krdr2
1 − (Kφ + Kθ )

(
mdφ2

1 + 2ndφ2
2

) + m − n − 1

2
Kψdψ2

1 , (15)

where N = m × n, dL = dLa, and dL = dLz are the changes
of sizes along the armchair and zigzag directions, respectively.
Ebound is obtained by calculating the contributions from the
effective bond lengths and bond angles (without dangling
bonds) of the boundary. In conjunction with Eqs. (8), (10),
and (13), the equilibrium equation can be expressed by four
variables (dφ1, dφ2, dψ1, and dr1,) based on the principle of
minimum potential energy (δU = 0),⎡

⎢⎢⎣
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

dφ1

dφ2

dψ1

dr1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

M1

M2

M3

M4

⎤
⎥⎥⎦, (16)

where

K11 = 2(2N − m)(Kφ + Kθ ) + 8NKrC
2
1 + 4NKψB2

1,

K12 = K21 = 8NKrC1C2 + 4NKψB1B2,

K13 = K31 = 8NKrC1C3 + 4NKψB1B3,

K14 = K41 = 8NKrC1C4,

K22 = 4(2N − n)(Kφ + Kθ ) + 4N
(
2KrC

2
2 + KψB2

2

)
,

K23 = K32 = 8NKrC2C3 + 4NKψB2B3,

K24 = K42 = 8NKrC2C4,

K33 = (2N + m − n − 1)Kψ + 4N
(
2KrC

2
3 + KψB2

3

)
,

K34 = K43 = 8NKrC3C4,

K44 = 4NKr
(
1 + 2C2

4

) + 2(m − n − 1)Kr . (17)

For the tensile loading along the armchair direction,

M1 = FD1, M2 = FD2, M3 = FD3, M4 = FD4. (18)

For the tensile loading along the zigzag direction,

M1 = FD5, M2 = FD6, M3 = FD7, M4 = FD8. (19)

According to the above equations, the strains (ε) of 1H-
MX2 along three different directions are

εa = dLa

La
= D1dφ1 + D2dφ2 + D3dψ1 + D4dr1

La
,

εz = dLz

Lz
= D5dφ1 + D6dφ2 + D7dψ1 + D8dr1

Lz
,

εh = dLh

Lh
= D9dφ1 + D10dφ2 + D11dψ1 + D12dr1

Lh
. (20)

The surface elastic moduli (E) of 1H-MX2 along the arm-
chair and zigzag directions are expressed as

Ea = F

Lzεa
= FLa

Lz(D1dφ1 + D2dφ2 + D3dψ1 + D4dr1)
,

Ez = F

Laεz
= FLz

La(D5dφ1 + D6dφ2 + D7dψ1 + D8dr1)
. (21)

The in-plane and out-of-plane Poisson’s ratios (vi and vo)
represent the ratios of in-plane and out-of-plane transverse
strain to the longitudinal strain, respectively. Here, vi and vo

of 1H-MX2 along the armchair and zigzag directions can be
written as

νia = − εz

εa
= −La(D5dφ1 + D6dφ2 + D7dψ1 + D8dr1)

Lz(D1dφ1 + D2dφ2 + D3dψ1 + D4dr1)
,

νiz = −εa

εz
= − Lz(D1dφ1 + D2dφ2 + D3dψ1 + D4dr1)

La(D5dφ1 + D6dφ2 + D7dψ1 + D8dr1)
,

νoa = −εh

εa
= −La(D9dφ1 + D10dφ2 + D11dψ1 + D12dr1)

Lh(D1dφ1 + D2dφ2 + D3dψ1 + D4dr1)
,

νoz = −εh

εz
= −Lz(D9dφ1 + D10dφ2 + D11dψ1 + D12dr1)

Lh(D5dφ1 + D6dφ2 + D7dψ1 + D8dr1)
.

(22)

It is notable that as m and n tend to infinity, the expressions
of the surface elastic modulus and in-plane and out-of-plane
Poisson’s ratios [see Eqs. (21) and (22)] along the two chiral
directions will tend to be uniform. These limiting results can
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FIG. 3. The distribution of different types of bond lengths and
bond angles under the shear deformation. The black arrows represent
the directions of the loadings. The red and black dashed lines are
auxiliary lines that characterize the geometrical relationships.

also be achieved by considering only the energy terms of
inner unit cells (Einner ) without taking into account that of the
boundary unit cells (Ebound ).

C. Shear model

Under the loading of pure shear, the deformation of the unit
cell can be characterized by three groups of variables (ri, φi,

θi, and ψi, where φi = θi, i = 1, 2, 3), as depicted in Fig. 3(a).
To facilitate the construction of geometrical relationships and
total energy expressions, we establish the corresponding aux-
iliary configurations, as shown in Figs. 3(b)–3(d). According
to the consistency of thickness, the relationship between ri and
ψi is expressed as

r1 sin
ψ1

2
= r2 sin

ψ2

2
= r3 sin

ψ3

2
. (23)

Differentiating Eq. (23) leads to

dr2 = a1dψ1 + a2dψ2 + a3dr1,

dr3 = a4dψ1 + a5dψ3 + a6dr1, (24)

where

a1 = r1 cos ψ1

2

2 sin ψ2

2

, a2 = − r2 cot ψ2

2

2
, a3 = sin ψ1

2

sin ψ2

2

,

a4 = r1 cos ψ1

2

2 sin ψ3

2

, a5 = − r3 cot ψ3

2

2
, a6 = sin ψ1

2

sin ψ3

2

. (25)

According to the geometrical relationships in the triangles
�A, �B, and �C [see Fig. 3(b)], the distance l0 between
adjacent M atoms can be written as

l0 =
(

r2 cos
ψ2

2

)2

+
(

r3 cos
ψ3

2

)2

− 2r2r3 cos
ψ2

2
cos

ψ3

2
cos α1,

l0 =
(

r1 cos
ψ1

2

)2

+
(

r2 cos
ψ2

2

)2

− 2r1r2 cos
ψ1

2
cos

ψ2

2
cos α2,

l0 =
(

r1 cos
ψ1

2

)2

+
(

r3 cos
ψ3

2

)2

− 2r1r3 cos
ψ1

2
cos

ψ3

2
cos α3. (26)

In combination with Eq. (23), and then differentiating both sides of Eq. (26),

dα1 = b1dψ2 + b2dψ3 + b3dφ1, dα2 = b4dψ3 + b5dψ1 + b6dφ2, dα3 = b7dψ1 + b8dψ2 + b9dφ3, (27)

where

b1 = cos ψ2

2 sin ψ3

2 − sin ψ2

2 cos ψ3

2 cos α1

2 cos ψ2

2 cos ψ3

2 sin α1

, b2 = sin ψ2

2 cos ψ3

2 − cos ψ2

2 sin ψ3

2 cos α1

2 cos ψ2

2 cos ψ3

2 sin α1

,

b4 = cos ψ3

2 sin ψ1

2 − sin ψ3

2 cos ψ1

2 cos α2

2 cos ψ3

2 cos ψ1

2 sin α2

, b5 = sin ψ3

2 cos ψ1

2 − cos ψ3

2 sin ψ1

2 cos α2

2 cos ψ3

2 cos ψ1

2 sin α2

,

b7 = cos ψ1

2 sin ψ2

2 − sin ψ1

2 cos ψ2

2 cos α3

2 cos ψ1

2 cos ψ2

2 sin α3

, b8 = sin ψ1

2 cos ψ2

2 − cos ψ1

2 sin ψ2

2 cos α3

2 cos ψ1

2 cos ψ2

2 sin α3

,

b3 = sin φ1

cos ψ2

2 cos ψ3

2 sin α1

, b6 = sin φ2

cos ψ3

2 cos ψ1

2 sin α2

, b9 = sin φ3

cos ψ1

2 cos ψ2

2 sin α3

. (28)
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In the top view of the unit cell [see Fig. 3(b)], the angle variables satisfy α1 + α2 + α3 = 2π , thus, Eq. (27) can be reduced to

dφ3 = c1dψ1 + c2dψ2 + c3dψ3 + c4dφ1 + c5dφ2, (29)

where

c1 = −b5 + b7

b9
, c2 = −b1 + b8

b9
, c3 = −b2 + b4

b9
, c4 = −b3

b9
, c5 = −b6

b9
. (30)

For the shear deformation [see Fig. 3(c)], the relationships of geometrical variables in the triangles �D and �E should satisfy

r1

sin β1
= r3

sin(β1 + θ2)
= r3

sin(β1 + φ2)
,

r2

sin β2
= r3

sin(β2 + θ1)
= r3

sin(β2 + φ1)
. (31)

Substituting Eq. (23) into Eq. (31),

sin
ψ1

2
sin β1 = sin

ψ3

2
sin(β1 + φ2), sin

ψ2

2
sin β2 = sin

ψ3

2
sin(β2 + φ1). (32)

Expanding both sides of Eq. (32) leads to

V1 sin β1 − V2 cos β1 = V sin(β1 − δ1) = 0, Q1 sin β2 − Q2 cos β2 = Q sin(β2 − δ2) = 0, (33)

where

V1 = sin
ψ1

2
− sin

ψ3

2
cos φ2,V2 = sin

ψ3

2
sin φ2,V =

√
V 2

1 + V 2
2 , tan δ1 = V2

V1
, β1 = |δ1|, (34)

Q1 = sin
ψ2

2
− sin

ψ3

2
cos φ1, Q2 = sin

ψ3

2
sin φ1, Q =

√
Q2

1 + Q2
2, tan δ2 = Q2

Q1
, β2 = |δ2|.

Then, differentiating both sides of Eq. (32),

dβ1 = d1dψ1 + d2dψ3 + d3dφ2, dβ2 = d4dψ2 + d5dψ3 + d6dφ1, (35)

where

d1 = − cos ψ1

2 sin β1

2
[
sin ψ1

2 cos β1 − sin ψ3

2 cos(β1 + φ2)
] , d2 = cos ψ3

2 sin(β1 + φ2)

2
[
sin ψ1

2 cos β1 − sin ψ3

2 cos(β1 + φ2)
] ,

d3 = sin ψ3

2 cos(β1 + φ2)

sin ψ1

2 cos β1 − sin ψ3

2 cos(β1 + φ2)
, d4 = − cos ψ2

2 sin β2

2
[
sin ψ2

2 cos β2 − sin ψ3

2 cos(β2 + φ1)
] ,

d5 = cos ψ3

2 sin(β2 + φ1)

2
[
sin ψ2

2 cos β2 − sin ψ3

2 cos(β2 + φ1)
] , d6 = sin ψ3

2 cos(β2 + φ1)

sin ψ2

2 cos β2 − sin ψ3

2 cos(β2 + φ1)
. (36)

The shear deformation of the unit cell can be characterized
by the angle variable (ϕ), as depicted in Fig. 3(d). Based on the
geometrical relationships, the corresponding angle variables
in the triangles �D and �E satisfy the following equations:

cos β1 = cos
ψ3

2
cos ϕ1, cos β2 = cos

ψ3

2
cos ϕ2. (37)

Differencing Eq. (37) leads to

dϕ1 = e1dψ3 + e2dβ1, dϕ2 = e3dψ3 + e4dβ2, (38)

where

e1 = − sin ψ3

2 cos ϕ1

2 cos ψ3

2 sin ϕ1

, e2 = sin β1

cos ψ3

2 sin ϕ1

,

e3 = − sin ψ3

2 cos ϕ2

2 cos ψ3

2 sin ϕ2

, e4 = sin β2

cos ψ3

2 sin ϕ2

. (39)

In addition, the relationship of the angle variables (ϕ, ϕ1,
and ϕ2) in the triangle �F satisfy

2l1
sin ϕ

= l2
sin(ϕ + ϕ1 + ϕ2)

. (40)

Substituting Eqs. (23) and (31) into Eq. (40) leads to

sin(β1 + φ2) sin φ1 sin ϕ

= 2 sin(β2 + φ1) sin φ2 sin(ϕ + ϕ1 + ϕ2). (41)

Expanding both sides of Eq. (41),

R1 sin ϕ − R2 cos ϕ = R sin(ϕ − δ3) = 0, (42)

where

R1 = sin(β1+φ2) sin φ1 − 2 sin(β2 + φ1) sin φ2 cos(ϕ1 + ϕ2),

R2 = 2 sin(β2 + φ1) sin φ2 sin(ϕ1 + ϕ2),

R =
√

R2
1 + R2

2, tan δ3 = R2

R1
, ϕ = |δ3|. (43)
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Differencing both the sides of Eq. (41),

dϕ = f1dφ1 + f2dφ2 + f3dβ1 + f4dβ2 + f5dϕ1 + f6dϕ2, (44)

where

f1 = 2 cos(β2 + φ1) sin φ2 sin(ϕ + ϕ1 + ϕ2) − sin(β1 + φ2) cos φ1 sin ϕ

sin(β1 + φ2) sin φ1 cos ϕ − 2 sin(β2 + φ1) sin φ2 cos(ϕ + ϕ1 + ϕ2)
,

f2 = 2 sin(β2 + φ1) cos φ2 sin(ϕ + ϕ1 + ϕ2) − cos(β1 + φ2) sin φ1 sin ϕ

sin(β1 + φ2) sin φ1 cos ϕ − 2 sin(β2 + φ1) sin φ2 cos(ϕ + ϕ1 + ϕ2)
,

f3 = − cos(β1 + φ2) sin φ1 sin ϕ

sin(β1 + φ2) sin φ1 cos ϕ − 2 sin(β2 + φ1) sin φ2 cos(ϕ + ϕ1 + ϕ2)
,

f4 = 2 cos(β2 + φ1) sin φ2 sin(ϕ + ϕ1 + ϕ2)

sin(β1 + φ2) sin φ1 cos ϕ − 2 sin(β2 + φ1) sin φ2 cos(ϕ + ϕ1 + ϕ2)
,

f5 = f6 = 2 sin(β2 + φ1) sin φ2 cos(ϕ + ϕ1 + ϕ2)

sin(β1 + φ2) sin φ1 cos ϕ − 2 sin(β2 + φ1) sin φ2 cos(ϕ + ϕ1 + ϕ2)
. (45)

In conjunction with Eqs. (35) and (38), the shear strain (dϕ) can be expressed by the variables of dψ1, dψ2, dψ3, dφ1, and
dφ2,

dϕ = g1dψ1 + g2dψ2 + g3dψ3 + g4dφ1 + g5dφ2, (46)

where

g1 = ( f3 + e2 f5)d1, g2 = ( f4 + e4 f6)d4,

g3 = e1 f5 + e3 f6 + ( f3 + e2 f5)d2 + ( f4 + e4 f6)d5,

g4 = f1 + ( f4 + e4 f6)d6, g5 = f2 + ( f3 + e2 f5)d3. (47)

Under the pure shear loading, the total energy of the 1H-MX2-[m, n] with the nonperiodic boundary is written as

U = Einner + Ebound − T dϕ,

Einner = N
[
2Kr

(
dr2

1 + dr2
2 + dr2

3

) + 2
(
Kφ + Kθ

)(
dφ2

1 + dφ2
2 + dφ2

3

) + Kψ

(
dψ2

1 + dψ2
2 + dψ2

3

)]
,

Ebound = (m − n − 1)Krdr2
1 − (

Kφ + Kθ

)(
mdφ2

1 + ndφ2
2 + ndφ2

3

) + m − n − 1

2
Kψdψ2

1 , (48)

where T = τLaLz represents the moment of force and τ is the shear loading. In conjunction with Eqs. (24), (29), and (46), the
equilibrium equation can be expressed by six variables (dψ1, dψ2, dψ3, dφ1, dφ2, and dr1) based on the principle of minimum
potential energy (δU = 0), ⎡

⎢⎢⎢⎢⎢⎢⎣

P11 P12 P13 P14 P15 P16

P21 P22 P23 P24 P25 P26

P31 P32 P33 P34 P35 P36

P41 P42 P43 P44 P45 P46

P51 P52 P53 P54 P55 P56

P61 P62 P63 P64 P65 P66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

dψ1

dψ2

dψ3

dφ1

dφ2

dr1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

H1

H2

H3

H4

H5

H6

⎤
⎥⎥⎥⎥⎥⎥⎦

, (49)

where

P11 = (2N + m − n − 1)Kψ + 4NKr
(
a2

1 + a2
4

) + 2(2N − n)(Kφ + Kθ )c2
1,

P12 = P21 = 4NKra1a2 + 2(2N − n)(Kφ + Kθ )c1c2,

P13 = P31 = 4NKra4a5 + 2(2N − n)(Kφ + Kθ )c1c3,

P14 = P41 = 2(2N − n)(Kφ + Kθ )c1c4, P15 = P51 = 2(2N − n)(Kφ + Kθ )c1c5,

P16 = P61 = 4NKr (a1a3 + a4a6),

P22 = 2NKψ + 4NKra2
2 + 2(2N − n)(Kφ + Kθ )c2

2,

P23 = P32 = 2(2N − n)(Kφ + Kθ )c2c3, P24 = P42 = 2(2N − n)(Kφ + Kθ )c2c4,

P25 = P52 = 2(2N − n)(Kφ + Kθ )c2c5, P26 = P62 = 4NKra2a3,
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FIG. 4. The constrained conditions of the 1H-MoS2 in MD simulations. Panels (a) and (b) show the cases of uniaxial tension along the
armchair and zigzag directions, respectively. (c) The case of pure shear. The arrows represent the directions of the loadings.

P33 = 2NKψ + 4NKra2
5 + 2(2N − n)(Kφ + Kθ )c2

3,

P34 = P43 = 2(2N − n)(Kφ + Kθ )c3c4, P35 = P53 = 2(2N − n)(Kφ + Kθ )c3c5,

P36 = P63 = 4NKra5a6, P44 = 2(Kφ + Kθ )
[
(2N − m) + (2N − n)c2

4

]
,

P45 = P54 = 2(2N − n)(Kφ + Kθ )c4c5,

P46 = P64 = 0, P55 = 2(2N − n)(Kφ + Kθ )
(
1 + c2

5

)
, P56 = P65 = 0,

P66 = 4NKr
(
1 + a2

3 + a2
6

) + 2(m − n − 1)Kr,

H1 = T g1, H2 = T g2, H3 = T g3, H4 = T g4, H5 = T g5, H6 = 0. (50)

According to the above equations, the surface shear modulus (G) of 1H-MX2 can be written as

G = T

LaLzdϕ
= T

LaLz(g1dψ1 + g2dψ2 + g3dψ3 + g4dφ1 + g5dφ2)
. (51)

For the 1H-MX2 with periodic boundary, the expression of
surface shear modulus can be obtained by considering only
the energy terms of inner unit cells (Einner ) and ignoring the
energy term of boundary unit cells (Ebound ). It should be noted
that this expression will also be consistent with Eq. (51) when
the number of unit cells tends to infinity (i.e., m → ∞ and
n → ∞).

III. RESULTS AND DISCUSSION

A. Validation by MD simulations

To validate the validity and correctness of the proposed
analytical algorithm (theoretical model), the mechanical be-
haviors of the 1H-MoS2 are examined by MD simulations.
The simulations are carried out in the LAMMPS software. The
geometrical structure and force-constant parameters of 1H-
MoS2 are consistent with the established theoretical model
and based on the previous works [37,38]. The MD simulations
with nonperiodic boundary conditions are performed within
the NVT ensemble by the Nosé-Hoover thermostat. The time
step is 1 fs. Since the intrinsic mechanical properties are
examined in the MM theoretical model (without the effect of
temperature), the system temperature of MD simulations is
set to 0.01 K to eliminate the effect of temperature as much as
possible.

The computational configurations of 1H-MoS2 under the
uniaxial tension and pure shear loadings are depicted in Fig. 4.

For the tensile simulations, one side of MoS2 is fixed (the
three directions of one atom in the middle position of the
constrained boundary is fixed, while the other atoms on this
boundary are constrained only in the tensile direction), and the
other is subjected to stretch. The constraints and loadings are
applied along the armchair and zigzag directions to examine
the chirality dependence, respectively. As for the shear sim-
ulations, two mutually perpendicular loadings are applied to
boundary atoms to form the pure shear condition. The com-
putational results are statistically analyzed within the small
deformations. Here, the maximum tension and shear strain are
0.02 and 0.03, respectively. Moreover, to further investigate
the size-dependent mechanical properties of MoS2, the square
models with sizes ranging from 3 nm × 3 nm to 50 nm × 50
nm are constructed in this section.

B. Size and chirality dependence of 1H-MoS2

The variations of four mechanical properties of 1H-MoS2

with the size of boundary are discussed in this section, as de-
picted in Fig. 5. It can be seen that the computational results of
the MM method are in good agreement with those of the MD
simulation. The average errors of the surface elastic modulus
(E), surface shear modulus (G), and in-plane and out-of-plane
Poisson’s ratios (vi and vo) between the MM and MD results
are about 0.19%, 0.24%, 1.01%, and 3.91%, respectively. No-
tably, the mechanical properties of MoS2 present significant
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FIG. 5. The variation of mechanical properties of 1H -MoS2 with the size of boundary. (a) Surface elastic modulus. (b) Surface shear
modulus. (c) In-plane Poisson’s ratio. (d) Out-of-plane Poisson’s ratio.

size and chirality dependence. From Fig. 5(a), it is found
that the surface elastic modulus displays an opposite varia-
tion tendency along different chiral directions with increasing
size. This opposite trend is also observed and validated in
previous works on the elastic modulus and bending stiffness
of graphene and MoS2 [32,39,40]. As the size increases, the
surface elastic moduli along the two directions gradually ap-
proach the same value (E = 109.25 N/m). For the surface
shear modulus, it also exhibits a notable size dependence.
With the increase in size, the surface shear modulus increases
gradually and tends to be stable (G = 44.79 N/m). As for the
in-plane and out-of-plane Poisson’s ratios, they decrease and
gradually converge (vi = 0.22 and vo = 0.07) with increasing
size [see Figs. 5(c) and 5(d)]. The above results are close to the
existing experimental and numerical works (E = 90.0–124.5
N/m, vi = 0.21−0.25, G = 36.1−48.6 N/m) [21,25,41–43],
which verifies the correctness of the proposed theoretical
model.

Moreover, the computational results indicate that the me-
chanical properties of small-sized MoS2 show an obvious
size and chirality-dependence, and these properties tend to be
stable gradually when the size exceeds 20 nm. This is because
the boundary unit cell (Ebound ) occupies a large proportion and
plays an important role in small-sized materials. As the size
increases, the proportion of Ebound decreases gradually and

the role of the stable inner unit cell (Einner ) becomes more
and more dominant. Thus, the mechanical properties of MoS2

tend to be stable and uniform.

C. Mechanical properties of 34 types of 1H-MX2

Based on the constructed theoretical model, we predict four
mechanical properties of 34 1H-MX2 materials (M = Sc, Ti,
V, Cr, Mn, Fe, Co, Ni, Nb, Mo, Ta, W; X = O, S, Se, Te)
in this section. The geometrical structure and force-constant
parameters involved in the theoretical models are based on
previous studies [11,44]. Table I exhibits the calculated sur-
face elastic and shear moduli and in-plane and out-of-plane
Poisson’s ratios of 34 1H-MX2. In order to verify the validity
of these results, several groups of the common and representa-
tive 1H-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) are selected
for comparison. It can be seen that the computational results
are in good agreement with the existing experimental, DFT,
and MD results [22,25,29,43–48], which indicates that the
proposed theoretical model can be widely used in 1H-MX2.

For the M and X elements from different periods and
groups, the formed 1H-MX2 exhibits diverse mechanical per-
formances. It is notable that the surface elastic and shear
moduli of 1H-MX2 usually decrease with X from O to Te
under the same M element, which is mainly attributed to
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TABLE I. The mechanical properties of 34 types of 1H-MX2.

Type E (N/m) Refs. νi Refs. νo G (N/m) Refs.

ScO2 128.3 0.16 0.17 55.4
ScS2 44.0 0.30 0.31 16.9
ScSe2 39.9 0.32 0.31 15.1
ScTe2 29.0 0.38 0.17 10.5
TiTe2 47.9 0.29 0.12 18.6
VO2 135.8 0.17 0.05 58.0
VS2 86.7 0.28 0.12 33.9
VSe2 82.4 0.23 0.06 33.4
VTe2 68.1 0.28 0.10 26.7
CrO2 214.2 209.0a 0.13 0.13a −0.03 94.7
CrS2 99.3 110.4b 0.26 0.26b 0.09 39.4 43.7b

CrSe2 90.2 85.6b 0.30 0.31b 0.13 34.6 32.7b

CrTe2 77.9 76.4a 0.30 0.30a 0.13 29.9
MnO2 163.9 0.10 −0.04 74.4
FeO2 101.7 0.23 0.11 41.4
FeS2 85.1 0.20 0.06 35.4
FeSe2 78.3 0.23 0.09 31.9
FeTe2 70.6 0.25 0.12 28.2
CoTe2 54.4 0.32 0.23 20.7
NiS2 85.0 0.19 0.24 35.6
NiSe2 48.3 0.27 0.19 19.0
NiTe2 53.9 0.32 0.25 20.5
NbS2 88.6 0.27 0.11 34.9
NbSe2 81.2 0.29 0.13 31.5
MoO2 214.3 209.3a 0.17 0.17a 0.03 91.6 103.6c

MoS2 109.2 124.5d 0.22 0.25d 0.07 44.8 48.6e

MoSe2 103.6 103.9d 0.24 0.23d 0.04 41.9 41.1e

MoTe2 80.0 79.4d 0.25 0.24d 0.04 32.1 28.6f

TaS2 87.8 0.27 0.11 34.5
TaSe2 81.7 0.29 0.12 31.7
WO2 242.4 237.2a 0.15 0.15a 0.00 105.7 131.5c

WS2 123.2 139.5g 0.21 0.22g 0.02 50.8 58.1h

WSe2 125.0 115.5g 0.20 0.19g −0.01 52.2 49.2h

WTe2 83.2 86.9g 0.20 0.18g −0.01 34.8 30.5f

aReference [44].
bReference [45].
cReference [46].
dReference [25].
eReference [43].
fReference [47].
gReference [29].
hReference [48].

the reducing force-constant parameters of bond lengths and
bond angles. This implies that the mechanical properties of
the transition-metal dioxides and dichalcogenides decrease
with the increase in the periods of chalcogens (two to five
periods). Furthermore, the out-of-plane Poisson’s ratio is one
of the important properties to characterize the out-of-plane
deformability of materials, however, few studies have paid
attention to it. Here, we report the out-of-plane Poisson’s
ratio of 34 1H-MX2 compounds. Interestingly, some of these
materials show a negative out-of-plane Poisson’s ratio (such as
CrO2, MnO2, WSe2, and WTe2), which is a unique property
and is also reported in some 1T-MX2 and black phosphorus
[49,50]. The above findings will be beneficial in predicting the

mechanical performances of the potential materials and may
shed light on the structural design of materials with a negative
Poisson’s ratio.

D. Effects of geometrical structure and force-constant
parameters

In fact, the 1H-MX2 has a large number of members. Al-
though the mechanical properties of 34 1H-MX2 materials
are given in Table I, there are still many materials that have
not been examined. Besides, the geometrical structure and
force-constant parameters of some 1H-MX2 materials are still
not determined and reported in the existing research, making
it difficult to obtain the mechanical properties of the rele-
vant materials directly by computational methods. It is worth
noting that for different 1H-MX2 materials, the molecular
structures (bond lengths and bond angles) and force field
parameters almost fall within a certain range. Therefore, the
mechanical properties of the similar and unreported 1H-MX2

can be predicted by investigating the roles in the geometrical
structure and force-constant parameters based on the proposed
analytical algorithm.

Figure 6 illustrates the variation of four mechanical proper-
ties of 1H-MX2 with the scaling factor. Here, the scaling factor
is defined as Mc/Mr , in which Mc and Mr are the concerned
variables (the geometrical structure and force-constant param-
eters) of the current and reference configurations (customized
configuration), respectively. The relevant parameters of the
customized configuration of 1H-MX2 (the intersection of the
curves) are listed in Table II. It should be noted that the effects
of two groups of parameters (i.e., φ and θ , Kφ and Kθ ) are
identical due to the structural symmetry of 1H-MX2. The sur-
face elastic and shear moduli increase with the force-constant
parameters (Kr , Kφ , Kθ , and Kψ ). In-plane and out-of-plane
Poisson’s ratios increase with increasing Kr , however, they
decrease with the angle-related force-constant parameters (Kφ

and Kθ ). Compared to the force-constant parameters, the ge-
ometrical structure parameters have a more significant effect
on the mechanical properties. Here, the roles of three bond
angles φ, θ , and ψ on the mechanical properties are generally
consistent. Interestingly, as the bond length r increases, the
surface elastic and shear moduli decrease, but the in-plane and
out-of-plane Poisson’s ratios increase. These results provide
an essential reference for understanding the roles of molecular
structures in mechanical performances and offer a feasible
method for predicting the mechanical properties of unreported
1H-MX2 materials. Moreover, the proposed theoretical model
can be utilized to construct a visual computational platform
for rapid evaluation of the mechanical properties of 1H-MX2

materials, which will be of great significance for the applica-
tion of the constructed theoretical model.

IV. CONCLUSIONS

This work proposes a MM theoretical model for the com-
prehensive, accurate, and rapid evaluation on the mechanical
properties (surface elastic and shear moduli and in-plane and
out-of-plane Poisson’s ratios) of the 1H-MX2 family. Taking
1H-MoS2 as the concerned materials, the size and chirality
dependence on the mechanical behaviors are examined, and
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FIG. 6. The variation of four mechanical properties of 1H-MX2 with the geometrical structure and force-constant parameters. (a) Surface
elastic modulus. (b) Surface shear modulus. (c) In-plane Poisson’s ratio. (d) Out-of-plane Poisson’s ratio.

MD simulations are utilized to verify the constructed theo-
retical model. It is worth noting that we present a library
for the mechanical properties of 34 1H-MX2 materials by
utilizing the proposed method. The results indicate that the
mechanical properties of 1H-MX2 depend on the period and
group numbers of transition metals and chalcogens. Here, the
surface elastic and shear moduli decrease with the increase
of the chalcogen period, which is related to the cooperative
contributions of geometrical structure and force-constant pa-
rameters. The relevant results are in good agreement with the
existing experimental and numerical works. Furthermore, the
relationships between the molecular structures (bond lengths
and bond angles) and mechanical properties are elucidated,
which provides a feasible way to predict the mechanical prop-
erties of unreported 1H-MX2. Interestingly, by considering
interlayer interactions and different geometrical relationships,

the proposed theoretical model has great potential to charac-
terize multilayer structures and other structural phases of MX2

materials. The present findings offer an essential theoretical
basis for understanding the nanostructures and properties of
1H-MX2, which could facilitate the design and fabrication of
2D materials-based nanodevices, microfluidic chips, etc.
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TABLE II. The geometrical structure and force-constant parameters of the reference configuration of 1H-MX2.

rMo-S (Å) φMoSMo(◦) θSMoS(◦) ψSMoS(◦) Kr (eV/Å2) Kφ (eV) Kθ (eV) Kψ (eV)

2.0 80.0 80.0 80.0 8.0 8.0 8.0 8.0
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