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Nascent vortices in current-carrying hybrid superconducting bridge
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We theoretically show that in a current-carrying hybrid superconductor (S)/normal metal (N) bridge there
is a state with spatial oscillations of modulus of superconducting order parameter � along the bridge and zero
vorticity. This stationary state is realized at large currents, when proximity-induced superconductivity in the
N layer is suppressed. With an increase of the current the number of oscillations of � increases, which leads
to oscillations of differential resistance or kinetic inductance of an SN bridge with normal or superconducting
leads. At current the exceeding critical current Ic, this spatially oscillating state transforms to periodically in time
moving the vortex chain across the SN bridge. Because of these properties, we call such a state a nascent vortex
state.
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I. INTRODUCTION

A superconductor placed in a magnetic field or carrying
transport current can be in either in a vortex (mixed) state
or a vortex-free (Meissner) state. In the vortex-free state su-
perconducting properties (for example magnetization, critical
current, or resistance) vary monotonically with a change of the
magnetic field. On the contrary, in the vortex state supercon-
ducting properties may change nonmonotonically as functions
of the magnetic field or current. The most familiar example
is the Little-Parks oscillations of the resistance of the hollow
superconducting cylinder as a function of the magnetic field,
which are connected with the change of the vorticity or the
number of vortices trapped by the cylinder one by one [1].
Another example is the superconducting disk with the radius
about of the superconducting coherence length ξ , where mag-
netization changes nonmonotonically with the magnetic field
due to the discrete character of the vortex entry and exit [2]. In
a narrow superconducting strip or a small size superconductor,
entry of the vortex chain or vortex leads to nonmonotonic
dependence of the resistance [3,4] or critical current [5–10]
on the magnetic field.

Here we present the superconducting system, where de-
spite zero vorticity there is nonmonotonic dependence of
transport properties as function of the applied current. This
is a hybrid superconductor (S)/normal metal (N) bridge con-
nected with normal or superconducting leads (see Fig. 1). We
find that at large currents, when proximity induced in the N
layer superconducting order parameter � = �eiφ is strongly
suppressed, in the SN bridge there is a state with spatial
oscillations of � along the bridge. With increasing of the
current the number of oscillations increases and it resembles
the increase of the number of vortices in an ordinary super-
conducting bridge or strip with an increase of the external
magnetic field. However, the vorticity N = ∮ ∇φdl/2π in the

*vodolazov@ipmras.ru

SN bridge is equal to zero up to currents close to the critical
current Ic. Moreover, the change of the number of oscillations
of � leads to oscillations of differential resistance or kinetic
inductance of the SN bridge connected with normal or su-
perconducting leads. At current I � Ic this state transforms
to periodically in time moving the vortex chain across the
SN bridge with the number of vortices equal to the number
of oscillations of � [the number of minima in dependence
�(x)] at I � Ic. For this state we adopt the name nascent
vortex/vortices state, which was used previously for physi-
cally similar objects which presumably may exist in a mixed
state of type II superconducting slab near its surface [11].
The main difference between a nascent vortex and an ordinary
vortex is in zero vorticity, leading to the absence of the point
where � → 0 (in the center of the vortex core) and circulating
currents around this point. A nascent vortex has elongated
along the thickness of the SN bridge “core,” which is a region
with locally smaller �.

The structure of our paper as follows. In Sec. II we present
our model. In Secs. III and IV we show our results for the SN
bridge with normal and superconducting leads, respectively.
In Sec. V we discuss our result and its relation with previous
works, and in Sec. VI we present our conclusions.

II. MODEL

To calculate superconducting and transport properties of
the SN bridge either with normal or superconducting leads, we
use the two-dimensional time-dependent Ginzburg-Landau
equation for the superconducting order parameter � = �eiφ ,
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FIG. 1. (a) SN bridge with normal leads. (b) SN bridge with
superconducting leads.

and the current conservation law

div j = div ( js + jn)

= div

(
−σS,N

e

π |�|2q

4kBT
− σS,N∇ϕ

)
= 0, (2)

where js is a superconducting current density and jn is a
normal current density, DS,N is a diffusion coefficient in S and
N layers, respectively, σS,N = 2e2DS,NN (0) is a conductivity
in the corresponding layer [N (0) is a density of states of
electrons on the Fermi level, which is chosen to be the same
in S and N layers to reduce the number of free parameters],
�GL = 3.06kBTcS,cN, q = (∇φ + 2πA/	0) (	0 = π h̄c/|e| is
a magnetic flux quantum), A is a vector potential (we put A =
0 for the SN bridge with normal leads), and ϕ is a electrostatic
potential. The N layer is modeled as a superconductor, having
critical temperature TcN < TcS while temperature is chosen
from the interval TcN < T < TcS. We are interested in station-
ary solution of Eq. (1), when ∂�/∂t → 0. On the SN interface
we use the boundary conditions DSd�/dy = DNd�/dy and
DSdϕ/dy = DNdϕ/dy, and on boundaries with vacuum we
use d�/dn = 0 and dϕ/dn = 0. In the place of contact of the
SN bridge with normal leads, we use the following boundary
conditions: � = 0 and dϕ/dx = − j/σN, where j is the ap-
plied transport current density.

In the case of the SN bridge with superconducting leads
there is a problem with “injection” of supercurrent in the
bridge. We solve it by using periodical boundary conditions in
the x direction: �(x = −L/2) = �(x = L/2), and we choose
ϕ = 0 because in this situation there is no normal current in
the superconducting state. A nonzero superconducting current
is controlled by the value of the spatially independent vector
potential A = (Ax, 0, 0)—we vary Ax from zero up to the
maximal value at which the supercurrent in the bridge reaches
Ic. A locally larger value of � near the ends of the SN bridge
(due to locally smaller js in the leads) we model by locally
larger TcN in the finite region near the bridge ends located at
x = ±L/2.

In our model we assume no dependence on transverse co-
ordinates (z direction in Fig. 1) and we solve two-dimensional
equations (along the x and y directions in Fig. 1). The cur-
rent is normalized in units of depairing current Idep of a
single S layer with thickness dS, length is in units of ξc =
(h̄DS/kBTcS)1/2, and voltage is in units of V0 = kBTcS/|e|.

III. SN BRIDGE WITH NORMAL LEADS

In Fig. 2(a) we present the spatial dependence of � along
the SN bridge having normal leads on the boundary of the N

FIG. 2. (a) Current-dependent spatial variation of � along the
SN bridge with normal leads on the boundary of the N layer with
vacuum. (b) Example of variation of � across thickness and length
of the SN bridge (I = 0.465Idep). (c) Voltage-current characteristic
of the SN bridge up to I = Ic. Resistance is finite due to penetration
of the electric field to the bridge from normal leads. (d) Dependence
of differential resistance of the SN bridge on the current.

layer with vacuum, calculated at different currents (parame-
ters of the SN bridge as follows: DN/DS = 50, T/TcS = 0.7,
T/TcN = 1.2, dS = dN = 5ξc, and L = 120ξc). When the cur-
rent exceeds some value (about 0.4Idep at chosen parameters),
the superconductivity in the N layer becomes strongly sup-
pressed due to the depairing effect of the supervelocity v ∼ q,
which is stronger in the N layer than in the S layer due to large
differences in diffusion coefficients. It is accompanied by the
appearance of spatial oscillations of � along the bridge [see
Figs. 2(a) and 2(b)]. The number of minima of �(x) increases
with increasing of the current and it resembles the increase of
the number of vortices in the ordinary superconducting strip
or bridge with an increase of the external magnetic field.

Change of �(x, y) influences the voltage response [see
Fig. 2(c)], which is well visible in the dependence of the
differential resistance on the current [see Fig. 2(d)]. For our
parameters, the electric field penetrates on the finite length LE

to the bridge (it changes from LE ∼ 13ξc at small currents up
to LE ∼ 17ξc at I = Ic), which provides its finite resistance.
We find that every oscillation of the dependence dV/dI (I ) is
connected with the appearance of additional minima of the de-
pendence �(x) and it looks similar to Little-Parks oscillations
of resistance of the hollow superconducting cylinder with the
change of the number of vortices. At I > Ic in-plane vortices
enter the SN bridge from the side of the N layer via the local
minima of �(x) and pass through the bridge [their number is
equal to the number of minima of �(x)].

All these results allow us to call the found spatially oscil-
lating state a nascent vortex state where the number of minima
of �(x) corresponds to the number of nascent vortices. In
comparison with the ordinary vortex, the nascent vortex has
vorticity N = 0, finite �, and is elongated along the thickness
of the SN bridge core [region with locally smaller �—see
Fig. 2(b)].
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FIG. 3. (a) Spatial variation of � along the SN bridge with nor-
mal leads on the boundary of the N layer with vacuum, shown for
bridges with different lengths (other parameters are the same as those
in Fig. 2) at I = Ic. (b) Dependence of differential resistance of the
same bridges on current. (c) Dependence of differential resistance on
current for the SN bridge with a length of L = 120ξc at different
TcN values and fixed T = 0.7TcS. (d) Dependence of supercurrent
on supervelocity calculated for the SN bilayer in the framework of
the one-dimensional Ginzburg-Landau model at the same T/TcN as
in panel (c). In the inset we show the dependence I (q) calculated
in the framework of the one-dimensional Usadel model at fixed
TcN = 0.15TcS and different T values (ratio DN/DS , dN, and dS are the
same as those in the GL and Usadel models; the numerical method
and the Usadel equation are presented in Ref. [12]).

We should note that at I > 0.59Idep ∼ Ic in the SN bridge
there are two ordinary in-plane vortices which are located
nearest to the ends of the bridge minima of �(x). Each of
them has vorticity N = 1 and a core with � → 0 in one point.
Their appearance does not add new features to the dependence
dV/dI (I ), and their entry and exit to/from the SN bridge with
the change of the current are reversible, also like the entry
or exit of nascent vortices. Our calculations show that their
existence is not a universal property, and they appear in the
case of a relatively large proximity-induced � in the N layer,
a large ratio DN/DS � 1, and currents close to Ic.

Figures 3(a) and 3(b) demonstrate the dependence of the
effect on the length of the bridge. First of all one can notice
the edge character of the found effect—with an increase of
L the amplitudes of oscillations rapidly decay far from the
bridge ends. It seems that larger � near the bridge ends plays
a decisive role in the appearance of a nascent vortex (� is
larger near the bridge ends because the current is mainly a
normal one there and the superconducting current is small). In
Sec. IV we demonstrate the importance of the gradient of �

along the bridge for the appearance of this spatially oscillating
state.

From Figs. 3(a) and 3(b) it is also seen that with increasing
of L nascent vortices have smaller influence on the differ-
ential resistance (the amplitude and the period of oscillation
of dV/dI decrease) despite their presence. This behavior
resembles ordinary finite-size superconductors (rings, disks,
and narrow strips) where the amplitude and the period of
oscillations of resistance, critical current, or magnetization as

functions of the magnetic field go down with an increase of
the sample size.

We also have studied how the observed effect depends on
the strength of the proximity-induced � in the N layer. With
an increasing ratio T/TcN (i.e., with decreasing TcN at fixed
T ), � in the N layer decreases and it diminishes its influence
on transport properties of the SN bridge. As a result, despite
the presence of the spatially oscillating state, it becomes much
less “visible” in dependence dV/dI (I ) [see Fig. 3(c)].

In general, we find that nascent vortices have noticeable
impact on the dependence dV/dI (I ) for short SN bridges with
a length of about several periods of oscillations of � [one
period equal to the size of the nascent vortex core is roughly
∼ξN ∼ (h̄DN/kBT )1/2]. Besides the SN bilayer should have
such a parameter when on the dependence I (q) there is a
“shoulder” [see Fig. 3(d)]. Its presence indicates the con-
siderable contribution of the N layer to transport properties
of the SN bilayer at small currents and the suppression of
superconductivity in the N layer before it becomes suppressed
in the S layer. In the inset in Fig. 3(d) we show the dependence
I (q) calculated in the framework of the Usadel model at dif-
ferent temperatures and fixed TcN. This result demonstrates
that similar I (q) follows from microscopic theory and in the
experiment one may vary temperature to find the proper I (q)
where the effect of nascent vortices is expected to be the
strongest one.

Nascent vortices are absent or exist in a narrow current
interval when the ratio DN/DS � 10. It occurs due to the
following reasons. At first, critical supervelocities in S and N
layers occur close to each other and close to the supervelocity
corresponding to maxima in the dependence I (q). It consid-
erably decreases the interval of currents where such a state
can exist. Second, in this case there is a smaller gradient of �

near the SN interface and a larger value of � in the N layer
than in the SN bridge with DN/DS � 10. It decreases the
vortex pinning on the SN interface. Indeed, the vortex energy
Ev ∼ 	2

0/λ
2 ∼ �/D and it is larger in the S layer than in the

N layer because of the much smaller � in the N layer, but this
difference decreases with the decreasing ratio DN/DS. We find
that when DN/DS � 10 the vortex motion starts immediately
after suppression of the proximity-induced superconductivity
in the N layer. Phase-slip centers and lines in our system are
not realized due to the large gradient of � over the bridge
thickness.

IV. SN BRIDGE WITH SUPERCONDUCTING LEADS

Similar nascent vortices do exist in the SN bridge with
superconducting leads at large currents [see Fig. 4(a)]. We
choose the same parameters as for the SN bridge in Fig. 2
and put T/TcN = 0.8 in the N layer on the distance 5ξc near
each bridge end to model larger values of � in the supercon-
ducting leads (see discussion of the model in Sec. II). Here
the change of the number of nascent vortices with current
results in oscillations of kinetic inductance of the SN bridge,
Lk (I ) ∼ dq̄/dI [see Fig. 4(b)]. Similarly to the SN bridge with
normal leads, here also there are ordinary in-plane vortices
at I � Ic. In the current interval 0.504 < I/Idep < 0.563 there
are two vortices located in the minima of �(x), nearest to
the bridge ends. By approaching to Ic, an additional pair of
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FIG. 4. (a) Current-dependent spatial variation of � along the
SN bridge with superconducting leads on the boundary of the N
layer with vacuum (bridge parameters are the same as those in
Fig. 2, L = 120ξc). (b) Dependence of the bridge kinetic inductance
Lk ∼ dq̄/dI (q̄ is an average along the bridge’s supervelocity) on
current. The peak at I � 0.396Idep (symbol 1) is related to the sup-
pression of superconductivity in the N layer. Small peaks at larger
currents are related to the change of the number of nascent vortices.
At I → 0.565Idep = Ic (symbol 6), there is an increase of Lk due to
the suppression of superconductivity in the S layer. In panels (c) and
(d), we show similar results for the SN bridge with L = 300ξc and
additionally enhanced superconductivity (realized by the increase of
TcN) in the middle of the bridge center.

in-plane vortices enter the bridge in the second from its end’s
minima of �(x).

Note that for the homogenous (without local variation of
TcN) SN bridge the state with spatial oscillations of � does not
exist. Up to I = Ic, corresponding to the maximal value of the
current on the dependence I (q), �(x) = const, and at I > Ic

the chain of in-plane vortices enters the SN bridge from the
side of the N layer with an intervortex distance close to the
period of the spatially oscillating state for the inhomogenous
bridge and passes through it. This result confirms the need for
an intrinsic gradient of � along the bridge to have nascent
vortices. To prove it, in addition to enhancement of TcN at
the ends of the bridge we also enhance locally TcN in the
middle of the bridge. Indeed, we observe oscillation of � both
near the ends and in the middle of the bridge [see Fig. 4(c)].
Moreover a qualitatively similar result is obtained in the case
of a local decrease of TcN (results are not presented here).
Visually oscillations of � near such a “defect” are reminis-
cent of Friedel oscillations of electron density near a charged
defect [13]; however, in our SN bridge they are not connected
with interference of the electron wave function.

V. DISCUSSION

Somewhere a similar spatially oscillating state, which is
a chain of nuclei for following the vortex chain entry, arises
in the problem with the stability of the vortex-free state for
the superconducting slab placed in parallel to its surface
magnetic field [14–16] or current-carrying superconducting

strip [17]. This state appears at the field/current above the
critical field/current (Hs/Is) when the edge barrier for the
vortex entry is suppressed. Its period depends on the mag-
netic field/current and the vorticity is equal to zero. But it
is a transient time-dependent state between the Meissner and
mixed states and it evolves to a vortex chain entering the
superconductor. In Ref. [11] it was supposed that such a state
may exist in the mixed state of the superconducting slab near
its surface, it could be stationary, and it was named a nascent
vortex state. It was phenomenologically introduced to explain
the results of the experiment [11]. However, as far as we know
there are no calculations which would confirm its existence in
that system.

The nucleus for vortex entry with zero vorticity exists at
the field/current less than Hs/Is and it corresponds to the
saddle-point state of the system. It is a region with locally sup-
pressed � near the edge of the superconducting disk placed
in the out-of-plane magnetic field [18,19] or at the edge of
the current-currying strip [20,21]. Note that only one such a
nucleus may simultaneously exist because the probability for
its appearance depends exponentially on its energy. It is also a
transient state and its evolution in time leads to vortex entry to
the superconductor. Only in the special case of a small size
superconducting ring with constriction may such a nucleus
be stabilized in time as has been shown experimentally in
Ref. [22] and it also may be called a nascent vortex. This result
can be interpreted as stabilization in time of the phase-slip
nucleus from the well-known problem about the saddle-point
state in current-carrying superconducting wire considered by
Langer and Ambegaokar in 1967 [23].

It occurs that in our SN bridge it is possible to stabilize in
time a similar nucleus of the vortex (chain of vortex nuclei). At
large current, superconductivity in the N layer is suppressed
and it behaves as a weak place through which vortices may
preferably enter the SN bridge. But a large difference in �

in the S and N layers, following from a large difference in
D, does not allow vortices to enter and/or pass across the
SN bridge, leading to the appearance of nascent vortices. The
gradient of � along the bridge provides nonequivalence for
vortex entry points, and nascent vortices appear one by one
in finite intervals of currents, which can be seen via their
impact on differential resistance or kinetic inductance. This
longitudinal gradient is an important factor for realization of
nascent vortices because in its absent they do not exist, as
our results show for a uniform SN bridge with periodical
boundary conditions. At I > Ic the nascent vortices develop
to ordinary vortices moving across the SN bridge from the N
layer to the S layer.

In a uniform superconducting slab in the mixed state, there
is also a gradient of � along the slab surface due to interior
vortices. However, there should still be a large gradient of
� inside the superconductor near its surface like in the SN
bilayer with different DS,N and TcS,cN values. The absence of
such a gradient for an intrinsically uniform superconducting
slab makes doubtful the realization of stationary nascent vor-
tices in this system.

Experimental verification of the predicted phenomena re-
quires the use of extremely dirty superconductors like NbN,
MoSi, and NbTiN with large resistivity in the normal state
of ρ ∼ 100–200 μ
 cm, the diffusion coefficient D � 0.5
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cm2/s, and Tc � 10 K. The N layer may be made of a low-
temperature superconductor like Al (Tc ∼ 1.3 K, ρ(4K ) �
3–4 μ
 cm) or normal metals like Au and Cu having low
resistivity. In the last case, it is possible to find parameters (dS,
dN, temperature) when the dependence I (q) has the needed
shape with a “shoulder”. The optimal length of the SN bridge,
when nascent vortices are well visible on the dependence
dV/dI (I ) or Lk (I ) is L � 100ξc ∼ 1 μm for the abovemen-
tioned superconductors. Besides of transport measurements
one may use a scanning tunnel microscope to measure locally
the spatial oscillations of the density of states along the SN
bridge which have periods of several dozens of nanometers. In
this case, there is no upper limit for the length of the bridge,
and one can observe these oscillations near bridge ends. In
measurements one may tune the temperature to find the de-
pendence Lk (I ) with a peak at I < Ic [symbol 1 in Fig. 4(b)],
which is a fingerprint of the needed I (q).

VI. CONCLUSION

We theoretically find that in a current-carrying hybrid
superconductor (S)/normal metal (N) bridge there is a

stationary state with spatial oscillations of the modulus of
the superconducting order parameter � along the bridge and
zero vorticity—a nascent vortex state. It is realized at large
currents, when proximity-induced superconductivity in the N
layer is suppressed. To have a nascent vortex state one needs
gradients of superconducting properties (�) both along and
inside of the superconducting system. In the SN bridge this is
provided by the presence of normal or superconducting leads,
a large difference in diffusion coefficients DS,N, and different
critical temperatures of the S and N layers. For a relatively
short SN bridge made of the SN bilayer having a “shoulder”
on its current-velocity dependence, the change of the number
of nascent vortices is accompanied by noticeable oscillations
of differential resistance or kinetic inductance with a change
of the current. Above critical current, stationary nascent vor-
tices transform to moving ordinary vortices.
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