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The size of the Cooper pair ξpair is one of the basic characteristics of a superconductor, but it is not possible
to measure it directly. It might be argued that ξpair can be determined from the value ξslope extracted from
the measurement of the slope of Hc2 close to Tc. Taking into account both pair-conserving and pair-breaking
scattering on impurities within the recently developed theory of Dynes superconductors, we perform an explicit
calculation of ξpair and ξslope. We show that the two quantities agree only in clean superconductors. In particular,
when the pair-breaking disorder approaches the quantum critical point, ξpair stays finite, whereas ξslope diverges.
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I. INTRODUCTION

A superconductor is characterized by three length scales:
the size of the Cooper pairs ξpair, the penetration depth λ

measuring the response of the condensate to a static applied
magnetic field, and the typical distance r0 between the elec-
trons. While the ratio between ξpair and λ is well known to
determine whether the response of the superconductor is local
or nonlocal [1], the role of the ratio between ξpair and r0 has
been studied much less in the literature; see, however, Ref. [2]
and references therein.

In a typical superconductor the strong inequality ξpair � r0

is usually valid. In that case the Cooper pairs strongly overlap,
and the phase fluctuations may be expected to be small. This
is the situation considered within the standard BCS theory. In
the opposite extreme case, ξpair � r0, the Cooper pairs form
well-defined bosons, and the symmetry-breaking transition
towards the superconducting state can be understood within
the framework of the Bose-Einstein condensation (BEC) [3].
Therefore, in order to distinguish between the role played
by the BCS and BEC mechanisms in a given material, it is
important to know the size of the Cooper pairs ξpair.

Unfortunately, ξpair is not directly accessible experimen-
tally. In order to circumvent this complication, in a recent
paper addressing this issue in the high-temperature super-
conductors, it has been suggested that the position in the
BCS-BEC spectrum can be determined from a new length
scale ξslope [4]. Namely, it was suggested to measure the slope
of the upper critical field Bc2 close to the critical temperature
Tc and to determine ξslope from the following equation:

∂Bc2

∂T

∣∣∣∣
T =Tc

= − �0

2πTcξ
2
slope

, (1)

where �0 is the superconducting flux quantum. Since, accord-
ing to standard understanding [3], it is the ratio ξpair/r0 which
determines the position in the BCS-BEC spectrum, one might
expect that ξslope represents an easily accessible experimental
proxy for ξpair.

The goal of this paper is to decide whether ξslope does
indeed provide a reasonable estimate of ξpair, at least in the
BCS-like limit ξpair � r0. To this end, we will make use of the
recently developed theory of Dynes superconductors, which
can be viewed as a minimal extension of the BCS theory
taking into account the presence of disorder [5].

Depending on their action on the Cooper pairs, in a super-
conductor there exist two types of impurities: pair conserving
or pair breaking. Within the theory of Dynes superconduc-
tors [5], pair-conserving scattering on a random scalar field
and pair-breaking scattering on a random magnetic field are
considered. Both types of fields are assumed to be spatially
uncorrelated, and their action on the superconducting state is
treated within the coherent potential approximation [6]. The
central result of the theory is that, provided that the distribu-
tion of magnetic fields is described by a Lorentzian and the
distribution of scalar fields is even but otherwise arbitrary, a
simple analytical formula for the electrons’ Green’s function
can be written down [5].

Previously, we have shown that the matrix Green’s function
Ĝ of a Dynes superconductor has several favorable properties
[7]: It is analytic in the upper half-plane, it has the correct
large-frequency asymptotics, its diagonal spectral functions
are positive definite, and it satisfies the sum rules for the zero-
order moment of the spectral function. Therefore, we believe,
Ĝ can be used as a generic two-lifetime Green’s function of a
superconductor.

The plan of this paper is as follows. In Sec. II we start
by calculating the anomalous spectral function of a Dynes
superconductor. We will also show how to calculate the su-
perconducting order parameter as well as the internal wave
function of the Cooper pair.

In Sec. III, we present a direct calculation of the pair
size ξpair within the Dynes theory. We will study in detail
the dependence of ξpair on the parameters characterizing the
Dynes superconductor: gap size �, pair-conserving scattering
rate �s, pair-breaking scattering rate �, and temperature T . In
particular, we want to decide whether, in the limit when � ap-
proaches the quantum critical point where superconductivity
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disappears, the pair size ξpair diverges (as one might naively
expect since � → 0 in this limit) or not.

In Sec. IV we present the results for the length scale ξslope,
which can be simply obtained from the Ginzburg-Landau
analysis of the Dynes superconductors already presented in
Ref. [8]. Next, we will compare the results for ξpair and ξslope.
We will show that, in the textbook case of a clean BCS-like su-
perconductor, the two quantities do in fact agree as assumed in
Ref. [4], up to a trivial difference in normalization. However,
in the presence of impurities there exist important qualitative
differences between ξpair and ξslope. In particular, we will show
that the difference between ξpair and its proxy is largest in the
presence of strong pair-breaking scattering.

Finally, in Sec. V we present our conclusions.

II. ANOMALOUS PROPAGATOR

We consider a single band of electrons in an isotropic
singlet pairing state. Within the Nambu-Gor’kov formalism,
the Green’s function of the superconductor Ĝ(k, ω) is a 2 × 2
matrix. Therefore it can be written as a sum of components
proportional to the 2 × 2 unit matrix, τ0, and to the Pauli
matrices τi with i = 1, . . . , 3. The diagonal components of
Ĝ(k, ω) describe the propagation of electrons and holes with
momentum k and energy ω, while the off-diagonal compo-
nents correspond to the so-called anomalous propagator.

Within the theory of Dynes superconductors, the anoma-
lous component “12” of the Green’s function of a supercon-
ductor with gap � in the presence of the pair-conserving
scattering rate �s and pair-breaking scattering rate � is given
by the expression [5]

Ĝ12(εk, ω) = �

2�

(
1

� + i�s − εk
+ 1

� + i�s + εk

)
, (2)

where the ω-dependent energy scale � is given by

�(ω) =
√

(ω + i�)2 − �2 ≡ �1 + i�2. (3)

Here, we take that branch of the square root which has the
property that the imaginary part of the root of a complex
number is positive. Denoting the real and imaginary parts of
� as �1 and �2, respectively, this sign convention implies that
�1(ω) is an odd function of ω, while �2(ω) is even.

For future convenience let us note that the Green’s func-
tion depends on the momentum k only via the single-particle
energy εk, and therefore Ĝ12(k, ω) is effectively equal to
Ĝ12(εk, ω).

In what follows we adopt the following notation. We de-
note the gap of a system without pair breaking (i.e., for � = 0)
at temperature T = 0 as �00. Under �(0) we understand
the gap of a system with finite pair breaking at T = 0; we
have shown that �(0)2 = �00(�00 − 2�) [5]. The symbol �

without indices is reserved for the gap of a superconductor
with a general set of parameters � and T .

Similarly, Tc0 denotes the critical temperature in a system
with � = 0, while Tc is the critical temperature for a finite �.
It can be shown that for � close to the maximal admissible
value of �00/2, we have (πTc)2 = 3�00(�00 − 2�)/2.

For the sake of completeness we remind the reader that
pair-conserving scattering �s does not influence the values of
�, �(0), and Tc, in agreement with the Anderson theorem [9].

A. Anomalous spectral function

The spectral function of the anomalous propagator is given
by A12(εk, ω) ≡ −π−1Im[Ĝ12(εk, ω)]. Plugging Eq. (2) into
this definition, after some work one can find the following
expression for the spectral function:

A12(εk, ω) = P[δ�̃ (�1 − εk ) + δ�̃ (�1 + εk )]

+ Qδ�̃ (�1 − εk )δ�̃ (�1 + εk ), (4)

where we have introduced �̃ = �s + �2 and the symbol
δ�̃ (x) = π−1�̃/(x2 + �̃2) denotes a Lorentzian with width �̃.
The ω-dependent weights P and Q are given by

P = ��1

2
(
�2

1 + �2
2

) �s

�̃
, Q = 2π��1�2

�2
1 + �2

2

�2
1 + �̃2

�̃2
.

One finds readily that A12(εk, ω) exhibits the following sym-
metries:

A12(εk,−ω) = −A12(εk, ω), A12(−εk, ω) = A12(εk, ω).

Setting the pair-conserving rate to �s = 0, the spectral
function (4) simplifies to

A12(εk, ω) = �

2Ek
[δ� (ω − Ek ) − δ� (ω + Ek )],

where Ek =
√

ε2
k + �2 is the quasiparticle energy in the su-

perconducting state. As a function of ω, the spectral function
is thus seen to be the difference of two Lorentzians at ±Ek,
which reduce to delta functions in the BCS case where � = 0.

Setting the pair-breaking rate to � = 0, we find that the
anomalous spectral function is nonvanishing only for |ω| >

�. For positive ω we find

A12(εk, ω) = �

2�
[δ�s (� − εk ) + δ�s (� + εk )],

where � = √
ω2 − �2. Note that the Lorentzians are peaked

at the same energies ω = ±Ek as in the BCS case. However,
finite pair-conserving scattering generates also two new (di-
vergent) peaks of A12(εk, ω) at energies ±�.

Numerical results for A12(εk, ω) when both types of scat-
tering are present show that the peaks at ±Ek acquire a finite
width, roughly given by the total scattering rate �tot = � +
�s. Also the peaks at ±� are smeared by a finite value of the
pair-breaking scattering rate �. These results are very similar
to those for the diagonal spectral function A11(εk, ω) obtained
in Ref. [7]. For an explicit example, see Fig. 1. There we
plot A12(εk, ω) only for ω > 0, since it is an odd function of
frequency ω. It is worth pointing out that for momenta at the
Fermi surface, i.e., for εk = 0, the two peaks of A12(εk, ω) at
positive ω merge into a single one at ω ≈ �.

B. Cooper pair wave function

The internal wave function of the Cooper pair ϕ(r) depends
on the relative distance between the electrons forming the
pair. It is given by ϕ(r) ≡ 〈ψ↑(x)ψ↓(x + r)〉, where ψσ (x)
annihilates an electron with spin σ at lattice site x. Fourier
transforming and introducing annihilation operators ckσ for
electrons in Bloch states with momentum k and spin σ , we
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FIG. 1. Anomalous spectral functions A12(k, ω) of the Dynes superconductor for energy εk = 5�. The total scattering rate �tot = � + �s

increases from the left to the right panel. The curves in each panel differ by the strength of the pair-breaking scattering rate �, while �tot is
kept fixed. The color coding is the same in all panels.

thus obtain

ϕ(r) = 1

N
∑

k

bke−ik·r, (5)

where we have introduced the superconducting order parame-
ter bk ≡ 〈ck↑c−k↓〉 and N is the number of lattice sites.

In Ref. [7] it has been noted that, quite generally, the order
parameter bk is related to the anomalous spectral function by a
sum rule. Exploiting the fact that A12(εk, ω) is an odd function
of ω, the sum rule (B4) in Ref. [7] simplifies to the following
expression for the order-parameter function b(εk ):

bk = b(εk ) =
∫ ∞

0
dωA12(εk, ω) tanh

ω

2T
. (6)

Making use of Eqs. (4)–(6), one can in principle calculate the
full wave function of the Cooper pair.

Turning to the order parameter function b(εk ), let us start
by quoting the well-known result for a clean BCS super-
conductor, b(εk ) = �

2Ek
tanh Ek

2T . The function b(εk ) is even,
with a maximum at the Fermi level εk = 0. The value of
b(0) decreases from b(0) = 1/2 at T = 0 to b(0) = �/(4Tc0)
close to the critical temperature. As a function of |εk|, the
order parameter decreases, varying ultimately at large |εk| as
b ≈ �/(2|εk|). The function is appreciable for |εk| � �00 at
T = 0 and for |εk| � 2Tc0 close to the critical temperature.

The function b(εk ) exhibits qualitatively similar behavior
also for finite � and �s. For instance, if �s = 0 and T = 0,
we find b(εk ) = �

πEk
arctan Ek

�
. Thus, with changing parame-

ters, the shape of b(εk ) can be roughly parametrized by two
parameters: the height of the maximum, b(0), and the width
of the maximum in εk space. It is the width of the maximum
which will turn out to be relevant for determination of the pair
size; see Eq. (7) in the next section.

III. SIZE OF THE COOPER PAIR

Following standard procedures [10], once the wave func-
tion ϕ(r) of the Cooper pair is known, we define the size of the
pair ξpair as the mean-square distance between the electrons
forming the pair,

ξ 2
pair ≡

∫
dV r2|ϕ(r)|2∫
dV |ϕ(r)|2 =

∑
k

(
∂bk
∂k

)2∑
k b2

k

.

The second expression follows from the fact that both ϕ(r)
and bk are even.

If we take into account that bk depends on the momentum
k only via the quasiparticle energy εk, we have ∂bk/∂k =
h̄vk∂b/∂εk, where vk is the quasiparticle velocity. Approxi-
mating the velocity of all quasiparticles by the Fermi velocity
vF , we therefore finally find that the size of the Cooper pair is
given by the expression

ξpair = h̄vF

�
,

1

�2
≡

∫ ∞
0 dεk

(
∂b(εk )
∂εk

)2∫ ∞
0 dεkb(εk )2

. (7)

As explained in the Appendix, the integrals entering the
fraction defining the energy scale � in Eq. (7) can be al-
ternatively calculated also on the imaginary axis. This latter
formulation is especially useful for numerical calculations.

In a Dynes superconductor, the energy scale � depends on
the parameters entering Eq. (2), i.e., �, �s, and �, as well as
on the temperature T . Let us start by presenting the results for
ξpair in several special cases.

(a) BCS case without impurities: �s = 0 and � = 0. At
temperature T = 0, taking the integrals in Eq. (7), we find
that the energy scale � = √

8�00 ≈ 4.99Tc0, the latter equal-
ity following from the BCS ratio �00/Tc0 ≈ 1.764. On the
other hand, close to the critical temperature T → Tc0 we sim-
ilarly find � ≈ 6.10Tc0. This means that, as is well known,
the energy scale � changes only mildly between T = 0 and
T = Tc0. Note that, somewhat surprisingly, the Cooper pair is
slightly smaller at higher temperatures. For future considera-
tions it is important to point out that the finite value of � is
rendered by the finite value of � at T = 0, and by the finite
value of temperature at T = Tc.

(b) Pair-breaking rate approaching the quantum critical
point, � → �00/2, but �s = 0. In this case, since both �(0)
and Tc are small, one can write b(εk ) ≈ �

πεk
arctan εk

�
, and tak-

ing the integrals in Eq. (7) leads to � ≈ 3.91� ≈ 1.95�00 ≈
3.45Tc0. Note that, compared with the pure BCS case at T =
0, the energy scale � exhibits only a minor decrease. This is
one of the main results of this paper. We stress that the finite
value of � is a very surprising result, since naively one might
expect that the energy � scales with �(0), which vanishes
at the critical point! The finite value of � is rendered by the
finite value of �, as can be observed, e.g., from the shape of
the function b(εk ).

134518-3



FRANTIŠEK HERMAN AND RICHARD HLUBINA PHYSICAL REVIEW B 108, 134518 (2023)

FIG. 2. Cooper pair size ξpair in units of ξBCS as a function of
the pair-conserving rate �s, parametrized as ξBCS/�. Black symbols,
pair-breaking rate � → �00/2 and temperature T = 0; red symbols,
� = 0 and T = 0; blue symbols, � = 0 and T → Tc.

(c) Finite value of �s in the absence of pair-breaking scatter-
ing, � = 0. This case is considered numerically in Fig. 2. The
pair size is measured in units of ξBCS ≡ h̄vF /(

√
8�00), which

is the pair size of a clean BCS superconductor at T = 0. The
strength of the pair-conserving scattering �s is replaced by
the more commonly used mean free path � ≡ h̄vF /(2�s) [11].
One can observe that, both at T = 0 and at T → Tc, in the
studied range of mean free paths � the pair size is reasonably
described by a Pippard-like formula [12]

1

ξpair
= a

ξBCS
+ b

�
. (8)

The numerical coefficient a is equal to a = 1 for vanishing
temperature T , and a = 1.22 for T close to Tc, in agreement
with the results in case (a). At both temperatures, we find that
b = 0.92.

(d) Finite value of �s and nearly critical pair breaking,
� → �00/2. As shown in Fig. 2, also in this case the pair size
is reasonably described by the Pippard-like formula (8) with
the same coefficient b = 0.92. For the coefficient a we find
a = 0.69 in agreement with the results in case (b).

Having established how the pair size ξpair scales with the
pair-conserving rate �s, in Fig. 3 we show the dependence of

FIG. 3. Cooper pair size ξpair in units of ξBCS at T = 0 as a
function of the pair-breaking rate � in the full admissible range of
�. Top to bottom curves correspond to �s/�00 = 0, 0.1, 1, and 10,
respectively. Note that ξpair is finite for all values of �.

ξpair at temperature T = 0 on the pair-breaking rate � in the
full admissible range of �. Note that ξpair is finite for all values
of �.

Taken together, the results for ξpair obtained in the various
special cases lead us to conclude that the order of magnitude
of the energy scale � is given by � ∼ max(�, T, �, �s). The
crucial point to observe is that, when at least one of the energy
scales �, T , �, and �s is nonvanishing, also the pair size ξpair

is finite.

IV. COMPARISON BETWEEN ξpair AND ξslope

Let us start by observing that, in the vicinity of the critical
temperature Tc [13], the upper critical field is given by the
expression Bc2 = �0/(2πξ 2

GL), where ξGL is the Ginzburg-
Landau coherence length, which is known to diverge as ξGL =
const/(1 − t )1/2, where t = T/Tc [1]. If we plug this expres-
sion into the definition (1), we observe that there exists a
simple relation between ξGL and ξslope, namely,

ξGL = ξslope√
1 − t

. (9)

Since the Ginzburg-Landau coherence length has already been
calculated within the theory of Dynes superconductors [8], the
results for ξslope can be found readily.

For convenience, we will start by discussing the same four
cases, cases (a)–(d), as in the previous section. In order to
keep contact with the literature, in what follows we intro-
duce the usual definition of the Pippard coherence length,
ξ0 ≡ h̄vF /(π�00), and we note that it differs from ξBCS only
by a numerical factor of order 1, ξ0 ≈ 0.9ξBCS.

(a) �s = 0, � = 0. In this clean BCS case we find

ξslope ≈ 0.74ξ0 ≈ 0.66ξBCS, (10)

in agreement with the literature [1]. This should be com-
pared with the actual pair size ξpair = ξBCS at T = 0, or with
ξpair ≈ 0.82ξBCS close to Tc. One observes that, up to a minor
difference in the normalization, the size of the Cooper pair can
in fact be determined from ξslope in the clean BCS case. This
is of course well known.

(b) �s = 0, � → �00/2. In this somewhat academic case
the findings of Ref. [8] imply that

ξslope = π√
12

ξ0√
1 − 2�/�00

≈ 0.82
ξBCS√

1 − 2�/�00
. (11)

This means that, when the quantum critical point at � =
�00/2 is approached, the estimated pair size ξslope diverges.
However, in the previous section we have shown that the
actual pair size ξpair stays finite in this limit. Thus, in the
presence of finite pair-breaking scattering, ξslope cannot be
used as a proxy for ξpair.

(c) �s � �00, � = 0. Making use of the results in Ref. [8]
we find that, in a dirty superconductor in the absence of pair-
breaking processes,

ξslope ≈ 0.85
√

ξ0�, (12)

in agreement with the literature [1]. This result should be
compared with the Pippard-like expression (8) in the dirty
limit, according to which ξpair = �/b. Thus ξslope and ξpair scale
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with different powers of the mean free path �, indicating that
ξslope cannot be a reasonable proxy for ξpair in the dirty limit.

(d) �s � �00, � → �00/2. In a dirty superconductor with
pair-breaking processes which nearly destroy the supercon-
ducting state we find

ξslope =
√

π

6

√
ξ0�

1 − 2�/�00
. (13)

Similarly to case (b), the proxy ξslope diverges upon ap-
proaching the quantum critical point for disappearance of
superconductivity, whereas the actual pair size stays finite.

V. CONCLUSIONS

In conclusion, we have shown that, in a BCS-like
isotropic (s-wave) superconductor described by the Dynes
phenomenology [5], the experimentally accessible length
scale ξslope can serve as a proxy for the actual Cooper pair size
ξpair only provided that impurity scattering can be neglected.

When at least one of the scattering rates �s and � cannot be
neglected, the length scales ξslope and ξpair are different. The
difference between them is most spectacular if the quantum
critical point of the superconductor-to-normal-metal transi-
tion is approached by increasing pair-breaking scattering: The
quantity ξslope diverges in this limit, but the actual pair size
ξpair stays finite.

The finite value of ξpair at the quantum critical point follows
from the following argument. For dimensional reasons, ξpair

is given by ξpair = h̄vF /�, where � is an appropriate energy
scale. Although the energy scales T and � both vanish at the
quantum critical point, the pair-breaking scattering rate � is
necessarily finite, implying a finite value of �.

On the other hand, for superconductors in the dirty limit
� � ξ0 with small pair-breaking scattering, the situation
changes completely: In this case we find ξpair � ξslope. Thus,
even within the simple case of an isotropic BCS-like super-
conductor with impurities, the ratio ξslope/ξpair can take any
value from very small to very large ones.

Reference [4], which motivated our discussion here, deals
primarily with the cuprates. It should be stressed that our
results do not directly apply to these materials, at the very
least because of the d-wave symmetry of their pairing state.

However, we do not see any arguments why, in the case of
cuprates, the relation between ξslope and ξpair should turn into
a simple one.
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APPENDIX: EVALUATION OF ξpair

ON THE MATSUBARA AXIS

When analytically continued to the imaginary axis, Eq. (2)
can be written as

Ĝ12(εk, ωn) = − �(1 + �s/�n)

(�n + �s)2 + ε2
k

,

where we have defined �n =
√

(|ωn| + �)2 + �2 and ωn =
(2n + 1)πT is the fermionic Matsubara frequency.

The key point to observe is that bk can be written in terms
of the Matsubara Green’s function in the imaginary time τ =
0+ approaching 0 from the right, bk = b(εk ) = −Ĝ12(εk, τ =
0+) = −T

∑
n Ĝ12(εk, ωn); see, e.g., Ref. [14]. Noticing fur-

thermore that �n is an even function of ωn, we thus find

b(ε) = 2�T
∞∑

ωn>0

1 + �s/�n

(�n + �s)2 + ε2
.

With this formula for b(ε), the integrals over ε entering Eq. (7)
are elementary, and we find∫ ∞

0
dεb2(ε) = π

2

∞∑
n=0

∞∑
m=0

(2�T )2

�n�m(�n + �m + 2�s)
,

∫ ∞

0
dε(∂b/∂ε)2 = π

∞∑
n=0

∞∑
m=0

(2�T )2

�n�m(�n + �m + 2�s)3
.

These expressions are suitable for a fast numerical evaluation
of the energy scale � and, via Eq. (7), of the Cooper pair size
ξpair.
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