
PHYSICAL REVIEW B 108, 134514 (2023)

Superconductivity in monolayer and few-layer graphene. I. Review of possible pairing
symmetries and basic electronic properties

Emile Pangburn,1 Louis Haurie,1 Adeline Crépieux ,2 Oladunjoye A. Awoga ,3 Annica M. Black-Schaffer ,4

Catherine Pépin,1 and Cristina Bena1

1Institut de Physique Théorique, Université Paris Saclay, CEA CNRS, Orme des Merisiers, 91190 Gif-sur-Yvette Cedex, France
2Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

3Solid State Physics and NanoLund, Lund University, Box 118, S-221 00 Lund, Sweden
4Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden

(Received 19 January 2023; revised 5 April 2023; accepted 27 September 2023; published 25 October 2023)

We review all symmetry-allowed spin-singlet and spin-triplet superconducting order parameters in graphene
(s-wave, d-wave, p-wave, and f -wave) generated by generic on-site, nearest-neighbor, and next-nearest-neighbor
pairing interactions in a tight-binding model. For each pairing channel, we calculate both the band structure
and the dependence of the density of states on energy, chemical potential, and pairing strength. In particular,
we distinguish between nodal superconducting states and fully gapped states and study the dependence of gap
closing points on the chemical potential and the superconducting pairing strength. We further investigate the
difference between mono-, bi-, and trilayer ABC and ABA graphene, including accounting for the effects of
trigonal warping.
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I. INTRODUCTION

The possibility to achieve experimentally isolated
graphene layers [1] has kindled widespread interest in making
graphene superconducting. Despite giving rise to exotic
transport properties [2], the presence of Dirac cones impedes
intrinsic superconductivity in undoped monolayer graphene
due to the unavailability of electrons for pairing. However,
several theoretical studies have shown that when the Fermi
surface is far away from the Dirac point, up to and beyond
the Van Hove singularity (VHS) where the density of states
(DOS) diverges, monolayer graphene can host unconventional
superconducting (SC) states, with symmetries ranging from s
wave and d wave to p wave and f wave [3–15]. Recent studies
have shown that doping graphene to such large levels around
the VHS is possible [16,17]. Another possible direction to
obtain superconductivity in graphene that received a lot of
attention recently is to proximitize graphene, with reports of
observing in spectroscopy experiments both conventional SC
features [18,19] as well as more unconventional ones [20–23].

On the other hand, recent experimental discoveries of
superconductivity in rhombohedral or ABC-stacked trilayer
graphene [24] and in twisted graphene bilayer systems [25]
have received a lot of attention [26–57]. A vast range of
theoretical proposals have already emerged exploring the
mechanisms and symmetries of the SC state in these all-
carbon systems [43], including the SC pairing mechanism
being both phonon-mediated [28,50,58–60] and electron-
interaction mediated [29,34] and various SC spin-singlet and
spin-triplet order parameters, ranging from s-wave to higher
angular momentum symmetries, from exotic chiral p + ip′-
wave to chiral d + id ′-wave symmetries [33,44,47–49,51–
53,61–69]. However, at present, there exists no experimental

definite confirmation of a specific mechanism or pairing sym-
metry, nor an emerging consensus concerning these issues.

While currently achieved critical temperatures in
graphene-based systems are only of the order of a few
Kelvin [25], they host some tantalizing similarities to the
high-temperature cuprate superconductors [70], in particular,
a similar phase diagram with multiple regions reminiscent of
strongly correlated electron physics, such as Mott insulating
[71] and strange metal behavior [72,73]. The importance
of strong electron correlations is to be expected due to the
normal state hosting low-energy flat-energy bands [74,75],
which effectively make even very small electron interactions
dominate the kinetic energy. Taken together, understanding
the underlying physics of carbon-based superconductors may
help unveil the mechanisms at the root of high-temperature SC
and thereby also eventually increase the presently accessible
SC critical temperatures, which is crucial for technological
developments.

In this paper, we focus on revealing all possible symmetry-
allowed SC order parameters [3,10,76] in a tight-binding
model, without focusing on their possible origins nor on
estimating the exact values of the critical temperature, Tc,
that could be reached in realistic systems. We instead use a
priori generic values for the pairing amplitudes and review
the resulting basic electronic properties, such as the band
structure and the density of states. We start for simplicity
with monolayer graphene [2], but the goal of our analysis
is to also access multilayer systems [77,78], with both ABA
and ABC stacking, particularly focusing on the latter, since it
has already been demonstrated to exhibit SC properties [24].
We claim that by comparing our results with experimental
measurements, one can identify the underlying SC order pa-
rameter in a graphitic system.
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Overall, our project consists of three parts: in the present
paper we focus on calculations of the band structure and
density of states, with a particular focus on the gap closing
points in the energy spectrum, as well as on evaluating the
effects of trigonal warping present in bi- and trilayer graphene.
In the upcoming two works we will focus first on the topolog-
ical properties of the SC state in monolayer and multilayer
graphene and on the corresponding edges states [79] and,
secondly, on the impurity-induced [21,80–83] subgap states
appearing in the presence of impurities [84]. We show that the
results of these calculations depend strongly on the underlying
SC order parameter, and thus a comparison with experimental
measurements would allow us to determine the SC symmetry
as well as type of SC pairing.

By using a tight-binding formalism and modeling the SC
pairing in real space as on-site (ON), nearest-neighbor (NN),
and next-nearest-neighbor (NNN) couplings, in both the spin-
singlet and spin-triplet channels, we capture all relevant
symmetry possibilities, as classified by group theory [76].
In particular, the possible SC order parameters can be split
into spin-singlet pairing with s-wave (both a constant gap and
extended s-wave) and d-wave (dxy, dx2−y2 , and d + id ′) spatial
symmetry and into spin-triplet pairings with p-wave (px, py,
and p + ip ′) and f -wave spatial symmetry. We calculate the
full band structure for each pairing possibility and symmetry;
in particular, we focus on the dependence of the energy of
the lowest (positive energy) band as a function of momentum
and distinguish between nodal SC states (dxy, dx2−y2 , px, and
py), which all break the rotational symmetry of the normal
state around both the Dirac points and the Brillouin zone
center, and fully gapped states (usually ON, p + ip ′, d + id ′,
and f ), which, in general, preserve the spatial symmetries
of the normal state. We note that such differences should be
feasible to detect using, e.g., angle-resolved photoemission
spectroscopy, which would help identify the underlying order
parameter.

As expected, the DOS for the nodal states has a linear
dependence of energy at low energies (V-shaped), while the
fully gapped states produce a U-shaped behavior. However,
both exhibit a gap-edge coherence peak in the DOS. We
analyze how the DOS evolves for each state as a function of
both the chemical potential and the SC pairing strength. In
particular, we identify the position of the gap closing points
in the parameter space. We find that the spin-triplet px, py,
and p + ip ′ states are the most peculiar by exhibiting most
of these gap closing points. Among the spin-singlet states,
only the dxy state exhibits gap closing points; for this nodal
state, we denote the point at which the gap edges merge at
zero energy a gap closing point.

Finally, we find that most of the overall physical features
are preserved when moving from monolayer to multilayer
graphene. The notable difference is a doubling (for bilayer)
or tripling (for trilayer) of the number of nodal points, all
appearing in close proximity to each other in the Brillouin
zone. This also leads to an increase in the number of gap
closing points as a function of the chemical potential and
the SC pairing strength. We note that, interestingly enough,
trigonal warping has a significant effect on the number of gap
closing points and can, in fact, also greatly reduce the number
of gap closing points.

FIG. 1. Honeycomb lattice for monolayer graphene with g(1)
i and

g(2)
i corresponding to the NN and NNN vectors. Real-space SC

order parameters ��0,1,2 for ON (green), NN (black), and NNN (red)
couplings are also indicated in the figure and given in vector form.
Honeycomb lattice and its bond vectors are adapted from Ref. [85].

The remainder of this paper is organized as follows. In
Sec. II, we present the tight-binding model for monolayer
graphene and all possible SC order parameters up to NNN
pairing, as well as the resulting low-energy band structure
and DOS. In Sec. III, we present the equivalent model for
multilayer graphene and the corresponding modifications to
the low-energy band structure and the gap closing points in the
DOS. We summarize our results in Sec. IV. Extra information
and more calculational details are presented in the Appen-
dices.

II. SUPERCONDUCTING MONOLAYER GRAPHENE

A. Tight-binding Hamiltonian

Graphene has a honeycomb hexagonal lattice with two
atoms per unit cell, here denoted A and B. We take the three
vectors connecting sites A to the NN sites B to be g(1)

1 =
(0,−1), g(1)

2 = (−
√

3
2 , 1

2 ) and g(1)
3 = (

√
3

2 , 1
2 ), see Fig. 1. For

simplicity, we assume here that the distance between two
carbon atoms, a0, is equal to 1. The standard noninteracting
Hamiltonian of graphene [86] involves only NN hopping and
can be written as

H0 = −t
∑
〈i, j〉σ

[a†
iσ b jσ + b†

jσ aiσ ] − μ
∑

iσ

[a†
iσ aiσ + b†

iσ biσ ],

(1)

where t is the NN hopping parameter between A and B sites
and μ is the chemical potential. The operators a†

iσ (b†
iσ ) create

an electron ON i on sublattice A (B) with spin σ . Unless
otherwise specified, we will consider for simplicity t = 1.
Going to momentum space, we arrive at the well-established
Bloch Hamiltonian

H0(k) =
(

μ h0(k)

h∗
0(k) μ

)
, (2)

h0(k) = −te−iky

(
1 + 2e3iky/2 cos

(√
3

2
kx

))
, (3)
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which for μ = 0 has a vanishing gap at two nonequivalent
Dirac points in the Brillouin zone, K = ( 4π

3
√

3
, 0) and K′ =

(− 4π

3
√

3
, 0). Near these two Dirac points, the electrons obey

a linear dispersion relation leading to the famous Dirac cones
that control the transport properties of undoped graphene.

B. Superconducting term

We next consider an interacting term HI, such that the
total Hamiltonian is H = H0 + HI. Here we consider generic
four-body interactions extending as far as NNN, which we can
write as [85,87]

HI = 1

2

∑
i j,αβδγ

	
αβδγ
i j f †

iα f †
jβ fiδ f jγ , (4)

with

	
αβδγ
i j = 1

2

∑
η

[
Ui jσ

0
αγ σ 0

βδ + Ji jσ
η
αγ σ

η

βδ

]
. (5)

Here σ 0 and ση, η ∈ {x, y, z} are the Pauli matrices acting in
spin space, while j is constrained to be equal to i, i + �δNN or
i + �δNNN, respectively, for ON, NN (�δNN = g(1)

1,2,3), and NNN

interactions (�δNNN = g(2)
1,2,3,4,5,6). For notational simplicity, we

use here the operators fiσ , which correspond to either ai,σ or
bi,σ depending on whether i corresponds to an electron on
an A or B sublattice. By providing the decomposition of the
interaction terms in Eq. (5), we separate already at this level
the effective Coulomb interactions Ui j from the the effective
spin-spin interactions Ji j

To study superconductivity we need to carry out a mean-
field decoupling of HI into the SC Cooper channels. Following
Ref. [85], we introduce the SC order parameters or, equiva-
lently, the mean-field decoupling fields and arrive at

HMF
I =

∑
〈i j〉,η

[
�

η
ji

(
gη

i j

)† + (
�

η
ji

)∗
gη

i j

]

+
∑

〈〈i j〉〉,η

[
�

η
ji

(
gη

i j

)† + �
η
ji

(
gη

i j

)† + (
�

η
ji

)∗
gη

i j

+ (
�

η
ji

)∗
gη

i j

] + 2
∑
i,σ

[
�

η
ii

(
g0

ii

)† + (
�

η
ii

)∗
g0

ii

]
, (6)

where the SC order parameters are given by the self-consistent
equations

�
η
ji = 	

η,+
i j

〈
gη

i j

〉
, (7)

with

gη
i j = 1

2

∑
αβ

f jα[iσ yση]αβ f ′
iβ. (8)

In the above equations, we have an ON pairing determined by
�

η
ii, as well as pairings between NNs 〈i j〉 and NNNs 〈〈i j〉〉,

both denoted by �
η
ji. As spin-orbit coupling is negligible in

graphene [88] (carbon atoms are light with an atomic number
of Z = 6), we can separate the treatment of spin-singlet SC,
where η = 0, so we have the interactions 	0,+

i j = Ui j − 3Ji j ,

from spin-triplet SC, where η = x, y, z and 	
η,+
i j = Ui j + Ji j .

We use here the notation 	
η,+
i j for interactions acting in the

TABLE I. Spin-singlet SC symmetries (η = 0) for ON, NN, and
NNN pairing in the form of the �� order parameter (up to an overall
amplitude �0) and their spatial symmetries in reciprocal space.

Range �� Symmetry

ON 1 sON

NN (1,1,1)T√
3

sext

NN (2,−1,−1)T√
6

dx2−y2

NN (0,−1,1)T√
2

dxy

NNN (1,1,1,1,1,1)T√
6

sext

NNN (−1,2,−1,−1,2,−1)T√
12

dx2−y2

NNN (−1,0,1,−1,0,1)T

2 dxy

SC channels, but a similar treatment can be done for 	
η,−
i j to

capture putative mean-field magnetic or charge-ordered states.
As we will shortly see, this model captures all reasonable
pairing symmetries, including phonon-mediated supercon-
ductivity as well as states very reminiscent of the cuprate
high-temperature superconductors [87]. More specifically, an
ON coupling necessarily implies spin-singlet superconductiv-
ity and i = j, such that �η

ji = ��ON is a one-component vector.
For NN pairing, we can have both spin-singlet η = 0 and
spin-triplet η = x, y, z superconductivity. Here �

η
ji has three

nonzero components, one on each NN bond, and can thus be
written compactly as a three-component vector ��1, see Fig. 1.
Similarly, for NNN we create a 6-component vector ��2, see
Fig. 1, but where only three components are technically in-
dependent. Because the spin-orbit coupling is negligible in
graphene, HMF does not break spin rotation symmetry. Conse-
quently, the three spin-triplet order parameters are degenerate.
Therefore, when it comes to the basic electronic properties,
such as the band structure and DOS, it is enough to focus on
only one triplet channel. In what follows, we will generally
use the η = x channel.

If we know the interaction parameters U and J we could
use Eq. (7) to calculate self-consistently all SC order parame-
ters ��. But we very rarely do, and currently we have very little
notion of these interaction parameters in SC graphene sys-
tems. Instead, we concentrate in this paper on the symmetries
and overall properties of all relevant SC states. As such, we
assume a given overall amplitude �0, for either ��ON, ��1, or
��2. Moreover, we know that at the critical temperature, the SC
order parameter is forced to belong to one of the irreducible
representations of the crystal symmetry group [76], in this
case the hexagonal lattice group D6h. This means we can
readily quantify all allowed symmetries of the SC state by
using the irreducible representations of the crystal symmetry
group. Starting with ON pairing, we further can have only
spin-singlet s-wave symmetry as the pairing is fully localized
in real space, and hence uniform in momentum space. This
state belongs to the trivial irreducible representation. For NN
and NNN pairing, the possibilities include both spin-singlet
and spin-triplet states, with the lowest spatial harmonics go-
ing up to f -wave symmetry (higher harmonics induce more
nodes and will thus not be energetically favored in general).
In Table I, we summarize the allowed �� and their symmetries
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TABLE II. Spin-triplet SC symmetries (η ∈ {x, y, z}) for ON,
NN, and NNN pairing in the form of the �� order parameter (up to
an overall amplitude �0) and their spatial symmetries in reciprocal
space.

Range �� Symmetry

NN (2,−1,−1)T√
6

py

NN (0,−1,1)T√
2

px

NNN (1,−1,1,−1,1,−1)T√
6

fx(x2−3y2 )

NNN (−1,−2,−1,1,2,1)T√
12

px

NNN (−1,0,1,1,0,−1)T

2 py

for ON, NN, and NNN pairing for spin-singlet pairing (η = 0)
and in Table II for spin-triplet pairing (η ∈ {x, y, z}) [10,85].
We note that the extracted symmetries are those obtained
for the intraband pairing in reciprocal space and around the
Brillouin zone center, see further Sec. II D.

C. Bogoliubov–de-Gennes Hamiltonian

To proceed, we rewrite the total Hamiltonian H = H0 +
HMF

I in momentum space in the compact Bogoliubov–de-
Gennes (BdG) matrix form. Writing the momentum-space
Hamiltonian in a matrix form will later allow us to diago-
nalize H and obtain the band structure. For this purpose, we
introduce the spinor

ψk = {ak↑, bk↑, ak↓, bk↓, a†
−k↑, b†

−k↑, a†
−k↓, b†

−k↓}T , (9)

with akσ and bkσ the usual annihilation operators, but now k
belonging to the first Brillouin zone. With this notation, we
express the total Hamiltonian:

H =
∑

k

ψ
†
kHBdG(k)ψk. (10)

Note that the dimension of the matrix associated to the BdG
Hamiltonian is doubled compared to the standard BdG Hamil-
tonian, since we take into account separately the up and down
spins, as well as the electrons and holes.

The normal-state terms within the BdG form can be written
as (see Appendix A for details)

H0 =
∑
k,σ

h0(k)(a†
kσ bkσ − b−k,σ a†

−k,σ )

+
∑
k,σ

h∗
0(k)(b†

kσ akσ − a−k,σ b†
−k,σ )

− μ
∑
kσ

(a†
k,σ ak,σ − a−k,σ a†

−k,σ + b†
k,σ bk,σ

− b−k,σ b†
−k,σ ). (11)

We next write all the SC terms within the BdG form. The
details of the calculations are given in Appendix A. Writing
out everything explicitly for NN pairing, we have in real space
for spin-singlet pairing (η = 0):

H0
NN =

∑
〈i j〉

�
η=0
i j (a†

i↑b†
j↓ − a†

i↓b†
j↑) + H.c., (12)

TABLE III. Form factors h0
NN(k) and h0

NNN(k) for each spin-
singlet SC symmetry (η = 0) for NN and NNN pairing. Here
h̃0(k) = h0 (k)

t .

Symmetry Range Form factor

sext NN h0,sext
NN (k) = �0√

3
h̃0(k)

dx2−y2 NN h
0,dx2−y2

NN (k) = 2�0√
6

e−iky
[
1 − e

3i
2 ky cos

(√
3

2 kx

)]
dxy NN h

0,dxy
NN (k) = �0

√
2i e

i
2 ky sin

(√
3

2 kx

)
sext NNN h0,sext

NNN (k) = 2�0√
6

[
cos(

√
3kx )

+ 2 cos
(√

3
2 kx

)
cos

(
3
2 ky

)]
dx2−y2 NNN h

0,dx2−y2

NNN (k) = 4�0√
12

[
cos(

√
3kx )

− cos
(√

3
2 kx

)
cos

(
3
2 ky

)]
dxy NNN h

0,dxy
NNN (k) = −2�0 sin

(
3
2 ky

)
sin

(√
3

2 kx

)

and for spin-triplet pairing (η = x, y, z) we have

Hx
NN =

∑
〈i, j〉

�
η=x
i j (a†

i↑b†
j↑ − a†

i↓b†
j↓) + H.c., (13)

Hy
NN =

∑
〈i, j〉

�
η=y
i j (a†

i↑b†
j↑ + a†

i↓b†
j↓) + H.c., (14)

Hz
NN =

∑
〈i, j〉

�
η=z
i j (a†

i↑b†
j↓ + a†

i↓b†
j↑) + H.c. (15)

By Fourier transforming these into reciprocal space, we obtain

H0
NN =

∑
k

h0
NN(k)(a†

k↑b†
−k↓ − a†

k↓b†
−k↑) + H.c. (16)

and

Hx
NN =

∑
k

hx
NN(k)(a†

k↑b†
−k↑ − a†

k↓b†
−k↓) + H.c., (17)

Hy
NN = i

∑
k

hy
NN(k)(a†

k↑b†
−k↑ + a†

k,↓b†
−k↓) + H.c., (18)

Hz
NN =

∑
k

hz
NN(k)(a†

k↑b†
−k↓ + a†

k↓b†
−k↑) + H.c. (19)

Here hη
NN(k) are the overall form factors whose expressions

depend on both the spin channel and the spatial symmetry of
the order parameter. Their general expression is

hη
NN(k) = �

η,d=1
NN e−iky + �

η,d=2
NN e

i
2 ky−

√
3i

2 kx

+ �
η,d=3
NN e

i
2 ky+

√
3i

2 kx , (20)

where d = 1, 2, 3 correspond to the three NN bonds, follow-
ing the convention of Fig. 1 and Tables I and II. We summarize
hη

NN(k) for each symmetry in Table III for spin-singlet pairing
and in Table IV for spin-triplet pairing. In these tables, we
also present the corresponding results for hη

NNN(k) (see Ap-
pendix A for details).

For completeness, we write out the full BdG Hamiltonian
in each spin channel in their matrix form. For the spin-singlet
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TABLE IV. Form factors hη

NN(k) and hη

NNN(k) for each spin-
triplet SC symmetry (η = x, y, z) for NN and NNN pairing.

Symmetry Range Form factor

py NN h
η,py
NN (k) = 2�0√

6
e−iky

[
1 − e

3i
2 ky cos

(√
3

2 kx

)]
px NN hη,px

NN (k) = i
√

2�0e
i
2 ky sin

(√
3

2 kx

)
fx(x2−3y2 ) NNN h

η, fx(x2−3y2 )
NNN (k) = 2i�0√

6

[
sin(

√
3kx )

−2 sin
(√

3
2 kx

)
cos

(
3
2 ky

)]
px NNN hη,px

NNN(k) = 4i�0√
12

[
cos(

√
3kx )

+ cos
(

3
2 ky

)]
sin

(√
3

2 kx

]
py NNN h

η,py
NNN(k) = −2i�0 sin

(
3
2 ky

)
cos

(√
3

2 kx

)

pairing (η = 0), we obtain⎛
⎜⎜⎜⎜⎝

H0(k) 02×2 02×2 −h0
�(k)

02×2 H0(k) h0
�(k) 02×2

02×2
(
h0

�(k)
)† −H0(k) 02×2

−(
h0

�(k)
)†

02×2 02×2 −H0(k)

⎞
⎟⎟⎟⎟⎠, (21)

and for η = x spin-triplet pairing, we have⎛
⎜⎜⎜⎜⎝

H0(k) 02×2 −hx
�(k) 02×2

02×2 H0(k) 02×2 hx
�(k)

−(
hx

�

)†
02×2 −H0(k) 02×2

02×2
(
hx

�

)†
02×2 −H0(k)

⎞
⎟⎟⎟⎟⎠, (22)

where 02×2 is a 2 × 2 null matrix, H0(k) is the normal state
Hamiltonian matrix given in Eq. (2), and

h0
�k) = 1

2

(
�ON + h0

NNN(−k) h0
NN(k)

h0
NN(−k) �ON + h0

NNN(−k)

)
,

hx
�(k) = 1

2

(
hx

NNN(−k) −hx
NN(k)

hx
NN(−k) hx

NNN(−k)

)

are the corresponding SC order parameter matrices. The SC
order parameter matrices for the η = y, z spin-triplet pair-
ing are given in Appendix B. Diagonalizing the matrices in
Eqs. (21) and (22) yields both the full energy spectrum and
the eigenstates of the various SC states.

D. Intraband pairing symmetries

While the matrix forms in Eqs. (21) and (22) allow for
straightforward numerical diagonalization to easily find, e.g.,
the energy spectrum, it is still useful to first analyze the order
parameter in more detail. For this purpose, it is beneficial to
not work in the sublattice basis with the operators akσ , bkσ ,
but to instead work in the band basis with the operators
ckσ , dkσ for the two bands, where the normal-state Hamilto-
nian H0 is diagonal, with the band energies εc(k), εd (k) as
diagonal entries. In particular, in the band basis we know that
εc(k) = 0 (or εd (k) = 0, depending on the value of μ) on the
Fermi surface. In graphene, the Fermi surface forms circles
around the Dirac points at K and K′ with increasing radius as
the chemical potential increases from 0. At |μ| = 1, these two

Dirac Fermi surfaces meet and instead form a separatrix line
joining the M points in the Brillouin zone. Finally, for |μ| > 1,
the Fermi surface becomes centered around the Brillouin zone
center 	.

Setting αk = (akσ , bkσ )T and χk = (ckσ , dkσ )T , we find
that the basis change can be expressed as

αk = Û (k)χk, (23)

with the unitary matrix

Û (k) = 1√
2

(
−e−iϕk e−iϕk

1 1

)
, (24)

where ϕk = arg(h0(k)). Using Û (k) to transform also theSC
terms from the sublattice basis of the previous subsections into
the band basis, we arrive for spin-singlet ON pairing at

H0
ON = �0

∑
k

(c†
k↑c†

−k↓ + d†
k↓d†

−k↑) + H.c., (25)

while for spin-singlet NN pairing we get

H0
NN = �0

∑
k,d

�d
[
cos

(
k · g(1)

d − ϕk
)
(d†

k↓d†
−k↑ − c†

k↑c†
−k↓)

+ i sin
(
k · g(1)

d − ϕk
)
(c†

k↑d†
−k↓ − d†

k↑c†
−k↓)

] + H.c.,
(26)

and for spin-triplet NN pairing with η = z:

Hz
NN = �0

∑
k,d

�d
[
i sin

(
k · g(1)

d − ϕk
)
(d†

k↓d†
−k↑ − c†

k↑c†
−k↓)

+ cos
(
k · g(1)

d − ϕk
)
(c†

k↑d†
−k↓ − d†

k↑c†
−k↓)

] + H.c.
(27)

Here d = 1, 2, 3 mark the three NN bonds, following
the convention of Fig. 1, and �d is the dth com-
ponent of the NN �� bond order parameter, given in
Table I.

From Eqs. (26) and (27), we see that in the band basis
superconductivity consists of both intraband pairing through
the terms c†

k↑c†
−k↓ and d†

k↑d†
−k↓ for bands c and d , respec-

tively, and interband pairing though terms such as c†
k↑d†

−k↓.
Generally, the existence of both intra- and interband pairing
means that the energy spectrum of the BdG Hamiltonian
cannot simply be expressed as E = ±

√
ε2 + |�|2, but in-

stead both the intra- and interband pairing terms contribute
to the energy E . Here we are not concerned with deriving
the exact expressions, but instead note that for a qualitative
understanding it has in the past often been enough to only
consider the intraband pairing and ignore the interband term
[3,10,11]. This can be understood by noticing that only one of
the bands crosses zero energy (except at the Dirac point), and
therefore contributes to the formation of the Fermi surface.
Thus, pairing within that band is the most important contri-
bution, while pairing in the other band and in-between bands
are often of less importance. It is also the symmetry of the
intraband order parameters in the Brillouin zone that we use
for naming the different possible symmetries as s, d, p, and f
waves in Tables I–IV.

Based on the above arguments, we analyze the intraband
SC order parameters for both NN and NNN pairing. In Fig. 2,
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(a) (b) (c) (d)

(e) (f) (g)

FIG. 2. Intraband SC order parameter form factors for NN (sext-, d-, p-wave) pairing. Top (bottom) row corresponds to spin-singlet (spin-
triplet) pairing. Cyan hexagon denotes the first Brillouin zone, while yellow (black) circles centered around the K,K′ points (	 point) are the
normal-state Fermi surfaces for μ = 0.4t, (μ = 1.2t ). White regions correspond to nodes, or zeros, of the SC order parameter.

we plot the intraband SC order parameter symmetry for NN
pairing or, equivalently, the form factors in front of the in-
traband terms in Eqs. (26) and (27). We also mark the Fermi
surface for both μ = 0.4 (yellow lines) and μ = 1.2 (black
lines). We first note that the extended s wave follows the
symmetry of the normal state, with nodal points only at the
Dirac points. Assuming a simplified energy dispersion, E =
±

√
ε2 + |�|2, with � only given by the intraband component,

we would then expect a fully gapped energy spectrum for
any finite μ. Moving on to the dx2−y2 - and dxy-wave order
parameters, we note that, for large chemical potential |μ| > 1,
when the Fermi surface is centered around 	 (black lines), the
SC state has d-wave symmetry, and we thus expect four nodal
points in the band structure, one at each of the intersections
between the Fermi surface and the zero-gap lines (white in
Fig. 2). In contrast, around K,K′, the dx2−y2 -wave order has
an effective py-wave symmetry, while the dxy-wave order has
an effective px-wave symmetry. As such, for |μ| < 1, when
the Fermi surface is centered around K,K′ (yellow lines), one
expects two nodal points per Dirac cone. Here we note that the
two Dirac cones have opposite signs on their effective p-wave
order, such that the spin-singlet state still has an overall even
spatial symmetry, as required by Fermi-Dirac statistics. We
can also combine the two d-wave order parameters into a
chiral combination dx2−y2+ixy = d + id ′, resulting in a fully
gapped order parameter with restored rotational symmetry
as seen in Fig. 2. It is only at the 	,K,K′ points that the
order parameter is equal to zero. This full gap is the reason
why the chiral d + id ′-wave combination is often found to
be most stable among all the d-wave states [3,4,7,8,12,89,90].
Moving on to the NN spin-triplet order parameters, we find
that the py- and px-wave order parameters have a p-wave
symmetry both around the 	 point and the K,K′ Dirac points.
This results in two nodal points per Fermi surface when it is
centered around the Dirac points and also two nodal points

for a Fermi surface centered around 	. We also note that the
p-wave states host additional nodal points, in particular, at
the M points. This is a consequence of adopting a p-wave
symmetry to the sixfold symmetric honeycomb lattice with its
hexagonal first Brillouin zone. Finally, the chiral combination
px + ipy = p + ip ′ [13] is again fully gapped, except at the
	,K,K′, as well as at the M points where both individual
p-wave components have nodes. Thus, we expect the p + ip ′
SC to be fully gapped except when the chemical potential
|μ| = 0, 1, 3.

We also perform a similar analysis for NNN pairing, for
which we in fact find that the interband pairing terms are
identically zero. Thus, the energy E in the SC state is ex-
actly given by E = ±

√
ε2 + |�|2, with ε the energy of the

normal state and � the intraband order parameter. This can be
understood by noting that the NNN pairing couples electrons
on the same sublattice and thus there is no sublattice mixing
or any interband pairing terms. In Fig. 3, we plot the result-
ing NNN intraband order parameter symmetries. Overall, we
find very similar results to the NN pairing with only a few
exceptions: The extended s-wave state has a peculiar nodal
structure centered around 	. However, unless μ is fine-tuned
such that the Fermi surface exactly hits this node, the SC
state will be fully gapped. Also, for NNN pairing, an f -wave
symmetry is allowed. This order parameter displays the re-
quired fx = fx(x2−3y2 )-wave symmetry, with a total of six nodal
points for a Fermi surface centered around 	 (black line), but
is notably fully gapped on Fermi surfaces centered around
the K,K′ Dirac points. Technically, there also exists another,
fy = fy(y2−3x2 )-wave, state that has nodal lines going through
the K,K′ Dirac points, such that the energy for |μ| < 1 has
six nodes per Dirac cone. However, due to its high number of
nodes per Dirac cone, this state will be much less energetically
favorable at all doping levels |μ| < 1 and we do not consider
it in this paper.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Intraband SC order parameter form factors for NNN (sext-, d-, p-, fx-wave) pairing. Top (bottom) row corresponds to spin-singlet
(spin-triplet) pairing. Cyan hexagon denotes the first Brillouin zone, while yellow (black) circles centered around the K,K′ points (	 point)
are the normal-state Fermi surfaces for μ = 0.4, (μ = 1.2). White region corresponds to the nodes, or zeros, of the SC order parameter.

E. Lowest energy bands

Having analyzed the symmetry of the intraband order pa-
rameter in detail in the previous subsection, we now turn to the
complete solution, attained by diagonalizing the BdG Hamil-
tonian in Eqs. (21) and (22) for spin-singlet and spin-triplet
pairing, respectively. In this subsection, we are interested in
the low-energy band structure, which we analyze by plotting
the lowest energy band (E > 0) as a function of momentum.
These results directly tell us about both the existence of nodal
points in the energy spectrum and the overall symmetry of the
SC state. We focus primarily on ON s-wave, NN s-, d-, and
p-wave, and NNN f -wave SC states. Due to the similarities
between the remaining NNN order parameters and the corre-
sponding NN ones, we expect to cover all relevant behavior
with this selection.

In Fig. 4, we plot the lowest energy band as a function of
kx and ky for μ = 0.4. This value corresponds to a normal-
state Fermi surface that is a small circle centered around the
Dirac points K,K′, see Fig. 2. As expected, and consistent
with the intuitive analysis in the previous subsection, we find
that the ON s-wave and NN sext-wave SC states preserve
the rotational symmetry in reciprocal space around the K,K′
Dirac points. Also, these SC states give rise to a fully gapped
band structure, even though the band gap is small for sext

for �0 = 0.4 and μ = 0.4 as shown in Fig. 4(b). This small
gap at low μ comes from the fact that sext has the same
symmetry as the normal state On the other hand, we note
that the dxy-, dx2−y2 -, px-, and py-wave SC states all break
the rotation symmetry around the K,K′ points. In particular,
we observe a nodal energy spectrum with two nodal points
per Fermi surface arranged in agreement with the nodal struc-
ture of the intraband order parameters in Fig. 2. These nodal
points can be viewed as the split of the original normal-state
Dirac point into two points in the SC state. Thus the dxy-,
dx2−y2 -, px-, and py-wave SC states all correspond to nodal
superconductors.

By continuing with analyzing the chiral d + id ′- and p +
ip ′-wave SC states, we find fully gapped energy spectra and
a restored rotational symmetry around the K,K′ points (up to
the same threefold symmetry as for the s-wave state). We note
that the convention to generate these states is to consider both
a dxy and dx2−y2 amplitude of �0 for the d + id ′ state, and
similarly for the p + ip ′ state. This convention corresponds
to an effective coupling

√
2 stronger for the chiral states than

for the nodal ones. Finally, for the NNN fx(x2−3y2 )-wave state,
we find a fully gapped state with preserved rotation symmetry
around the K,K′ points. Again, all these results are consistent
with the intraband order parameter picture discussed in Fig. 2.

In Fig. 4, we focus on Fermi surfaces centered around the
K,K′ points. For completeness, we report in Appendix C
the equivalent results for μ = 1, where the Fermi level sits
at the VHS with the Fermi surface forming a separatrix line
connecting the M points. Similarly, we report the results for
NNN pairing in Appendix D, with the conclusion that NN and
NNN pairing host very similar low-energy band structures.

F. Density of states and gap closing points

Having studied the lowest energy bands, we next turn to
evaluating the DOS at low energies. For this purpose, we
define the Green’s function of the Bloch Hamiltonian HBdG(q)
as

G(q, E ) = (E − HBdG(q) + i0+)−1. (28)

We then integrate G(q, E ) over the first Brillouin zone to get
the DOS ρ0(E ) [91],

ρ0(E ) = − 1

π
Trel

[
Im

∫
BZ

dqG(q, E )

]
, (29)

where the trace Trel is performed over the electron modes only
(first half of the diagonal of the Green’s function matrix).
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FIG. 4. Lowest energy band for μ = 0.4, �0 = 0.4 and for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -, px-, py-, p + ip ′-, d + id ′-
wave, as well as NNN fx(x2−3y2 )-wave symmetries. Dark blue corresponds to zero energy. The inset of (b) presents the energy dispersion along
a line-cut across the K point, as illustrated by the black dashed line. It shows that sext-wave pairing is fully gapped.

We expect the DOS for the nodal states to have a linear
dependence of energy at low energies (V-shaped), while the
fully gapped states produce U-shaped behavior. Indeed, this
difference is visible in Fig. 5, where we plot the DOS as a
function of energy for the ON s-wave and the NN dxy-wave
SC states. The s-wave state displays a full gap giving rise
to an overall U-type DOS profile. Note that the position of
the coherence peaks corresponds exactly to the value of the
SC pairing term �0 = 0.4. The nodal d-wave state, on the
other hand, exhibits no hard gap, but a V-type DOS centered
around E = 0, which is due to the existence of nodal quasi-
particles. Note that the DOS also exhibits coherence peaks,
but at values slightly smaller than the coupling term �0 = 0.4,
indicating that the values of the SC coupling and the energy
of the coherence peaks, while proportional, are not always
exactly the same, as it can also be seen in Fig. 6. Moreover,
we note an additional near V-type feature at higher ener-
gies, centered around E = μ = 0.4. This corresponds to the
normal-state Dirac point appearing at finite energy due to the
finite μ [21].

In Fig. 6, we plot the DOS as a function of the overall
strength, or amplitude, of the SC order parameter �0 for the
same chemical potential μ = 0.4 as in Fig. 4. The overall
particle-hole asymmetry, especially strong at higher energies,
is due to a pronounced particle-hole asymmetry in the nor-
mal state for finite μ. Focusing primarily on low energies,
as relevant for superconductivity, we note that for the ON
s-wave state, the energy gap is roughly linear in �0. We
observe a similar linear dependence for the gap edges (or
coherence peaks) as a function of �0 for the NN sext-, dxy-,
dx2−y2 -, px-, and py-wave SC states. Note, however, that for
the dxy-, dx2−y2 -, px-, and py-wave states, the intensity is not
zero inside the gap, which is consistent with the observations
in the previous sections that all these states exhibit nodes in
the band structure.

In Fig. 6, we also note that the overall size of the gap or,
equivalently, half the distance between the coherence peaks
for the nodal states, is no longer equal to the overall amplitude
of the SC order parameter �0, but generally lower, except
for the ON s-wave state and the NNN f -wave state. The
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FIG. 5. DOS as a function of energy for ON s-wave (a) and NN
dxy-wave (b) SC states at �0 = 0.4 and μ = 0.4 illustrating the dif-
ference between the U-shaped and V-shaped behavior, corresponding
to a full gap and a nodal spectrum, respectively.

two exceptions have the normal-state Fermi surface being
gapped out by an SC order parameter constant along the Fermi
surface, which generates a gap equal to �0. For all the other
states, the low-energy spectrum is strongly modified by having
the SC order parameter vary along the normal-state Fermi
surface. Still, even in these cases we can identify a gap that
is initially linearly increasing with �0, albeit with a smaller
than 1 coefficient. At larger �0, this linearity breaks down
for some of the symmetries. This is not surprising, as �0 ∼ 1
corresponds to the energy scale of the VHS point, μ = 1,
which marks the energy where the normal-state band structure
dramatically changes. For example, in Fig. 6 we noticed a gap
closing point for the px, py and p + ip ′ at �0 ∼ 1.

We also plot in Fig. 7 the DOS as a function of chemical
potential μ, while instead keeping the SC amplitude �0 fixed.
Normally, changing the chemical potential should not affect
the DOS much as it only alters the underlying normal-state
band structure. Indeed, this is what we see for the ON s-wave
which exhibits a constant gap for a large range of μ. For
some of the other states, however, the intraband SC order
parameters exhibit nodes at the K,K′ Dirac points, such that
when μ = 0, both the SC order parameter and the normal state
energy is zero at the Dirac points. This leads to a gapless
system at μ = 0 and to a linear dependence of the gap for
small μ.

Around μ = 1, we observe further substantial changes in
the gap, or, equivalently, in the distance between the gap co-
herence peaks, for several SC states ( fx, px, py, dxy, p + ip′).
These changes consist primarily in the existence of points in
parameter space where the energy gap is closing. To track
these points, we plot in Fig. 8 the energy gap in the band

structure for the chiral p + ip ′-wave state as a function of both
the chemical potential μ and the SC amplitude �0. We note
that a continuous gap closing line indeed occurs connecting
μ = 1 with �0 ∼ 1.2. These gap closing points are important
for experimentally distinguishing between different SC states.
They are also important from the point of view of topology,
as we will discuss in detail in the next part of this paper. We
can trace the gap closing points in all the p-wave states to
the existence of nodes in the intraband SC order parameter
at the M points in the Brillouin zone, as depicted in Fig. 2.
This leads to both a vanishing band energy and intraband order
parameter at μ ≈ 1. To verify this behavior, we plot in Fig. 9
the lowest energy band for the chiral p + ip ′-wave state at
three different values of μ. Keeping �0 = 0.4, we find that the
gap closing occurs at the M points of the Brillouin zone and
at μ ≈ 0.9, corresponding to the middle panel of Fig. 9. The
difference from the intuitively expected value of μ ≈ 1 comes
from interband pairing due to the sizable �0. For μ below this
gap closing at M, the topology of the low-energy contours
corresponds to having an origin at the K,K′ Dirac points,
while for larger μ′s the contours are centered around the 	

point. We also note that the dxy-wave intraband order parame-
ter has nodes at two M points, which generates the gap closing
point at μ = 1 in Fig. 7. However, the dx2−y2 -wave state, and
consequently the chiral d + id ′-wave state, host no nodes as
a function of μ. This different behavior offers a clear way to
distinguish between all p- and d-wave states. Overall these
results shows that, even if the total energy is also dependent
on the interband pairing, many features can be understood
simply by reasoning, using the intraband order parameter and
its nodes.

To provide a comprehensive treatment, we also report the
DOS for the NNN pairing in Appendix E. Here we find that
sext-wave and d-wave states have exactly the same type of
behavior as their NN counterparts, while the NNN p-wave
states only show a gap closing as a function of μ, at μ = 1,
but not as a function of the SC pairing �0. The difference can
be explained by the influence of the interband pairing term for
NN pairing but not for NNN pairing. As such, the gap closing
stays at μ = 1 for all values of �0.

III. SUPERCONDUCTING MULTILAYER GRAPHENE

We next turn to the treatment of SC multilayer graphene.
Here the 2D graphene sheets are stacked together with inter-
layer coupling primarily through van der Waals interaction.
The naive configuration of placing two layers directly on
top of each other is not energetically stable. The most stable
form of stacking is instead known as AB, or Bernal stack-
ing. Figure 10(b) illustrates this stacking: the two layers are
stacked with a relative relative translation of a0x̂. For bilayer
graphene, there is only this one choice. For trilayer graphene,
we have two choices, we can either perform a a0x̂ translation
between the first and second layers, then also a a0x̂ translation
between the second and third layers, giving rise to a rhombo-
hedral trilayer system, or ABC stacking, see Fig. 10(d). We
can also perform a translation of −a0x̂ for the third layer,
which yields a Bernal trilayer system, or ABA stacking, see
Fig. 10(c). ABA is the energetically most stable stacking,
while ABC is technically only metastable. Still, ABC-stacked
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FIG. 6. DOS as a function of SC amplitude �0 for μ = 0.4 for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -, px-, py-, p + ip ′-,
d + id ′-wave, as well as NNN fx(x2−3y2 )-wave symmetries. Dark blue represents zero DOS.

multilayer graphene has been constructed using layer-by-layer
deposition in multiple experiments [92,93]. ABC stacking has
also been produced by imposing mechanical constraints on
Bernal graphite [94].

To be able to model the normal state in multilayer
graphene, we need to introduce interlayer hopping terms. We
denote the two closest hoppings between sites A and B in
neighboring layers by γ1 and γ3. The parameter γ1 is the
direct hopping term between planes, coupling sites A and B
that are spatially on top of each other. Since this is a purely
vertical hopping, it appears as a constant in the tight-binding
Hamiltonian. In contrast, γ3 parametrizes the nondirect inter-
layer hopping by coupling sites A and B that are not spatially
on top of each other. Due to its finite intralayer reach, it
has a k-space modulation and acts as a trigonal deformation
term. The values of these parameters have previously been
determined, for example, in Ref. [96] to be γ1 = 0.38 eV and
γ3 = 0.38 eV.

We assume that the interlayer SC coupling is negligible
compared to the intralayer pairing terms. Several arguments
can be brought to support this assumption, for example,
the interaction between the graphene layers are van der
Waals forces, and therefore much smaller than the intralayer

couplings. Moreover, the in-plane interactions in each
graphene layer, given by Eqs. (4) and (5), have been shown to
be strong enough to make graphene almost strongly correlated
[3,97]. Still, the normal state band structure is strongly
influenced at the K points by γ1 and γ3, the interaction
between the graphene layers, and an interlayer pairing has
also been shown to be possible in multilayer graphene [64].
However, with the SC state only larger at higher doping
levels, away from the K points, we in the following choose to
limit ourselves to intralayer SC pairing terms.

To write the BdG Hamiltonian for SC bilayer and trilayer
graphene, we use α ∈ {1, 2, 3} to describe the bottom (1),
middle (2), or top (3) layers, respectively, and we write

cα
k = {

aα
k↑, bα

k↑, aα
k↓, bα

k↓
}
. (30)

Thus, the bases to use for bilayer and trilayer graphene are,
respectively,

�
bilayer
k = {

c1
k, c2

k, c1†
−k, c2†

−k

}T
and (31)

�
trilayer
k = {

c1
k, c2

k, c3
k, c1†

−k, c2†
−k, c3†

−k

}T
. (32)

Below we treat each case separately.
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FIG. 7. DOS as a function of chemical potential μ for SC amplitude �0 = 0.4 for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -, px-,
py-, p + ip ′-, d + id ′-wave, as well as NNN fx(x2−3y2 )-wave symmetries. Dark blue represents zero DOS.

A. Bilayer Hamiltonian

The BdG Hamiltonian for AB bilayer graphene can be
expressed as

HAB =
(

HAB
0 HSC

H†
SC −HAB

0

)
, (33)

FIG. 8. DOS as a function of chemical potential μ and SC am-
plitude �0 for the NN p + ip ′-wave state. Dark blue represents zero
DOS and illustrates the gap closing points.

with

HAB
0 =

(
H1 H12

H†
12 H2

)
, HSC =

(
H1

SC 0

0 H2
SC

)
. (34)

The components of the normal-state tight-binding Hamil-
tonian HAB

0 are given by H1 = H2 = 12×2 ⊗ H0(k) which
describe the intralayer hoppings in each layer 1 and 2, while
the interlayer terms are given by [77,78],

H12 = 12×2 ⊗ H⊥(k), H⊥ =
(

0 γ3h̃∗
0(k)

γ1 0

)
, (35)

where H0(k) and h0(k) are, respectively, given by Eqs. (2)
and (3) in Sec. II C. For details of the physics of each element
of H⊥ in relation to the normal state of bilayer graphene, see
Refs. [77,78].

The SC state is represented through H1,2
SC , which are 4 × 4

matrices describing the intralayer SC pairing in layers 1 and 2,
respectively. Due to the absence of interlayer SC pairing, HSC

is diagonal in the layer index. Furthermore, making the natural
assumption of having the same SC mechanism in each layer,
we consider that both layers have the same SC symmetry,
leading to hSC = SC1 = H2

SC, and hSC is identical to the SC
monolayer graphene matrix derived in Sec. II C.
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FIG. 9. Lowest energy band structure for SC amplitude �0 = 0.4 at three different values of the chemical potential, μ = 0.4 (a), 0.9 (b),
and 1.4 (c) for the NN p + ip ′-wave state. Only the middle panel (b) hosts zero-energy states.

B. Trilayer Hamiltonian

For ABA/ABC trilayer graphene, the BdG Hamiltonian is
given by

HABA/ABC =
⎛
⎝HABA/ABC

0 HSC

H†
SC −HABA/ABC

0

⎞
⎠, (36)

where HSC is a block diagonal matrix with the three blocks
given by (H1

SC, H2
SC, H3

SC). As in the bilayer case, HSC does
not couple the different layers, such that the matrix is diagonal
in the layer space and is also characterized for each layer by
the same SC Hamiltonian, H1

SC = H2
SC = H3

SC For the normal-
state Hamiltonian, we have [77]

HABC/ABA
0 =

⎛
⎜⎜⎝

H1 H12 0

H†
12 H2 H23/HT

23

0 H†
23/(HT

23)† H3

⎞
⎟⎟⎠. (37)

FIG. 10. Illustration of bilayer and trilayer graphene adapted
from Ref. [95]. (a) monolayer graphene. (b) AB or Bernal-stacked
bilayer graphene. (c) ABA or Bernal-stacked trilayer graphene.
(d) ABC, or rhombohedral-stacked, trilayer graphene. Red arrows
correspond to intralayer hopping t , magenta to interlayer hopping γ1,
and cyan to trigonal warping terms γ3.

Here the intralayer terms are identical, H1 = H2 = H3 and
are given by Eq. (3) above. Furthermore, for the ABC tri-
layer H23 = H12, with H12 given by the bilayer expression in
Eq. (35). This is the consequence of having the same interlayer
coupling between the bottom and middle layers as between the
middle and top layers. In contrast, for the ABA trilayer, the
type of pairs of sites connecting the top two layers is opposite
to that connecting the bottom two layers: γ1 connects a site
A in the middle layer to a site B in the top layer, while γ3

connects a site B in the middle layer to a site A in the top
layer. This swap in the roles of γ1 and γ3 in the interlayer
Hamiltonian is captured by the transpose operation T on H23

in the ABA Hamiltonian.

C. Lowest energy bands

Having derived the Hamlitonians for bilayer and trilayer
graphene, we continue with exact diagonalization to find the
energy spectrum. In the following, we focus mainly on bilayer
graphene, aiming to extract the generic differences between
the monolayer and any multilayer band structures. First, we
describe briefly the effect of trigonal warping in the normal
state. To this end, we plot in Fig. 11 the lowest energy band
in bilayer graphene for zero chemical potential and vanishing
SC pairing. When the trigonal warping γ3 is set to zero, we
obtain at very low energy (dark blue region) a quadratic and
isotropic dispersion relation with circular isoenergy contours
around the K,K′ Dirac points [78]. When including also the

FIG. 11. Lowest energy band for undoped bilayer graphene (μ =
0) in the normal state (�0 = 0) when γ3 = 0 (a) and γ3 = 0.2 (b).
Trigonal warping gives rise to deformations in the lowest-energy
isoenergy contours.
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FIG. 12. Lowest energy band structure for μ = 0.4, �0 = 0.4, γ1 = 0.2, γ3 = 0, and for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -,
px-, py-, p + ip ′-, and d + id ′-wave, as well as fx(x2−3y2 )-NNN symmetries. Only the region in the Brillouin zone close to the Dirac point
K is displayed. Dark blue corresponds to zero energy. The inset of (b) presents the energy dispersion along a line cut across the K point, as
illustrated by the black dashed line. It shows that sext-wave pairing is fully gapped.

interlayer γ3 coupling, we note that the behavior of the isoen-
ergy contours around the K,K′ points is significantly altered
and acquires a trigonal distortion also at the lowest energies,
hence the name trigonal warping term for γ3.

Moving on to the SC states, we plot in Fig. 12 the lowest
energy bands for the same SC symmetries as in monolayer
graphene (cf. Fig. 4), but now zoomed in around the Dirac
point K to capture most clearly the effects of the interlayer
coupling. We here first use γ3 = 0. We find that for the fully
gapped states, the lowest energy bands are similar to the
monolayer case. However, for all the nodal states, we find a
significant difference from the monolayer, in that all the nodal
points double by exhibiting a small splitting in momentum
space; see dark blue color gradient. Thus, the nodal d- and
p-wave states now have four nodal points, two on each side
of the Dirac point. Next, we turn on the trigonal warping
and find that it has a significant effect on the formation of the
nodes. In Fig. 13, we plot the lowest band as a function of ky

for kx = 0 for the illustrative case of NN py-wave symmetry.

We note that the two nodal points in monolayer graphene split
and give rise to four nodal points for bilayer graphene with no
trigonal warping. When turning on γ3, we find that this term
slightly gaps two of the four nodes.

D. Density of states and gap closing points

It is also interesting to study the DOS in bilayer and tri-
layer graphene, in particular, elucidating the existence of gap
closing points. Using a similar procedure as in the previous
section, we calculate the DOS as a function of energy, chem-
ical potential, and SC order parameter amplitude. We find
that it has a very similar dependence to that of monolayer
graphene. For completeness, we provide plots of the DOS
for the most interesting case, the p + ip ′-wave state, in Ap-
pendix F for both bilayer and trilayer graphene. The main
features observed for the monolayer are preserved, except
that the number of gap closing points is different for multi-
layer graphene. Focusing on these gap closing points for the
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FIG. 13. Lowest energy band structure for the NN py-wave SC state as a function of ky for kx = 0. We compare monolayer graphene (a),
bilayer graphene with no trigonal warping, γ1 = 0.2 and γ3 = 0 (b), and bilayer graphene with finite trigonal warping, γ1 = 0.2 and γ3 = 0.2
(c). Here �0 = 0.4 and μ = 0.4.

chiral p + ip ′-wave SC state, we plot in Fig. 14 the gap in
the energy spectrum as a function of the chemical potential
and the SC amplitude for bilayer graphene without trigonal
warping (γ3 = 0). We find that there are now two gap closing
lines for each �0 as a function of μ, compared to the single
gap closing line in monolayer graphene in Fig. 8. Adding a
finite γ3 changes this, and we find again only one gap closure
line. Thus, the trigonal warping has a strong influence on
the number of gap closing points. Indeed, this is confirmed
in the right panel in Fig. 14, where we plot the DOS as a
function of both μ and γ3. We find a similar effect in trilayer
graphene, with the number of gap closing points oscillating
between one and three. A more detailed analysis is presented
in Appendix F.

Finally, we note the formation of an interesting additional
gap closing point at small μ and �0, not present in the mono-
layer case; see the dark blue line close to μ ≈ 0.2 in Fig. 14.
Since any realistic system will have a rather small �0, this
is particularly alluring from an experimental point of view. It
appears that this gap closing point is not overly sensitive to
the value of γ3. In Fig. 15, we plot the lowest energy band
for the parameters corresponding to this gap closing point and
establish that this interlayer-induced gap closing occurs at the
K,K′ Dirac points, in contrast to the previously described gap
closing points that occur due to a nodal intraband pairing at
the M points. We attribute this gap closing to the combination
of nodal points at the K,K′ points in the intraband SC order
parameter and the bottom of the second graphene band touch-
ing the K,K′ points when the chemical potential μ is equal to
the interlayer coupling γ1 = 0.2. As such, it is intimately tied
to the multilayer aspect.

IV. CONCLUSIONS

In this paper, we reviewed all symmetry-allowed spin-
singlet and spin-triplet SC states in monolayer, bilayer, and
trilayer graphene with different stacking. By allowing ON
pairing, as well as pairing between NNs and NNNs, we
captured all possible spin-singlet and -triplet order parame-
ters, from s- and d-wave to p- and f -wave states, including
the chiral d + id ′- and p + ip ′-wave states. To analyze the
properties of these states, we calculated the low-energy band
structure, as well as the DOS as a function of the chemical
potential and the SC pairing strength. The different SC states
can be classified in two large classes, the fully gapped states,
such as the s-, fx(x2−3y2 )-, d + id ′-, and p + ip ′-wave states,
that exhibit a U-shaped DOS and the nodal ones, such as the
dxy-, dx2−y2 -, px-, and py-wave states that exhibit nodal points
in the band dispersion and a V-shaped DOS. Moreover, we
focused on the existence of gap closing points in the DOS
when changing the physical parameters and found that many
of these points can be understood by a careful examination
of the symmetry of the intraband SC order parameter in
monolayer graphene. For bilayer and trilayer graphene, we
found that the interlayer coupling splits the nodal points in
the band structure, as well as the gap closing points. We
also analyzed the effect of the trigonal warping present in
bilayer and trilayer graphene on the formation of gap closing
points. By distinguishing between nodal and fully gapped SC
states, our paper provides an experimentally viable tool to
differentiate between different SC symmetries in all carbon-
based superconductors. In future works, we will discuss the
topology and formation of edge states in these systems, as

FIG. 14. DOS as a function of chemical potential μ and SC amplitude �0 for the NN p + ip ′-wave state in bilayer graphene for γ3 = 0
(a), γ3 = 0.2 (b), with γ1 = 0.2. (c) DOS as a function of γ3 and μ for �0 = 0.4 and γ1 = 0.2. Dark blue corresponds to a vanishing DOS and
to the gap closing points.
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FIG. 15. Lowest energy band for bilayer graphene for the NN
p + ip ′-wave SC state for μ = 0.1, �0 = 0.1, γ1 = 0.2, and γ3 = 0.
The dark blue regions correspond to zero energy.

well as the formation of Shiba states, in the hope to provide
additional tools to further distinguish experimentally between
various order parameters arising in SC graphene materials.
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APPENDIX A: DERIVATION OF THE MOMENTUM
SPACE HAMILTONIAN

In this Appendix, we provide additional details for the
derivation of the BdG Hamiltonian in momentum space.

1. Normal state Hamiltonian

For the tight-binding term in momentum space, we have

HTB(k) =
∑
k,σ

(h0(k)a†
k,σ

bk,σ + h∗
0(k)b†

k,σ
ak,σ ). (A1)

In the BdG form, and also taking into account the doubling
of the number of modes to include separately the electron and
the hole spectrum for both up and down spins, this becomes

HTB(k) =
∑
k,σ

h0(k)(a†
kσ

bkσ − b−k,σ a†
−k,σ

)

+
∑
k,σ

h∗
0(k)(b†

kσ
akσ − a−k,σ b†

−k,σ
), (A2)

with a form factor

h0(k) = −t

[
e−iky + 2e

i
2 ky cos

(√
3

2
kx

)]
. (A3)

For the chemical potential term, we have

Hμ = −μ
∑
kσ

(
a†

k,σ
ak,σ + b†

k,σ
bk,σ

)
. (A4)

In the BdG form, this becomes

Hμ = − μ
∑
kσ

(a†
k,σ

ak,σ − a−k,σ a†
−k,σ

+ b†
k,σ

bk,σ − b−k,σ b†
−k,σ

). (A5)

2. On-site pairing

In real space, the ON pairing term takes the following form:

HON = 2

[∑
i

�ONa†
i↑a†

i↓ +
∑

i

�ONb†
i↑b†

i↓ + H.c.

]
, (A6)

where the factor of 2 come from the doubling of the number
of modes to take into account separately the electrons/holes
with spin up and spin down. The Fourier transform of this
term is

HON = 2

[∑
kσ

�ONa†
k↑a†

−k↓ +
∑
kσ

�ONb†
k↑b†

−k↓ + H.c.

]
,

(A7)

which can be written in the BdG form as

HON =
∑
kσ

�ON(a†
k↑a†

−k↓ − a†
−k↓a†

k↑)

+
∑
kσ

�ON(b†
k↑b†

−k↓ − b†
−k↓b†

k↑) + H.c. (A8)

3. NN pairing

For NN pairing, in the spin-singlet channel (η = 0) we
have

H0
NN =

∑
〈i, j〉

�
η=0
i j (a†

i↑b†
j↓ − a†

i↓b†
j↑) + H.c. (A9)

while in the spin-triplet channel we find

Hx
NN =

∑
〈i, j〉

�
η=x
i j (a†

i↑b†
j↑ − a†

i↓b†
j↓) + H.c., (A10)

Hy
NN =

∑
〈i, j〉

�
η=y
i j (a†

i↑b†
j↑ + a†

i↓b†
j↓) + H.c., (A11)

Hz
NN =

∑
〈i, j〉

�
η=z
i j (a†

i↑b†
j↓ + a†

i↓b†
j↑) + H.c. (A12)

We can now perform the Fourier transform as before. In the
spin-singlet channel, we obtain

HNN =
∑

k

h0
NN(a†

k↑b†
−k↓ − a†

k↓b†
−k↑) + H.c., (A13)

and in the spin-triplet channel

Hx
NN =

∑
k

hx
NN(a†

k↑b†
−k↑ − a†

k↓b†
−k↓) + H.c., (A14)

Hy
NN = i

∑
k

hy
NN(a†

k↑b†
−k,↑ + a†

k,↓b†
−k↓) + H.c., (A15)

Hz
NN =

∑
k

hz
NN(a†

k↑b†
−k↓ + a†

k↓b†
−k↑) + H.c. (A16)

134514-15



EMILE PANGBURN et al. PHYSICAL REVIEW B 108, 134514 (2023)

Here hη
NN are the form factors, whose expressions depend

on both the spin channel and the symmetry of the order
parameter. Their general expression is

hη
NN = �

η,d=1
NN e−iky + �

η,d=2
NN e

i
2 ky−

√
3i

2 kx + �
η,d=3
NN e

i
2 ky+

√
3i

2 kx .

(A17)

Here, d = 1, 2, 3 correspond to the three NNs, following the
convention of Fig. 1. The values of �η,d are also detailed
in Tables I and II for each symmetry. By replacing these
values, we obtain the form factors for NN pairing (h0,sext

NN , h
0,dxy

NN ,

h
0,dx2−y2

NN , hη,px
NN , h

η,py

NN , hη, fx
NN ) in Tables III and IV.

We subsequently express the above NN pairing term in the
BdG form

H0
NN = 1

2

∑
k

h0
NN(k)(a†

k↑b†
−k↓ − b†

−k↓a†
k↑ − a†

k↓b†
−k↑

+ b†
−k↑a†

k↓) + H.c.,

= 1

2

∑
k

(
h0

NN(k)a†
k↑b†

−k↓ − h0
NN(−k)b†

k↓a†
−k↑

− h0
NN(k)a†

k↓b†
−k↑ + h0

NN(−k)b†
k↑a†

−k↓
) + H.c.

(A18)
for the singlet channel and

Hx
NN = 1

2

∑
k

(
hx

NN(k)a†
k↑b†

−k↑ − hx
NN(−k)b†

k↑a†
−k↑

− hx
NN(k)a†

k↓b†
−k↓ + hx

NN(−k)b†
k↓a†

−k↓
) + H.c.,

Hy
NN = i

2

∑
k

(
hy

NN(k)a†
k↑b†

−k↑ − hy
NN(−k)b†

k↑a†
−k↑

+ hy
NN(k)a†

k↓b−k↓ − hy
NN(−k)b†

k↓a†
−k↓

) + H.c.,

Hz
NN = 1

2

∑
k

(
hz

NN(k)a†
k↑b†

−k↓ − hz
NN(−k)b†

k↓a†
−k↑

+ hz
NN(k)a†

k↓b†
−k↑ − hz

NN(−k)b†
k↑a†

−k↓
) + H.c. (A19)

for the triplet channel.

4. NNN pairing

For NNN pairing in the spin-singlet channel (η = 0), we
have

H0
NNN =

∑
〈〈i, j〉〉

�
η=0
i j (a†

i↑a†
j↓ − a†

i↓a†
j↑

+ b†
i↑b†

j↓ − b†
i↓b†

j↑) + H.c., (A20)

and in the spin-triplet channel

Hx
NNN =

∑
〈〈i, j〉〉

�
η=0
i j (a†

i↑a†
j↑ − a†

i↓a†
j↓

+ b†
i↑b†

j↑ − b†
i↓b†

j↓) + H.c., (A21)

Hy
NNN =

∑
〈〈i, j〉〉

�
η=0
i j (a†

i↑a†
j↑ + a†

i↓a†
j↓ + b†

i↑b†
j↑

+ b†
i↓b†

j↓) + H.c., (A22)

H0
NNN =

∑
〈〈i, j〉〉

�
η=0
i j (a†

i↑a†
j↓ + a†

i↓a†
j↑

+ b†
i↑b†

j↓ + b†
i↓b†

j↑) + H.c., (A23)

where the sums are now performed over the NNN
pairs. Exactly as before, performing the Fourier transform
gives

H0
NNN = 1

2

∑
k

hη=0
NNN(k)(a†

k↑a†
−k↓ − a†

k↓a†
−k↑

+ b†
k↑b†

−k↓ − b†
k↓b†

−k↑) + H.c. (A24)

in the spin-singlet channel and

Hx
NNN = 1

2

∑
k

hx
NNN(k)(a†

k↑a†
−k↑ − a†

k↓a†
−k↓

+b†
k↑b†

−k↑ − b†
k↓b†

−k↓) + H.c., (A25a)

Hy
NNN = i

2

∑
k

hy
NNN(k)(a†

k↑a†
−k↑ + a†

k↓a†
−k↓

+b†
k↑b†

−k↑ + b†
k↓b†

−k↓) + H.c., (A25b)

Hz
NNN = 1

2

∑
k

hz
NNN(k)(a†

k↑a†
−k↓ + a†

k↓a†
−k↑

+b†
k↑b†

−k↓ + b†
k↓b†

−k↑) + H.c., (A25c)

in the spin-triplet one. Note that we have a 1
2 factor appear-

ing since one takes twice into account the links between the
NNNs when summing over all the atoms. Following the NNN
conventions of Fig. 1, we write

hη
NNN = �

η,d=1
NNN e−

√
3i

2 kx+ 3i
2 ky + �

η,d=2
NNN e−i

√
3kx

+ �
η,d=3
NNN e−

√
3i

2 kx− 3i
2 ky + �

η,d=4
NNN e

√
3i

2 kx− 3i
2 ky

+ �
η,d=5
NNN ei

√
3kx + �

η,d=6
NNN e

√
3i

2 kx+ 3i
2 ky . (A26)

The explicit expressions of the resulting NNN form factors

(h0,sext
NNN, h

0,dxy

NNN, h
0,dx2−y2

NNN , hη,px
NNN, h

η,py

NNN, hη, fx
NNN) are given in Ta-

bles III and IV.

APPENDIX B: SPIN-TRIPLET PAIRING HAMILTONIAN

In this Appendix, we derive the Hamiltonian for spin-triplet
pairing with η = y, z. The result for η = x is given in the main
text. For the η = y spin-triplet channel, the Hamiltonian reads⎛

⎜⎜⎜⎜⎝
H0(k) 02×2 hy

�(k) 02×2

02×2 H0(k) 02×2 hy
�(k)(

hy
�(k)

)†
02×2 −H0(k) 02×2

02×2
(
hy

�(k)
)†

02×2 −H0(k)

⎞
⎟⎟⎟⎟⎠,

hy
�(k) = i

2

(−hy
NNN(−k) hy

NN(k)
−hy

NN(−k) −hy
NNN(−k)

)
, (B1)
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FIG. 16. Lowest energy band structure for μ = 1, �0 = 0.4, and for SC states with ON s-wave, NN sext-, dxy-, dx2−y2 -, d + id ′-, px-, py-,
p + ip ′-wave, as well as NNN fx(x2−3y2 ) symmetries. Dark blue corresponds to zero energy.

while for the η = z spin-triplet channel we find⎛
⎜⎜⎜⎜⎝

H0(k) 02×2 02×2 −hz
�(k)

02×2 H0(k) hz
�(k) 02×2

02×2
(
hz

�(k)
)† −H0(k) 02×2

−(
hz

�(k)
)†

02×2 02×2 −H0(k)

⎞
⎟⎟⎟⎟⎠,

hz
�(k) = 1

2

(
hz

NNN(−k) −hz
NN(k)

hz
NN(−k) hz

NNN(−k)

)
, (B2)

where 02×2 is a 2 × 2 null matrix, H0(k) is the normal state
Hamiltonian matrix given in Eq. (2), and hy

�, hz
� are the form

factor for spin-triplet SC symmetry.

APPENDIX C: LOWEST ENERGY BAND FOR μ = 1

In this Appendix, we provide plots of the lowest en-
ergy bands at μ = 1 in Fig. 16. This is to be compared
to the results for μ = 0.4 given in Fig. 4 in the main
text. For a doping close to the VHS, μ = 1, we thus

plot the lowest energy band as a function of kx and ky.
We note that in this case the bands for some of the SC
symmetries reach zero energy in the vicinity of the M
points (corresponding to the dark blue regions). This gives
rise to a gap closing point in the DOS around the value
of μ = 1.

APPENDIX D: BAND STRUCTURE FOR NNN PAIRING

In this Appendix, we provide plots of the low-
est energy bands for NNN pairing in Fig. 17. This
is to be compared to results for NN pairing given in
Fig. 4 in the main text. We thus consider both spin-
singlet and -triplet NNN pairing with various symme-
tries. We note similarities with the bands resulting from
NN pairing Fig. 4, such as the nodal points in the
structure for the dxy-, dx2y2 -, px-, and py-wave (de-
picted in dark blue) and a fully gapped structure for the
rest.
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FIG. 17. Lowest energy band structure for μ = 0.4, �0 = 0.4, and for SC states with NNN pairing with sext-, dxy-, dx2−y2 -, d + id ′-, px-,
py-, p + ip ′-, and fx(x2−3y2 )-wave symmetries. Dark blue corresponds to zero energy.

APPENDIX E: DOS FOR NNN PAIRING

In this Appendix, we provide information on the DOS
for NNN pairing. First we plot the DOS for NNN pair-
ing as a function of energy and SC pairing strength in
Fig. 18 for the same parameter values as those consid-
ered for the NN pairing described in the main text and
in Fig. 6. We note that the main difference from the
NN coupling case is that the dependence with �0 is
roughly linear, and in contrast to the NN case, there is no
critical value of �0 for which we observe additional gap
closings, for any of the symmetries. The dependence
of the DOS with energy and the chemical potential is
very similar to that for the NN couplings as seen when
comparing Fig. 19 with Fig. 7 in the main text. Fur-
thermore, as mentioned in the main text, the gap closing
for the NNN p + ip ′-wave state occurs at μ = 1, inde-
pendent of the value of the SC coupling, as seen in
Fig. 20.

APPENDIX F: DOS FOR NN p + ip ′-WAVE PAIRING
IN MULTILAYER GRAPHENE

In this Appendix, we provide additional information of the
DOS for NN p + ip ′-wave pairing in multilayer graphene.
For a vanishing trigonal warping, γ3 = 0, we obtain the DOS
as a function of energy and chemical potential in Fig. 21
for different multilayer configurations. We note that these
results are very similar to monolayer graphene, except for the
number of gap closing points. As discussed in the main text,
this number is also strongly affected by the trigonal warping,
which we illustrate in Fig. 22, where we plot the DOS in the
presence of non-zero trigonal warping γ3 = 0.2.

As opposed to the monolayer case for which we have a
single gap closing point as a function of the chemical poten-
tial, for trilayer graphene we find that this number oscillates
between one and three. This is illustrated for ABA trilayer
graphene in Fig. 23 and for ABC trilayer graphene in Fig. 24.
We find that the effect of trigonal warping is quite pronounced
by modifying the gap closing points.

134514-18



SUPERCONDUCTIVITY IN MONOLAYER AND FEW-LAYER … PHYSICAL REVIEW B 108, 134514 (2023)

FIG. 18. DOS as a function of SC amplitude �0 for μ = 0.4 for SC states with NNN pairing with sext-, dxy-, dx2−y2 -, d + id ′-, px-, py-,
fx(x2−3y2 )- and p + ip ′-wave symmetries.
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FIG. 19. DOS as a function of μ for �0 = 0.4 for SC states with NNN pairing with sext-, dxy-, dx2−y2 -, d + id ′-, px-, py-, fx(x2−3y2 )- and
p + ip ′-wave symmetries.

FIG. 20. Gap value as a function of the chemical potential μ and the SC amplitude �0 for the NNN p + ip ′-wave state.
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FIG. 21. DOS as a function of energy and μ for �0 = 0.4, γ1 = 0.2, γ3 = 0 in bilayer (a), trilayer ABA (b), and trilayer ABC (c) graphene
for the NN p + ip ′-wave SC state.

FIG. 22. DOS as a function of energy and μ for �0 = 0.4, γ1 = 0.2, γ3 = 0.2 in bilayer (a), trilayer ABA (b), and trilayer ABC (c) graphene
for the NN p + ip ′-wave SC state.

FIG. 23. DOS as a function of the chemical potential μ and the SC amplitude �0 for the NN p + ip ′-wave state in ABA trilayer graphene
for γ3 = 0 (a) and γ3 = 0.2 (b) with γ1 = 0.2. (c) DOS as a function of γ3 and μ for �0 = 0.4 and γ1 = 0.2. Dark blue corresponds to a
vanishing DOS and to the gap closing points.

FIG. 24. DOS as a function of the chemical potential μ and the SC amplitude �0 for the NN p + ip ′-wave state in ABC trilayer graphene
for γ3 = 0 (a) and γ3 = 0.2 (b) with γ1 = 0.2. (c) DOS as a function of γ3 and μ for �0 = 0.4 and γ1 = 0.2. Dark blue corresponds to a
vanishing DOS and to the gap closing points.
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