
PHYSICAL REVIEW B 108, 134512 (2023)

Topological superconductivity from first principles. I. Shiba band structure and topological
edge states of artificial spin chains

Bendegúz Nyári ,1,2 András Lászlóffy,3 Gábor Csire,4,5 László Szunyogh,1,2 and Balázs Újfalussy 3

1Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics,
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Magnetic chains on superconductors hosting Majorana zero modes (MZMs) have attracted a great deal of
interest due to their possible applications in fault-tolerant quantum computing. However, this is hindered by the
lack of a detailed, quantitative understanding of these systems. As a significant step forward, we present a first-
principles computational approach based on a microscopic relativistic theory of inhomogeneous superconductors
applied to an iron chain on the top of Au-covered Nb(110) to study the Shiba band structure and the topological
nature of the edge states. Contrary to contemporary considerations, our method enables the introduction of
quantities indicating band inversion without fitting parameters in realistic experimental settings, holding thus the
power to determine the topological nature of zero-energy edge states in an accurate ab initio based description
of the experimental systems. We confirm that ferromagnetic Fe chains on an Au/Nb(110) surface do not support
any separated MZM; however, a broad range of spin-spirals can be identified with robust zero-energy edge
states displaying signatures of MZMs. For these spirals, we explore the structure of the superconducting order
parameter, shedding light on the internally antisymmetric triplet pairing hosted by MZMs. We also reveal a
twofold effect of spin-orbit coupling: although it tends to enlarge the topological phase regarding spin spiraling
angles, it also extends the localization of MZMs. Due to the presented predictive power, our work fills a big
gap between experimental efforts and theoretical models while paving the way for engineering platforms for
topological quantum computation.

DOI: 10.1103/PhysRevB.108.134512

I. INTRODUCTION

Topological superconductivity is an exotic state of matter
where the condensate of Cooper pairs of electrons sponta-
neously breaks the U(1) gauge symmetry and simultaneously
exhibits a nontrivial topological gap structure [1,2]. Although
there may well be materials that develop intrinsic topological
superconductivity providing natural platforms for Majorana
zero modes (MZMs) [3–12], the real breakthrough—that has
created a great number of routes to such platforms—was
the realization that one can create topological superconduc-
tivity based on artificial heterostructures [13–51]. Due to
the bulk-edge correspondence principle [1], one-dimensional
topological superconductivity is manifested in zero-energy
edge states: the renowned Majorana zero modes. These states
have drawn a significant interest of the scientific community
since MZMs may have applications for topological quan-
tum computing [52–54]. However, MZMs in superconducting
heterostructures are still elusive because it is very difficult
to uniquely identify them experimentally. Several promis-
ing scanning tunneling microscopy (STM) experiments have
been performed on various systems, which show peaks in the
differential conductivity at zero energy [55–58] in the super-
conducting gap of the host. However, this does not impose
strict evidence that the observed states at the end of the chain

are indeed the long-sought MZMs, and further information
about the nature of these peaks is difficult to obtain.

To address this problem, we developed a first-principles
based computational approach serving as a template for de-
tailed analysis of different MZM platforms. This is allowed
by the Green’s-function-based solution of the Kohn-Sham-
Dirac-Bogoliubov–de Gennes (KSDBdG) equations [59,60].
On the one hand, it has been demonstrated previously that
many aspects of STM experiments are reproducible by such
calculations [60–63], while on the other hand, it allows us to
calculate other quantities, such as spin-polarization and the
superconducting order parameter (OP) [64], which are im-
portant to understand the nature of these states. Furthermore,
some of their properties can be further explored and tested by
computational experiments which go beyond the capabilities
of conventional experimental techniques.

In what follows, we show first-principles calculations per-
formed for Fe chains on top of a superconducting Nb(110)
host with a single epitaxial Au overlayer, as introduced in
Ref. [65], in the superconducting state, where relativistic ef-
fects, superconductivity, and the complex electronic structure
are treated on the same level. Based on previous simple model
calculations, there are two essential ingredients for the for-
mation of MZMs in spin chains proximitized with s-wave
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superconductors, namely strong Rashba spin-orbit coupling
(SOC) [14,15] or a noncollinear spin structure, such as a
spin spiral [20,47,66–68], both inducing p-wave pairing [69]
and hence topological superconductivity. One idea, which
was realized in a recent experiment, is to cover the surface
of an s-wave superconductor with a single atomic layer of
a heavy metal [65]. This has the advantage of keeping the
relatively large superconducting gap of Nb while simultane-
ously enhancing the SOC in the system. However, in spite of
the enhanced SOC, there was no experimentally observable
minigap in the system. Further theoretical investigations re-
vealed [65] that, by forcing the system into a 90◦ spin-spiral
state, it is possible to open up a minigap hosting zero-energy
end states. This previously obtained finding just asks for the
application of first-principles methods described in Sec. II,
which can further substantiate the topological classification of
these states and provide practical guidance for further exper-
iments. In Sec. III, by considering a wide range of spiraling
angles, we make quantitative predictions for the local density
of states (LDOS) as described in Ref. [60], and by changing
the spiraling angle we show that it drives the system through
topological phase transitions. At these points, the minigap
closes and the zero-energy states appear or disappear. We also
show how this picture changes if we utilize the capability of
our method to artificially scale the SOC. In an attempt to vali-
date the developed method, we verify the expected result that
in a ferromagnetic chain without spin-orbit coupling there is
no topological superconductivity and MZMs [20]. In Sec. IV
we shall study the spatial distribution of the zero-energy peak,
which reveals a twofold effect of SOC: although it tends to
enlarge the topological phase regarding spin spiraling angles,
it also extends the localization of MZMs. Our model makes
it possible to explore quantities that are beyond the current
capabilities of experiments to measure. The superconducting
OP [64] belongs to this category, and in Sec. V we discuss that
it has a more complex structure (involving both spin singlet
and triplet parts) than in the well-known prototype models
[20,25,31,33,44,67,68,70,71] for Majorana zero modes. We
identify that the structure of the superconducting OP (more
precisely, its energy resolution, introduced later) can serve
as an indicator of band inversion and thus topological su-
perconductivity. Finally, in Sec. VI we further analyze the
topological nature of the minigap by illustrating the appear-
ance of band inversion based on the spin singlet OP and the
quasiparticle charge density of states. Remarkably, quantities
being antisymmetric in energy with respect to the Fermi level
offer a possible route to identify the topological nature of the
gap in STM experiments.

II. FIRST-PRINCIPLES-BASED TREATMENT
OF AN ARTIFICIAL SPIN CHAIN

ON A SUPERCONDUCTING HOST

The density functional theory yielding Kohn-Sham equa-
tions has been proven to successfully describe material-
specific properties. The concept of superconductivity can be
introduced into this theory by treating the superconducting OP
as an additional (so-called) anomalous density [72]. Such a
generalization of Kohn-Sham equations leads to the following

KSDBdG Hamiltonian written in Rydberg units:

HDBdG =
(

HD �eff

�
†
eff −H∗

D

)
, (1)

where HD(�r) = c�α �p + (β − I4)c2/2 + [Veff(�r) − EF ]I4 +
�� �Beff(�r), with �α = σx ⊗ �σ, β = σz ⊗ I2, �� = I2 ⊗ �σ, �σ
denotes the Pauli matrices, and In is the identity matrix
of order n. Veff(�r) and �Beff(�r) are the effective potential
and the exchange field, respectively. �eff(�r) is the effective
4 × 4 pairing potential matrix due to the four-component
Dirac spinors. The KSDBdG equations shall be solved
self-consistently by assuming that the superconducting host
has isotropic s-wave spin-singlet pairing as described by
BCS theory [73]. Computational details are given in the
Appendix, while more details of the formalism can be found
in the Supplemental Material [74]. The central quantity
of our approach, the Green’s function, is obtained from the
generalized multiple scattering theory in a self-consistent way.
The great advantage of such a Green’s-function technique
[75] is the exact treatment of semi-infinite geometries (hence
the superconducting host) together with the embedding of
magnetic chains (see note 1 of the Supplemental Material
[74]). In this way, involving both the orbital and spin degrees
of freedom, we can properly account for the microscopic
complexity in the superconducting state of the studied iron
nanowire placed on an Au monolayer grown epitaxially on
the (110) surface of niobium.

For each site of the chain, the method yields the local
Green’s function matrix {Gnn,ab

Ls,L′s′ (ε)} (see note 1 of the Supple-
mental Material [74]), where n denotes the sites of the chain;
L = (l, m) and L′ = (l ′, m′) are composed angular momen-
tum indices; s, s′ are the spin indices; and a, b corresponds
to either the electronlike or the holelike part of the Green’s
function. This quantity contains all information about the su-
perconducting ground state involving the description of all the
pairing states present in the system. Hence, this allows the cal-
culation of the LDOS and the energy-resolved OP related to
different pairing states, as defined later. Such an approach has
two major advantages compared to effective models such as
the tight-binding approximation. First, there is no further need
to fit the electronic structure with artificial tight-binding pa-
rameters, which in turn allows for computational experiments
with spin chains more easily. Second, it is crucial to have a
proper model of the (semi-infinite) superconducting host if
one aims to predict quantitatively the localization length of
MZMs. The problem of insufficient modeling of the semi-
infinite host appears in most tight-binding approximations.
These calculations resulted in an unrealistic gap to match the
localization of MZMs [76,77], since the proximity-induced
superconducting pairing was introduced into the chain as a
parameter and not via an interaction with a superconducting
host. The localization length is one of the most important
quantities that decides whether the MZMs are separated
enough to be feasible for topological quantum computation.
In the above context, we mention that the host-induced sup-
pression of Majorana localization length was studied on the
model level by Das Sarma et al. [31], which also underlines
the importance of the correct treatment of the host presented
in this paper.

134512-2



TOPOLOGICAL SUPERCONDUCTIVITY FROM FIRST … PHYSICAL REVIEW B 108, 134512 (2023)

(a)

(b)

(c)

(d)

FIG. 1. The LDOS of the 2a-[100] Fe19 chain on Au/Nb(110) in
the normal and in the superconducting state. (a) The illustration of
the 19 atomic 2a-[100] Fe chain on Nb(110) covered with a single
monolayer Au; the spin configuration shows a Néel spiral with 90◦

spiraling angle. (b) The normal-state local density of states for the
ferromagnetic chain. (c) The LDOS in the superconducting state of
the ferromagnetic chain. (d) The LDOS of the same chain as in (c) but
in a Néel spiral state with 90◦ rotation angle as shown in panel (a).
In panels (c) and (d), the solid lines are electron densities, while
the dashed lines are hole densities, and the blue curves are shifted
60 1/eV. In all plots, the positive values are from the minority-spin
channel and the negative values are from the majority-spin channel.
The blue curves are calculated on the first atom of the chain and the
orange curves are from the middle of the chain. The black dashed
vertical lines in panels (c) and (d) indicate the superconducting gap
of the Nb, � = 1.51 meV.

III. SPIN SPIRALS IN THE SUPERCONDUCTING STATE

First, we discuss the results of the first-principles calcu-
lations in the normal state on the same system introduced
in Ref. [65], namely a 19-atom-long Fe chain with 2a (a =
330 pm) nearest-neighbor distance in the [100] direction as
illustrated in Fig. 1(a) (in short, a 2a-[110] Fe19 chain), placed
on the (110) surface of an epitaxial Au monolayer covering
the surface of Nb(110) described in detail in Appendix A.
The normal-state LDOS is presented in Fig. 1(b) for the fer-
romagnetic chain, with an out-of-plane magnetization. It can
be seen that the majority spin channel is almost entirely filled
and gives a negligible contribution to the normal-state LDOS
at the Fermi level, and an overwhelming contribution comes
from the minority spin channel. This fact is also expressed in

the enhanced magnetic moment of about 3.8μB. Such elevated
magnetic moments are typical for surface magnetic impuri-
ties. If we consider instead a 90◦ Néel-type spin spiral, for
example [as illustrated in Fig. 1(a)], the normal-state LDOS
remains mostly unchanged, as discussed in note 3 of the Sup-
plemental Material [74]. In summary, we cannot detect any
feature of the normal-state DOS that could signal the rather
different behavior in the superconducting state that we find
later between the ferromagnetic and the spin-spiral state.

Turning our attention to the superconducting state, first
we confirm the experimental finding [65] that the size of the
induced gap in an Au overlayer system with a single atomic
layer of Au on the Nb(110) surface does not differ from the
size of the gap in a pure Nb surface (the details are presented
in note 4 of the Supplemental Material [74]). Hereafter, we
consider the 2a-[100] Fe19 chain placed on this host system.
The LDOS on some Fe impurity atoms of such a chain is
plotted in Fig. 1(c) for a ferromagnetic spin configuration,
where the LDOS in the superconducting state is obtained by

LDOS(ε, n) = − 1

π
Im Tr

{
Gnn,ab

Ls,L′s′ (ε)
}
. (2)

Magnetic impurities are expected to cause in-gap states called
Yu-Shiba-Rusinov (YSR) states [78–80]. In Fig. 1(c) it can be
seen that in the magnetic chain the Yu-Shiba-Rusinov states
of the single Fe impurity hybridize and start to form Shiba
bands within the superconducting gap of the host, as was
seen in the experiments [57,58], and the hybridized states
occupy almost the entire energy range of the gap, including
the zero energy. Although spin-orbit coupling naturally causes
spin-mixing, it should be noted that all states are, yet again,
from one spin channel only, even though our calculations are
fully relativistic. This is not entirely surprising based on the
normal-state DOS of the chains [see Fig. 1(b)] discussed pre-
viously. Most interestingly however, when we are repeating
the calculation for a 90◦ Néel type spin spiral, the LDOS
plotted in Fig. 1(d) shows the opening of an internal gap of
�int = 0.22 meV around zero energy within the hybridized
YSR states. Moreover, one peak appears right in the middle
of this minigap, exactly at zero energy—that is, at the Fermi
energy—on the atoms at both ends of the chain, which shall be
referred as the zero-energy peak (ZEP). In the context of scan-
ning tunneling spectroscopy [81], these peaks are manifested
in the zero bias peaks (ZBPs) observable in the differential
conductance. Because these are exactly the features that are
expected for a system with MZMs, it motivates us to in-
vestigate other spin spiral states via a computer experiment
and look at how the MZMs and the minigap emerge as spin
spiraling and SOC changes. But it has to be emphasized that
even though there are states at zero energy at some spiraling
angle, this does not necessarily mean that MZMs are found.
As has been demonstrated before, even in the case of a single
magnetic impurity on the surface of a superconducting host,
it is possible to obtain a state at zero energy by imposing a
canting angle [62], even though it is not possible to obtain
MZMs for a single impurity. Such states are just YSR states
that are accidentally shifted to zero energy as a result of the
canting angle. Therefore extreme caution and further analysis
are needed regarding the classification of the minigap and the
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FIG. 2. The effect of the SOC on the DOS, and the localization of the ZEP of Néel spirals for the Fe19 2a-[100] chains on Au/Nb(110).
(a) The total DOS, including both electrons and holes, integrated along the chain plotted in the vicinity of the superconducting gap (1.51 meV),
noted with green dashed lines. Calculated for Néel spirals with rotation angles changed in 5◦ steps between the ferromagnetic (0◦) and the
antiferromagnetic (180◦) spin configurations, in the fully relativistic case, denoted as SOC = 1, representing the scaling factor for the SOC.
(b) The electron LDOS at the Fermi energy along the 2a-[100] Fe19 chain on Au/Nb(110) as a function of the Néel spiral rotation angle in the
fully relativistic case (SOC = 1). Parts (d) and (e) are the same as (a) and (b), but with SOC scaled to 0. In panels (c) and (f), different cross
sections are shown from (b) and (e). respectively; to better show the localization of the states, the lines are plotted with an offset of 200 arb.
units.

ZEPs, and in paper II in this series [82] we will show how
easy it is to obtain a “fake” or quasi-Majorana state.

Based on tight-binding models [66], it is to be expected
that spin spirals act along SOC to open up a minigap in the
Shiba band structure. To confirm this result, we studied the
effect of different spin spiral states on the formation of the
ZEP and the minigap in a series of calculations for Néel-
type spirals with spins rotating in the plane perpendicular to
the surface (�ez) and containing the chain (�ex), described by
the following local exchange field as �B(i) = | �B(i)|[sin (θ (i −
9))�ex + cos (θ (i − 9))�ez] on site i. This way, the direction of
the magnetic moment of the atom in the middle of the chain
was fixed to point along the z direction, and the neighboring
spins were rotated with respect to each other with an angle θ

ranging from 0◦ (FM) to 180◦ (AFM) in 5◦ steps.
The DOS (LDOS summed over all atoms in the chain)

obtained for the different spirals as a function of the spiral-
ing rotation angle in the fully relativistic case is shown in
Fig. 2(a). Probably the most interesting feature of this figure is
the existence of a peak at zero energy which is present even
in the FM state and remains undisturbed all the way until
about 150◦. Simultaneously, we can see that there is no mean-
ingful gap present around it in the FM case, as we noticed
previously; however, as the spiraling angle is increasing, a
minigap appears and increases in size from about 20◦. It keeps

increasing until around 110◦, where it reaches its maximum
value of 0.25 meV, which is 16.5% of the Nb gap. For larger
spiraling angles, the minigap starts to decrease and it collapses
at around 150◦ and then reopens again for even larger spiraling
angles. While the minigap is open, from 20◦ to 150◦, there is a
zero-energy peak. However, when the gap closes and reopens
at 150◦ this peak disappears. Such behavior is usually a signal
of a topological phase transition. It should be noted that the
zero-energy peak is present even for the ferromagnetic chain,
where the minigap is not yet fully opened.

It was pointed out previously [47] that spin-orbit coupling
plays an important role in the formation of MZMs. In our
theory, it is possible to manipulate the Dirac equation in such
a way that the spin-orbit coupling term is scaled out while
all other relativistic effects, such as the Darwin term and the
mass-velocity term, are properly taken into account [83]. To
investigate the dependence of both the minigap and the ZEP
on the SOC, we repeated our calculations with SOC scaled
out. The results can be analyzed by comparing Figs. 2(a) and
2(d). The calculations behind these figures are completely
identical otherwise. Probably the most prominent effect is that
without SOC, the ferromagnetic state is gapped without a ZEP
in it. When introducing a spiraling angle, this gap remains
open until 40◦, where it closes and reopens, however now
a ZEP appears in it. The gap remains open with the ZEP
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until about 135◦, where the gap closes and reopens again,
this time without a ZEP. Consequently, even without SOC
there is a large range of spirals where a ZEP can be observed.
The spiraling angles where the minigap closes and reopens
also appear to be slightly different when compared to the
fully relativistic case. At the points where the gap closes (and
reopens), a topological phase transition is expected, as we
already discussed in the fully relativistic case, where only the
second transition point is present. Our results without spin-
orbit coupling are quite similar to what has been described
in the context of previously studied simple models of MZMs
[19,20,66,67].

IV. SPATIAL DISTRIBUTION OF THE
ZERO-ENERGY PEAK

It is known even from the original work of Kitaev [84]
that MZMs appear at the two ends of the chains. One should
remember that the BCS pairing model leads to Cooper pairs,
which are formed by electrons with opposite momenta and
spins, thus mixing states from the region of the gap around
the Fermi level. The coherence length is the extension of
these wave packets in real space and proportional to 1/�.
The frequently assumed physical picture is that the larger
coherence length (smaller gap sizes) will be much more likely
to cause a larger localization length and thus hybridization of
MZMs [85]. The results obtained here significantly change
this picture, emphasizing the importance of spin-orbit effects
and material-specific treatment. To examine the spatial extent
of the ZEP, we plotted the value of the local DOS (LDOS)
at zero energy along all spiral atoms for Fe/Au/Nb(110)
in Figs. 2(b) and 2(e), with and without SOC, respectively.
Most convincingly we find that for spiraling angles where a
ZEP is present, the states are localized to the atoms at the
end of the chain, independently of SOC and the spiraling
angle. One interesting case is the ferromagnetic Fe chain on
Au/Nb(110) with SOC, where we can already see a ZEP
sitting in a tiny but not perfect “gap.” It is obvious from
Fig. 2(b) that there are zero-energy states distributed along
the entire chain, and by the introduction of a spiraling angle,
the states on the in-between atoms gradually disappear, and
the states finally become localized to the ends of the chain
around 20◦. Therefore, even in the case of the ferromagnetic
chain, there is a sharp state at zero energy that continuously
evolves into the end states of the gapped spirals exactly at
the angle where the gap opens in Figs. 2(a) and 2(d). In
the ferromagnetic state, however, because the internal gap is
closed, it is masked entirely by YSR states on the in-between
atoms. To better examine the formation and localization of
MZMs, we repeated the plot in Figs. 2(c) and 2(f), where
data from the figures above are plotted for the 60◦, 75◦, and
110◦ spirals separately. It can be seen that first of all, the
extent (the localization length) of the state changes with the
spiraling angle, and it is slightly different with and without
SOC. Without SOC, the most delocalized state is obtained
for the 110◦ spiral, while with SOC this appears to be the
most localized one. It can also be clearly observed that with
SOC, there is a small oscillatory tail to the side peaks, which
overlap. Such behavior was seen in tight-binding models as
well [22,85], when the MZMs on the two ends overlapped.

All in all, we can conclude that the MZMs extend roughly 4
atomic positions, about 8 2D lattice constants, or 26.4 Å.

V. THE SINGLET AND THE TRIPLET
ORDER PARAMETER

In addition to the electron (and hole) densities, the KS-
DBdG equations provide us with a recipe to calculate the
singlet and triplet OPs. In fact, the appearance of the super-
conducting state is manifested in the local Green’s function
matrix as finite elements in the electron-hole off-diagonal
block. Hence, all the order parameters related to different
pairing states shall be derived based on these elements. First,
we define the following LDOS-like quantity to describe the
energy resolution of the spin-singlet local OP [86]:

χS(ε, n) = − 1

π
Im TrL Ss

{
Gnn,eh

Ls,L′s′ (ε)
}
, (3)

where TrL denotes the trace in angular-momentum
space, while Ss generates the spin-singlet, Ss{ f (s, s′)} =√

2
2 ( f ( 1

2 ,− 1
2 ) − f (− 1

2 , 1
2 )). The energy-resolved local singlet

OP summed over the Fe atoms is shown in Figs. 3(a) and
3(d), with and without spin-orbit coupling, respectively. The
singlet anomalous density shows very similar properties to
the electronic DOS except for one characteristic difference,
i.e., there is no ZEP. This is a property of the Bogoliubov–de
Gennes theory, where the singlet OP is an odd function of
the energy with respect to the zero-energy level (this is a
consequence of particle-hole symmetry) and therefore it is
zero at zero energy. Most nonzero energy states within the
superconducting gap appear to have a nonzero OP, indicating
a superconducting state. Some states, however, are such that
they are entirely electronlike or holelike, which can be seen
from the fact that the plot of the order parameter in Figs. 3(a)
and 3(d) does not exactly match the DOS plot of Figs. 2(a)
and 2(d), respectively. States that are entirely electronlike
or holelike are usually regarded as normal states, where the
Cooper pairs are broken. It should also be mentioned that the
magnitude of the singlet OP is quite small, which most likely
comes from the rather uneven normal-state density of states
in spin channels which limits the formation of Cooper pairs
and Andreev scattering. A larger contribution can be seen for
the triplet OP, described below.

To further analyze the structure of the OP, we consider
the possibility of induced spin-triplet pairing since artifi-
cially constructed heterostructures were already proven to
host spin-triplet Cooper pairs [87]. Here we aim for finding the
dominant component of the induced triplet OP in real space
to scrutinize the behavior of the in-gap states. The fermionic
nature of the electron implies that in the case of triplet pairing,
the spatial component of the wave function has to be odd.
In the context of a multiband Hamiltonian for bulk systems,
this allows the possibility of even parity odd orbital triplet
(EOT) states, which have been shown to be responsible for the
experimentally observed simultaneous appearance of mag-
netism and superconducting state in certain materials [88,89].
In these cases, the translational invariance made it possible
to introduce a proper parity operator for the whole system.
However, since translational invariance is broken for surfaces
and impurities, in order to avoid confusion with Refs. [89–91]
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FIG. 3. The energy-resolved singlet (a),(d) and the norm of the IAT (b),(e) order parameters and the CDOS (c),(f) of Néel spirals for the
Fe19 2a-[100] chains on Au/Nb(110) integrated along the chain. The green dashed lines represent the superconducting gap of Nb (1.51 meV).
Calculated for Néel spirals with rotation angles changed in 5◦ steps between the ferromagnetic (0◦) and the antiferromagnetic (180◦) spin
configurations. The left column shows the fully relativistic case, denoted as SOC = 1, representing the scaling factor for the SOC, while the
right column shows the scalar-relativistic case, SOC = 0.

we shall adopt the term “internally antisymmetric triplet”
(IAT). It is expected that the relativistic Andreev scattering
process (captured accurately by the generalized multiple scat-
tering theory for the superconducting state) yields the largest
contribution for IAT which is antisymmetric with respect to
the orbital degrees of freedom. The common feature behind
all these concepts is that spin-orbit coupling induces triplet
pairing if a singlet pairing state already exists. This statement
is easy to understand within our formalism, because during
the solution of the relativistic Bogoliubov–de Gennes equa-
tion, a mixing occurs between the spin and orbital degrees of
freedom together with the electron-hole character. This type
of symmetry classification of Cooper pairs is important since
we aim to distinguish these features from the odd-frequency
spin triplet pairing which may also appear in many artifi-
cial superconductor-magnet hybrid structures as presented in
Ref. [40]. Therefore, we may also define a DOS-like quantity
to account for the norm of the energy-resolved IAT order
parameter (which is now a matrix in orbital indices):

χ IAT(ε) =
∑

n

∑
i=−1,0,1

− 1

π

∣∣∣∣ImALT i
s

{
Gnn,eh

Ls,L′s′ (ε)
}∣∣∣∣

F
, (4)

with the antisymmetrization in angular-momentum space,
AL{ f (L, L′)} = { 1

2 [ f (L, L′) − f (L′, L)]}, and the projections

on spin-triplets, T 0
s { f (s, s′)} =

√
2

2 ( f ( 1
2 ,− 1

2 ) + f (− 1
2 , 1

2 )),
and T ±1

s { f (s, s′)} = f (± 1
2 ,± 1

2 ), while ||M||F denotes the
Frobenius norm of matrix M. This quantity accounts for the
emergence of IAT pairing and has been plotted in Figs. 3(b)
and 3(e) with and without SOC, respectively. It can be seen
that for zero SOC and for a ferromagnetic (or antiferromag-
netic) configuration, the triplet OP is zero because the SOC is
not inducing any mixing between the spin and the electron-
hole indices. Additionally, there is a very small value of the
singlet OP, and electron-hole mixing.

This is understandable and expected, based on the normal-
state DOS, and it indicates that the electrons are almost
entirely in the normal state. In the case of SOC at its full
value, even in the ferromagnetic chain there appears to be IAT
(triplet) states present. By increasing the spiraling angle, the
mixing between the spin channels becomes more substantial.
The magnitude of the triplet OP is an order of magnitude
larger than the singlet OP for all angles. In principle, there
are all types of states present: zero pairing (normal state),
a small amount of singlet, and much more IAT pairing are
simultaneously possible. Interestingly, a nonzero triplet OP
can be seen at zero energy as well. This means that the ZEP is
not only a state at zero energy, a state localized to the edge of
the chain, but it is also an (IAT) triplet state.
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FIG. 4. The real-space structure of the LDOS and the energy-resolved singlet OP in the presence and in the absence of a ZEP. (a) The
LDOS of the 2a-[100] Fe19 chain on Au/Nb(110) in a Néel-type spin spiral state with 120◦ rotation angle. (b) The energy-resolved local
singlet OP χS(ε, n), and (c) the site-resolved CDOS of the same spiral as in (a). (d), (e), and (f) The LDOS, the χS(ε, n), and the site-resolved
CDOS for the 175◦ spiral, respectively. The superconducting gap of the Nb indicated by green dashed lines. The plots include the values of the
functions only for the Fe sites, while the vacuum positions in between are neglected.

VI. TOPOLOGICAL PROPERTIES OF THE MINIGAP

Band inversion is a key signature of topological super-
conductivity, which can be observed if one investigates the
band structure of infinite chains as a function of momenta.
In finite chains it is not possible to observe band inversion
in the strict definition of the term, as bands are not present.
However, a real-space solution and a momentum-space solu-
tion of the KSDBdG equations for infinite chains should carry
the same information, and one may expect that the signatures
of band inversion—if found in a k-space solution—also ap-
pear in the real-space solution. Therefore, it is expected that
even a finite chain may carry the signatures of topological
superconductivity—provided it is long enough—which then
can be obtained from a real-space calculation of the electronic
states. In the superconducting state, the band inversion can be
made visible by the construction of antisymmetric quantities
with respect to the Fermi level. Based on the particle-hole
symmetry, we found two such antisymmetric quantities which
provide a clean visual picture of band inversion. One such
quantity is the energy-resolved singlet OP, which is known
to be antisymmetric [92] with respect to the Fermi level. As
can be seen in Fig. 4, where the singlet OP is plotted, in the
case of a 175◦ spiral, where no ZEP is present [Fig. 4(d)], the
sign of the singlet OP is uniform on each atom, and the sign
on either side of the minigap remains the same compared to
the appropriate coherence peaks related to the bulk gap. In
stark contrast, for a 120◦ spiral, for example, where a ZEP is
present at the edge atoms of the chain [Fig. 4(a)], it changes
sign prematurely along the chain and the sign of the coherence
peak of the minigap is the opposite of the appropriate bulk

gap’s coherence peak [Fig. 4(b)], which indicates band inver-
sion and, consequently, a topological minigap. The signatures
of band inversion and the appearance of zero-energy edge
states with the bulk-edge correspondence [1] can be regarded
as in silico evidence of the existence of MZMs and topological
superconductivity.

A similar visualization of the band inversion can be ob-
tained based on the quasiparticle charge density of states
(CDOS). In the superconducting state, assigning a unit charge
+e to the electron and −e to the hole, the net quasiparticle
charge density of states can be introduced as CDOS(ε) =
e[DOSe(ε) − DOSh(ε)], where e is the electron charge. Just
as the density of states (DOS), the CDOS can be local to a site
or summed up for all the sites in the chain.

Yet again, according to the particle-hole symmetry, the
CDOS is antisymmetric with respect to the Fermi level (ε =
0), namely CDOS(ε) = −CDOS(−ε). In Figs. 3(c) and 3(f)
one can observe the antisymmetric property of the CDOS
and it can also be concluded that in spirals, where zero-
energy peaks are absent, the negative energy in-gap states have
mainly electronlike character, while the positive energy in-gap
states are mostly composed of holelike states. Figures 3(c) and
3(f) also illustrates that the CDOS, corresponding to the in-
duced minigap, changes sign prematurely at the minigap edge
as a function of energy, which implies that the electron-hole
characters of these states are exchanged. As a function of the
spiraling angle between 20◦ and 150◦, this feature happens
simultaneously with the appearance of the zero-energy state.
Furthermore, the signatures of band inversion can be observed
for lower spiraling angles as well, all the way to 0◦, the
ferromagnetic solution. This indicates that even though the
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gap is filled by in-between states, as we described in Sec. IV,
the state at zero energy in the ferromagnetic state is an MZM,
but it is more extended and overlapping. A similar conclusion
can be drawn from the singlet OP, shown in Fig. 3(a). One
may also notice that neither the CDOS nor the OP shows zero-
energy states due to their antisymmetric property. In Fig. 4
we explore the site-resolved local DOS (LDOS), the energy-
resolved spin-singlet local OP χS (ε, n), and the site-resolved
CDOS. The more interesting behavior can be observed on
the site-resolved CDOS plot, which clearly shows that the
YSR states, corresponding to the minigap, are exchanged
in the internal region if the system is in the topologically
nontrivial phase [Figs. 4(a)–4(c)]. Only at the edges, where
MZMs appear, do the YSR states remain intact (no exchange
of YSR states can be observed). We can arrive at a rather
similar conclusion by studying Fig. 4(b). In fact, this process
of transforming the internal “twisted” YSR states into the “un-
twisted” YSR states at the edges gives rise to the emergence
of zero-energy edge states. Altogether, these features are clear
indications of band inversion and, consequently, a topological
minigap for the spiraling angles where the zero-energy states
are observed at the ends of the Fe19 chain. Therefore, from
this point on, they can be called Majorana zero modes due to
the bulk-edge correspondence principle [1].

Another intriguing finding in Figs. 3(b) and 3(c) (as the
CDOS demonstrates around 20◦ in the fully relativistic case)
is that the gap closing and opening with the continuous change
in spiraling angles may not necessarily imply a change in
the topological behavior as well. Such a change is usually
considered as a rule of thumb in identifying topological su-
perconductivity during experimental realizations. On the other
hand, there can be several reasons behind this observation,
including that a complicated multiband system with SOC
behaves differently from model predictions [89,93], or the gap
closing can cause the emergence of additional MZMs with an
even number [25,30,68], or the gap does not completely close
but only tightens, or this occurs for a finite (and insufficiently
large) chain.

In general, the verification of topological superconduc-
tivity in experiments is a task of great importance. One
possible way to connect our findings to experiments can
happen through the so-called Bogoliubov-angle (the relative
weight of particle and hole amplitudes in the quasiparticles).
According to Ref. [94], it is a measurable quantity using
STM, and it can be measured locally by comparing the ratios
of tunneling currents at positive and negative biases [94].
Therefore, the energy and position-dependent electron-hole
character can be extracted from the STM measurements,
which allows the construction of a suitable quantity that obeys
similar properties to the site-resolved charge density of states
(antisymmetric in energy with respect to the Fermi level).
The measurement of this type of antisymmetric quantities
can support the experimental validation of the topological
nature of experimentally observed zero bias peaks. Further-
more, we mention that the relative weight of the particle and
hole amplitude of the quasiparticle can also be measured with
angular resolved photoemission spectroscopy (ARPES) [95],
allowing to achieve momentum space resolution. Therefore,
this idea can be generalized for investigations of bulk topo-
logical superconductors as well, where band inversion should

be observable in momentum space. On the other hand, further
research is needed in the exact formulation of such a quantity
that is optimally tuned to STM experiments.

VII. CONCLUSIONS

To summarize, using a first-principles-based solution to
the Dirac-Bogoliubov–de Gennes equations, we studied lin-
ear chains of Fe atoms placed on the surface of Au-covered
Nb(110) in the superconducting state. We found that (i) in
agreement with experiments, a ferromagnetic state does not
support a minigap around zero energy; (ii) in a spin spiral
state, however, a minigap emerges at about a 20-deg spiraling
angle with a spin-polarized zero energy state in it. This state
bears all the signatures of being an MZM. It is localized to
the two ends of the chain, it is a spin triplet state, and it is in
a topological gap. At larger spiraling angles, the gap closes.
(iii) We also showed that this state extends to about four to
five atoms, and they more easily overlap in the presence of
spin-orbit coupling. (iv) Moreover, our calculations revealed
that the MZMs bear the characteristic feature of nonunitary
internally antisymmetric triplet states, which are thought to
be responsible for time-reversal symmetry breaking in a large
class of bulk superconductors [90]. (v) We have also proposed
that site-resolved quantities, which are antisymmetric in en-
ergy with respect to the Fermi level, show band inversion and
can serve as an identification of the topological phase. We
made quantitative predictions for the superconducting (sin-
glet) order parameter and the charge density of states, which
fulfills this requirement of antisymmetric behavior. Moreover,
analogous conductance-based quantities can be constructed
which can be measurable with scanning tunneling microscopy
(STM) [94].

In part II of our investigations, we will show that the Majo-
rana Zero Mode we found in the present paper, is quite robust
against various perturbations of the magnetic state. We will
also explore potential routes to non-topological zero energy
edge states, and combine different spin spirals to shed light
on other fascinating - and potentially quite useful - phenom-
ena: the shift of MZMs with changing spiraling angles and
topological fragmentation as a result of phase shifts on the
chain.
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APPENDIX

1. The details of first-principles calculations

As we mentioned in Sec. II, following Ref. [72] the
KSDBdG equations shall be solved self-consistently by as-
suming that the superconducting host has isotropic s-wave
spin-singlet pairing as described by BCS theory [73]. Such
a solution results in self-consistent charge and magnetiza-
tion density and effective pairing potential. However, since
the small superconducting gap is not likely to cause large
modifications in the charge and magnetization density, and
consequently in the atomic potentials, in this paper we fol-
lowed the usual approximation [96] for the effective pairing
potential �eff(�r), meaning that this quantity is fitted to the
experimental value of the superconducting bulk gap of the Nb
host, and zero otherwise, without requiring self-consistency
for �eff while self-consistency is maintained in the charge and
magnetization density. Furthermore, in this work, we imposed
various spin spirals on the direction of the magnetic moments
of the atoms in the nanowire deposited on the surface of
an s-wave superconductor. The calculations were performed
in terms of the screened Korringa-Kohn-Rostoker method
(SKKR), based on a fully relativistic Green’s function formal-
ism by solving the Dirac equation for the normal state [97] and
the Kohn-Sham-Dirac-Bogoliubov–de Gennes (KSD-BdG)
equation for the superconducting state within multiple scatter-
ing theory (MST) [59,60,96]. The chains are included within
an embedding scheme [98], being an efficient method to ad-
dress the electronic and magnetic properties or the in-gap
spectra of real-space atomic structures without introducing
a supercell. In calculations for the Fe/Au/Nb(110) system
consist of seven atomic layers of Nb, a single atomic layer of
Au, and four atomic layers of vacuum between semi-infinite

bulk Nb and semi-infinite vacuum. The Fe impurities are
placed in the hollow position in the vacuum above the Au
layer and relaxed towards the surface by 21%, while the top
Au layer is also relaxed inwards by 2%. The relaxations are
obtained from total-energy minimization in a VASP [99–101]
calculation for a single Fe adatom, and they are used in all
of the calculations. For the potentials we employ the atomic
sphere approximation (ASA), while the normal state is cal-
culated self-consistently in the local density approximation
(LDA) as parametrized by Vosko et al. [102]. The partial
waves within MST are treated with an angular momentum
cutoff of �max = 2. In the self-consistent normal state calcu-
lations, we used a Brillouin zone (BZ) integration with 253 k
points in the irreducible wedge of the BZ and a semicircular
energy contour on the upper complex plane with 16 points
for energy integration. To take into account charge relaxation
around the magnetic sites, the atomic chains are calculated
with a neighborhood corresponding to two atomic shells or
a spherical radius of r = 1.01a around the Fe atoms. This
way the atomic cluster used for embedding the Fe19 chain
contained 339 atomic sites altogether. After having obtained
the self-consistent potentials in the normal state, quantities
in the superconducting state were calculated by a single-shot
calculation by solving the KSDBdG equation with the ex-
perimental band gap � = 1.51 meV [45] used as the pairing
potential in the Nb layers [60]. The BZ integration for the host
Green’s function was performed by using an increasing num-
ber of k points with respect to the normal state, including 1891
points in the irreducible wedge of the BZ. A sufficient energy
resolution of the LDOS in the superconducting gap is acquired
by considering 301 energy points between ±1.95 meV with
an imaginary part of 13.6 µeV related to the smearing of the
resulting LDOS.
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