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Microscopic study of boundary superconducting states on a honeycomb lattice
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We address the problem of boundary s-wave superconductivity on rectangular honeycomb lattices: nanoflakes,
armchair, and zigzag nanotubes. We discuss how the presence of edges and corners in these systems can
significantly alter the superconducting correlations at a macroscopic length scale, leading to either nontrivial
enhancement or suppression of the superconducting gap value near the boundaries. This in turn results in
different critical temperatures of the gap closure at boundaries compared to the bulk gap. The effects are
macroscopic but strongly depend on the atomic-level structure of the boundaries.
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I. INTRODUCTION

Recently the problem of superconductivity near the bound-
aries of a Bardeen-Cooper-Schrieffer (BCS) superconductor
was revisited. The original calculations in BCS theory [1–5]
came to the conclusion that the superconducting gap ap-
proaches the surface of a BCS superconductor with zero
normal derivative. It was shown in Refs. [6–11] that instead
surfaces, corners, and edges of a BCS superconductor have in
general higher critical temperature than the bulk. The effect is
closely connected with the oscillation of density of states near
boundaries, allowing to construct a highly inhomogeneous
solutions of the gap equation that have higher critical temper-
ature than nearly uniform solutions. Although the theoretical
results also indicated that the effect is strongly dependent on
surface quality and hence can be modified by oxidation or dif-
ferent chemical composition of the surface [6,9], nonetheless
there are experimental reports on boundary superconductivity
[12–22]. The previous theoretical studies were primarily fo-
cused on the cases of simplest square or rectangular lattices
or continuum theories. That rises the question of the interplay
between these effects and the existence of nontrivial localized
single-electron states on different lattices. One of the very
simplest example one can consider is the case of a honeycomb
lattice that has nontrivial boundary states [23–29].

To study the interplay between these effects we consider
the problem of boundary and bulk critical temperatures on
a honeycomb lattice. While the realization of various uncon-
ventional superconducting pairing symmetries were proposed
for such lattices (for a review see Ref. [30]) our goal is to
compare the effects of different symmetries of the lattice on
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the boundary effects in Refs. [6–11] and to that end, we
consider the case of the simplest s-wave pairing interaction
within mean-field approximation. Note that a different type
of ordering—edge magnetism—was discussed in graphene
[25,26,31], indeed, in general there will be other types of
order that compete and can win over superconducting states
[32]. However, we do not consider competing orders, such
as magnetism. Despite occasional using terminology for car-
bon systems we will not focus on graphene. Instead we
study a model system with only superconducting ordering and
compare it to the case of other lattice symmetries. The con-
siderations could apply various systems with similar lattice
effects, including ultracold atoms in optical lattices [33,34] or
related to other electronic systems [35–38].

This paper is organized as follows: In Sec. II, we recap
BCS theory for the infinite honeycomb lattice and explain the
peculiarities of superconductivity phase diagram. In Sec. III,
we study nonchiral nanotubes of two edge geometries utiliz-
ing numerical methods and give qualitative result explanation
using local density of states (LDOS) argument. In Sec. IV, we
use similar methods to describe rectangular geometry honey-
comb nanoflakes where corner states come into play.

II. INFINITE STRUCTURE

Let us first look at the infinite honeycomb structure made
from identical atoms [Fig. 1(a)]. We divide these atoms into
two groups (A, B) to form two sublattices. Effective Hubbard
Hamiltonian for the system reads

Heff = − t
∑
〈i,j〉

∑
σ=↑,↓

(a†
i,σ bj,σ + b†

j,σ ai,σ )

− μ
∑

i

∑
σ=↑,↓

(a†
i,σ ai,σ + b†

i,σ bi,σ )

− V
∑

i

(a†
i,↑ai,↑a†

i,↓ai,↓ + b†
i,↑bi,↑b†

i,↓bi,↓). (1)

Here a†
i,σ (ai,σ ) is creation (annihilation) operator for electron

with spin σ on site A in cell which position is described with
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FIG. 1. (a) Honeycomb lattice in real space, where the red (blue)
circles mean an A (B)-sublattice site. (b) 1st Brillouin zone for the
Bloch’s theorem expansion Eq. (A7).

vector i = (n, m), where n (m) specifies horizontal (vertical)
position. The same applies to operators b†

i,σ and bi,σ which
correspond to sites B. In Eq. (1) first term describes kinetic
energy (hopping between nearest-neighbor sites 〈i, j〉 without
spin flip), parameterized by the hopping integral t (t > 0).
The second term associated with chemical potential μ con-
trols filling. The last term describes attraction energy between
electrons in the same site using potential V (V > 0). All pa-
rameters t , μ, V are assumed to be constant in space. The main
focus of this work will be on the physics of boundaries and
boundary superconducting state that was recently discussed
on square lattices and on continuum [6–10,39]. In order to
compare with the previously considered cases, here we focus
on s-wave pairing. Further, all energies, μ, V , and temperature
T , are measured in the units of t for simplicity.

We apply the Hartree-Fock-Bogoliubov mean-field ap-
proximation. The transformed one-particle mean-field Hamil-
tonian reads

HMF = −
∑
〈i,j〉

∑
σ

(a†
i,σ bj,σ + b†

j,σ ai,σ )

− μ
∑

i

∑
σ

(a†
i,σ ai,σ + b†

i,σ bi,σ )

+
∑

i

(�i,Aa†
i,↑a†

i,↓ + �i,Bb†
i,↑b†

i,↓

+ �∗
i,Aai,↓ai,↑ + �∗

i,Bbi,↓bi,↑) + const, (2)

where introduced superconducting mean-field order parame-
ter �i,type (here type means A or B sublattice)

�i,A = −V 〈ai,↓ai,↑〉, �i,B = −V 〈bi,↓bi,↑〉. (3)

This parameter is constant in space in the case of an infinite
system.

One can obtain a well-known self-consistent condition
with integration over the first Brillouin zone [1st BZ,
Fig. 1(b)] by switching to the continuum model (for the de-
tailed derivation see Appendix A):

1

V
= 1

4S1st BZ

∑
s=±1

∫∫
1st BZ

dkxdky
tanh Es

2T

Es
. (4)

This equation contains an implicit temperature dependence of
the energy gap. It can be further simplified (� → 0) to find
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FIG. 2. Infinite honeycomb lattice superconductivity phase di-
agram in chemical potential–attraction onsite potential coordinates
for different critical temperatures. For a given temperature above the
transition line, gap is nonzero and vice versa.

critical temperature Tc1:

1

V
= 1

4S1st BZ

∫∫
1st BZ

dkxdky

(
tanh ε+

2Tc1

ε+
+ tanh ε−

2Tc1

ε−

)
. (5)

This equation allows us to calculate the superconductivity
phase diagram (with V and μ axes): Find the transition be-
tween superconducting (� �= 0) and normal (� = 0) states.
The phase diagram is shown in Fig. 2, where superconduc-
tivity exists above-chosen transition line. Cooling the system
leads to decreasing critical pairing in the region |μ| ∈ [0; 3),
but from Fig. 2 one can see that it is definitely nonlinear
dependence. One can ask two basic questions:

(i) Is there a lower boundary for the curve (how does it
look at T = 0)?

(ii) How does this curve approach zero temperature con-
figuration?

Integral in Eq. (5) was calculated numerically to obtain
results in Fig. 2. Decreasing temperature leads to increasing
numerical errors due to narrowing the region of energies
(|εs| � T ) with the biggest contribution to the integral, so the
questions cannot be answered using a numerical approach.
One can analytically show (see Appendix B) that dominant
contribution for the integral in Eq. (5) close to zero tempera-
ture will be

1

V
∝ − ln T (6)

for μ ∈ (0; 3). This tendency is also verified numerically with
the result that it holds for |μ| ∈ (0; 1) ∪ (1; 3), T < 0.01 and
for higher temperatures when |μ| is far from exceptional
points 0, 1, 3. The points |μ| = 1 correspond to global max-
ima of the density of states (DOS) [Fig. 3; they are also called
Van Hove singularities because they come from the vanishing
slope of energy band structure E (k)]. The point μ = 0 de-
scribes a half-filled band and corresponds to a local minimum
of DOS (Fig. 3). The minimum can be explained by the
following: When approaching the point μ = 0 the intersection
length of the Fermi surface and energy band decreases to zero
(for μ = 0 the Fermi surface crosses the energy band at six
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FIG. 3. Normalized DOS for an infinite honeycomb lattice
without interaction (V = 0) for μ = 0, T = 0.1. The orange line
corresponds to the Fermi level.

points). For the points |μ| = 3 which correspond to the empty
(filled) band, there is an interplay of the two above-mentioned
mechanisms with the result that DOS tends to zero. When
approaching absolute zero, the DOS behavior close to excep-
tional points (extremes) becomes sharper [26]. As shown in
Appendix B the proportionality factor in Eq. (6) is inversely
proportional to the modulus of gradient of the energy band
at the Fermi level. DOS is also inversely proportional to the
modulus of gradient. Consequently, the proportionality factor
in Eq. (6) is a monotonically increasing function of DOS. This
explains the behavior of the phase diagram in Fig. 2.

It also answers the first question by showing that we have
V = 0 boundary at T = 0 in the region of chemical potential
where Fermi surface has nonzero length [|μ| ∈ (0; 3)].

III. NANOTUBES

Let us consider nanotubes with open armchair (periodic in
the x direction, Fig. 4) and zigzag (periodic in the y direction)
edges. Further, we call them armchair and zigzag nanotubes,
respectively. Free electron wave functions for the first case
are extended states which are described by sine functions [26,
40–43]. However, a zigzag nanotube has both extended and
localized wave functions [40,43]. Localized ones are called
edge states and are described by exponents which describe
the localization of the states near boundaries. The number of
edge states equals Ny/3 in the limit of wide (Nx � 1) zigzag
nanotube [23,43]. Hence, the relative amount of edge states is
(3Nx )−1 of the total number of states.

We employ linearized gap equation approach (Appendix C)
to examine superconducting phase transition in the two types
of nanotubes. Wave functions and eigenenergies are used from

x
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⎪⎪
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⎪
⎪⎩

⎧ ⎪ ⎨ ⎪ ⎩

xN
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FIG. 4. Honeycomb lattice transformation to a rectangular shape.

Ref. [43]. System size we used varied from 40×40 (8.4×4.8
nm) to 70×70 (14.8×8.5 nm). Calculation of the K matrix
[Eq. (C2)] is a computationally expensive problem because it
scales as O[(NxNy)4]. The other system sizes (Nx �= Ny) were
also studied and they were identical to the case Nx = Ny result.
System-size effect for the above-mentioned systems range,
∀μ, T > 0.1, is less than 0.1% (in V ). The effect is more
significant for smaller systems. For temperatures less than
0.05 system-size effect is noticeable even for 40×40 systems.
This manifests itself in the form of oscillations superimposed
on the overall trend of V (μ) function. It can be seen on the
bottom of Figs. 5(a) and 6(a). The main reason is the follow-
ing: a “weight function” [fraction in Eq. (C2)] is localized in
the region |εs(k)|, |εs′ (k′)| � T , density of states discretizes
for a lattice, and, therefore, a smooth shift in chemical po-
tential leads to a steplike change in the amount of nonzero
values of K matrix and consequently to significant change in
the eigenvalue which is proportional to V −1. The amount of
nonvanishing elements of the K matrix is big for high T and
a discrete change in the amount does not have a significant
effect. The lowest investigated temperatures are set to be 0.03
and 0.04 for armchair and zigzag nanotubes, respectively.
The lowest temperatures are chosen as temperatures when
the above-mentioned oscillations are visibly detected. They
are different for armchair and zigzag nanotubes due to the
different density of states. Calculations of density of states
for infinite nanoribbons (it is the same as infinite radius nan-
otubes) show peaky structure [26], and therefore increasing
system size will not solve the problem for the low tempera-
tures. Here we did not discuss the influence of wave functions
in Eq. (C2) because they are temperature independent.

As a check of our results we employed a self-consistent
approach using spectral decomposition of Bogoliubov–de
Gennes equations (A3) with Chebyshev polynomials [44–46]
up to order 2000. It allows us to calculate order parameter
distribution for a given set of μ, V , and T . We used it in the
following way: Using the half-division method we are looking
for the V value which gives the largest � ∈ [10−5; 10−4] in the
sample after 1000 iterations of self-consistent equation (A4)
for given μ and T . The method allows us only to estimate
transition V for given μ and T because we do not achieve
full convergence. It always gives us a lower boundary for V ,
which is a few percentages lower than V values found from
the linearized gap equation for T > 0.1. Temperature growth
leads to a decrease in the difference. However, the spectral
Chebyshev polynomial decomposition approach also fails for
the low temperatures due to the influence of Gibbs oscillations
[47].

A. Nanotubes with armchair boundary

Figure 5(a) shows a phase diagram of the superconducting
phase transition for an armchair nanotube. Here the critical
temperature is called Tc2 because, in general, it differs from
the critical temperature for an infinite sample (Tc1). We sep-
arated the diagram into two regions (1 and 2) where one can
note different distributions of the order parameter. In the first
region, � on the boundaries (top and bottom of the sample,
because the system is periodic in the x direction and open in
the y direction) is higher than � in the center of the sample and
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FIG. 5. (a) Phase diagram for an armchair nanotube (the system is periodic in the x direction and free in the y direction). Solid lines
correspond to constant critical temperature curves with Tc2 written close to the line. Big numbers 1 and 2 numerate the regions with different
order parameter distributions illustrated in (b). The dashed line is the “transition line” between the two regions (� in the bulk and on the
boundary are equal). (c) Relative change in the critical temperature for an armchair nanotube in comparison to the infinite sheet. Solid lines
are constant-level curves. The dashed line is the same as in the part (a).

the second region with the opposite criterion. It does not mean
that on the dashed line distribution of the order parameter is
uniform (at the line sites with maximal � are located close to
the boundary).

Figure 5(b) shows the typical order parameter distributions
(normalized to unity) in the regions. Here we used square
lattice representation by lattice transformation (Fig. 4). One
can see that in the first region the largest gap lies on the
boundary; however, in the second region, it lies in the center.
Asymptotically, one can describe boundary gap enhancement
in region 1 as an exponentially decaying function �(iy) ∝
(e−y/ξ + e(y−Ly )/ξ ), where ξ (μ, T ) is a coherence length and
Ly is the nanotube length. This function works badly on the
boundaries due to the presence of short-range oscillations (the

FIG. 6. (a) Phase diagram for a zigzag nanotube (the system is
periodic in the y direction and free in the x direction). Solid lines
correspond to constant critical temperature curves with Tc2 written
close to the line. Big numbers enumerate the regions with different
order parameter distributions illustrated in (c). Dashed lines are the
“transition lines” between the regions (� in the corresponding loca-
tions are equal). (b) Relative change in the critical temperature for a
zigzag nanotube in comparison to the infinite sheet. Solid lines are
constant-level curves. Dashed lines are the same as in (a).

Wilbraham-Gibbs phenomenon [47,48] which is also called
Friedel oscillations) but can describe tails that overlap in the
bulk. Fitting the function to obtained gap distributions [like in
Fig. 5(b)] one can come to the following conclusion: ξ (μ, T )
is an increasing function of μ and a decreasing function of T
in the region 1. In region 2 boundaries lead to suppression of
the gap which can be described by a similar function. Here
the coherence length ξ (μ, T ) is a decreasing function of both
parameters.

The relative change in the critical temperature in compar-
ison to the infinite system [Eq. (5)] is shown in Fig. 5(c).
Here we restricted the maximal value to 1 (100%). Almost
the whole investigated region has Tc2 > Tc1 which means that
superconductivity in the armchair nanotube is enhanced in
comparison to the infinite sheet. Combining the result with
gap distributions [Fig. 5(b)] we can say that superconductivity
survives on the boundaries. However, one can come to the
opposite result (boundaries suppress superconductivity) for
big values of μ (almost filled band). One can see that increase
in chemical potential leads to a monotonic decrease of relative
change in critical temperature and finally leads to negative
values.

B. Nanotubes with zigzag boundary

Now we switch to the discussion of a zigzag nanotube
which is a sample that periodic in the y direction and open in
the x direction (Fig. 6). Here one can note a significant change
in the behavior in the region |μ| � 0.5 [Fig. 6(a)], where V is
an increasing function of μ and lies lower than for the infinite
sheet (Fig. 2) and the armchair nanotube [Fig. 5(a)]. In this
case, the gap is not uniform in the y direction, because of the
zigzag boundary, where only half of the “boundary” atoms
have two neighbors [Fig. 6(c) where zoom is shown for 6×6
boundary region]. Again we divide the whole phase diagram
into a few regions. Here in regions 1 and 1′ the average gap on
the boundary is bigger than in the center [Fig. 6(c)]. In region
1, the order parameter in the center is less than 0.001 (after
gap normalization). Regions 2 and 3 have the biggest gap in
the center [Fig. 6(c)]. We decided to name them differently
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because of their wide separation in the parameter space. If one
defines a boundary as atoms that have an absent neighbor [like
red atoms on the right side in Fig. 6(c)], then regions 2 and 3
will slightly change their size and shape without qualitative
differences. Another reason to divide regions 2 and 3 is the
quantitative gap suppression on the boundaries [Fig. 6(c)]: In
region 2 it drops only to half of the � in the bulk; however, in
region 3 the suppression is one order higher.

Analyzing typical gap distributions for zigzag nanotube
[Fig. 6(c)], one can note that enhancement (in regions 1 and 1′)
or suppression (in regions 2 and 3) originates from the bound-
ary atoms which have two neighbors. The exceptionality of
the atoms is also underlined in the wave functions [43] where
there are two zero energy states with nonzero wave function
only at the sites. There are also approximately Ny/3 − 2 edge
states which have almost zero energy. They are the main rea-
son for the significant difference between the zigzag nanotube
phase diagram and previously considered systems.

Relative change in the critical temperature in comparison
to an infinite sheet is shown in Fig. 6(b). Here we also re-
stricted the maximal value to 1. In this case in the region
|μ| � 0.4 there is a great increase in critical temperature
which can achieve order of hundreds that correspond to the
edge localized nonzero gap states [one can see this fact by
comparison critical temperatures in the region |μ| � 0.4, V �
2.2 in Figs. 2 and 6(a)]. In region 1′, the typical increase in
critical temperature has an order of 1%. Note that the regions
with a decrease of critical temperature (in comparison to the
infinite sample) which almost fully overlap with regions 2
and 3. In contrast to the armchair nanotube where the dashed
line (which corresponds to equal � on boundaries and in the
center) correlates with the line Tc1 = Tc2 only in a small region
of V [Fig. 5(c)]. Note that the cross section for constant V
has nonmonotonic behavior in the relative change in critical
temperature [Fig. 6(b)].

C. LDOS argument for nanotubes

Boundaries modify edge local density of states and it
causes a change in critical temperature in the region. In the
subsection, we investigate the interplay between the LDOS
and superconductivity.

Thermalized LDOS at energy E for the noninteracting
model (V = 0) can be calculates as [49]

LDOSi(E ) = −
∑
s,k

|ws,k(i)|2 f ′[E − εs(k)], (7)

where energies εs(k) are defined in Eq. (A9). In BCS theory
[2] the bulk critical temperature for an infinite sample is pro-
portional to exp[−(V DOS)−1]. Here we consider local critical
temperature and substitution DOS → LDOS for a noninter-
acting system. We note that boundary superconductivity is a
complex phenomenon with many factors and direct substitu-
tion of LDOS is not necessarily sufficient for the assessment
of the situation because it can oscillate at length scales much
smaller than superconducting coherence lengths, leading to
nontrivial solutions [6,9].

There is only one unique direction parallel to the nanotube
axis for an armchair nanotube (Fig. 7). LDOS in the direction
at half-filling (μ = 0) and T = 0.1 is shown in Fig. 7. It is

FIG. 7. LDOS for an armchair nanotube without interaction
(V = 0) for μ = 0, T = 0.1. The orange plane corresponds to the
Fermi level.

normalized by the maximal LDOS value in the sample. Here
one can see significant deviations from bulk DOS (which can
be seen for the large iy values in Fig. 7) in the 10 sites adjacent
to the boundary. Taking into account chemical potential just
shifts the picture on E axis by μ. Note that LDOS on the
boundary sites varies when moving from the boundary. Let
us consider average LDOS on iy ∈ [0; 14] (Fig. 7). Figure 8
shows the difference between the averaged boundary LDOS
and bulk LDOS as a function of chemical potential for dif-
ferent temperatures. Here one can see that the point where
the difference is zero (LDOSes are equal) moves to smaller μ

values when T increases. The line with equal critical temper-
atures for an armchair nanoribbon and the infinite sample is
noted by “0” in Fig. 5(c). Increasing the temperature (moving
upwards along the “0” line) leads to a decrease in chemical
potential. The LDOS model (Fig. 8) captures qualitative be-
havior; however, quantities of μ differ by 8–15% from the
values in Fig. 5(c).

Now we apply the method for a zigzag nanotube. There are
two unique directions parallel to the nanotube axis for a zigzag
nanotube (Fig. 9). In one of the directions, the atom at site 0
is not a true boundary atom because it has all three bonds.
The atom has an LDOS similar to the bulk (Fig. 9 which is
normalized by the maximal LDOS value in the sample). In
the other direction, the boundary atom LDOS is completely
different from the bulk LDOS (Fig. 9). The reason is the

FIG. 8. Difference between averaged LDOS at 15 boundary sites
of an armchair nanotube and LDOS in the bulk of the system as a
function of chemical potential
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FIG. 9. LDOS for a zigzag nanotube without interaction (V = 0) for μ = 0, T = 0.1. The orange plane corresponds to the Fermi level.

existence of edge states with close-to-zero energy which are
localized close to the boundaries [25,40,43,50]. In the case
of a zigzag nanotube, approximately five sites adjacent to the
boundary have different LDOS from bulk LDOS which is
twice smaller region in comparison to an armchair nanotube.
Figure 10 shows the difference between boundary LDOS (av-
eraged over 15 adjacent to the boundary sites in each of the
directions) and bulk LDOS as a function of μ. Note that if
the value is greater than zero, it means that we have a zigzag
edge state; otherwise, we have a bulk state. In Fig. 10 one can
see qualitative similarity with Fig. 6(c): Region μ ∈ (0.3; 1.2)
with negative LDOS difference values for T < 0.36 corre-
spond to the region 2 in Fig. 6(a) (where maximal Tc2 = 0.19).
The second similarity is the quantitative concurrence of the
boundary between regions 1′ and 3 in Fig. 6(a) and the points
for μ ∈ (2; 2.4) (Fig. 10) where LDOS difference equals zero.
The relative difference is less than 2%.

IV. RECTANGULAR FINITE SAMPLES

There are four possible finite rectangular geometries with
honeycomb structure (Fig. 11). One of them (even Nx and
odd Ny) has a “closed structure,” which means that each atom
has at least two neighbors. Three other geometries have two
atoms which have only one neighbor. We carried out a similar
to the previous section investigation of the four structures.
The result is that the three geometries have qualitatively and
quantitatively similar phase diagrams which differ from the
results for the “closed structure.” Therefore, first, we consider
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FIG. 10. Difference between averaged LDOS at 15 boundary
sites (in two directions from Fig. 9) of a zigzag nanotube and LDOS
in the bulk of the system as a function of chemical potential.

the case of even Nx and odd Ny geometry and then switch to
the three other cases which will be discussed in the example
of even both Nx and Ny geometry.

A. The “closed structure” case

On the phase diagram [Fig. 12(a)] one can distinguish five
regions with different order parameter distributions. There are
four locations where we determine the gap: In the center, in
the corners, on vertical and horizontal boundaries. The gap
is the same in all corners due to the system symmetry. We
will use the average gap value for the boundaries because the
order parameter oscillates (without sign change) on vertical
boundaries and is also not uniform on horizontal ones (it
changes close to the corners). We define regions 1 and 4
as regions where the gap on the vertical boundary is bigger
than the gap in three other locations. In the same way, we
define regions 2 (the biggest gap is on the horizontal bound-
aries), 3 (in the corners), and 5 (in the center). The order
parameter is enhanced on the zigzag edges and normalized
� is smaller than 0.001 in the bulk of the sample in the first
region [Fig. 12(c)]. In the second region horizontal (armchair)
boundaries give rise to the gap enhancement [Fig. 12(c)]. Here
the gap in the bulk is still small, but the boundaries are only
slightly suppressed in the corners. The biggest region in the V ,
μ parameter space is the third one, where the gap is localized

Even Odd

O
dd

Ev
en

xN

y
N

FIG. 11. Possible rectangular geometries of the finite-size hon-
eycomb lattice.
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FIG. 12. (a) Finite rectangular nanoflake (Nx even, Ny odd) phase
diagram. Solid lines correspond to constant critical temperature
curves with Tc2 written close to the line. Big numbers enumerate
the regions with different order parameter distributions illustrated in
(c). Dashed lines are the “transition lines” between the regions (�
in the corresponding locations are equal). (b) Relative change in the
critical temperature for the rectangular nanoflake in comparison to
the infinite sheet. Solid lines are constant-level curves. Dashed lines
are the same as in (a).

in the corners [Fig. 12(c)]. It is a new gap distribution state
which was not observed in nanotubes (Sec. III) because they
do not have corners. Region 4 has an increase in the gap on
zigzag edges; however the gap in the bulk is also significant
[Fig. 12(c)]. In region 5, the gap is suppressed near all bound-
aries [Fig. 12(c)).

The relative change in the critical temperature in compari-
son to the infinite sheet is shown in Fig. 12(b) (we still restrict
the maximal value to 1). Note the monotonic decrease of the
relative change when increasing band filling (μ). The biggest
increase is still located for small μ and V < 2.5 where the gap
is localized on zigzag edges. In region 2, an increase in critical
temperature has an order of 10% where the gap is localized
on armchair edges. In region 3, it varies from no gain to 30%
increase. In region 4, increase is a few percentages where bulk
comes into play. Almost all of region 5 has a reduction of
critical temperature due to suppression on the boundaries.

B. The “nonclosed structure” case

We deal with three structures illustrated in Fig. 11 (except
the top left one) in the subsection. They have the following
common things: two corners are usual ones (like in the previ-
ous subsection) and the rest two have an atom with only one
bond. The three structures have different arrangements of the
corners; however, their phase diagrams almost coincide. That
is why we will discuss only one geometry: the even Nx and Ny

case.
We also defined five regions on the phase diagram

[Fig. 13(a)]. Definitions of regions 2, 4, and 5 remain the
same: the biggest gap on armchair (horizontal) boundaries,
zigzag (vertical) boundaries, and in the center, respectively.
However, now we have two different types of corner states:
usual corners and corners with a single bond atom. The gap
in the latter type of corner is the biggest in the system in

FIG. 13. (a) Finite rectangular nanoflake (Nx and Ny even) phase
diagram. Solid lines correspond to constant critical temperature
curves with Tc2 written close to the line. Big numbers enumerate
the regions with different order parameter distributions illustrated in
(c). Dashed lines are the “transition lines” between the regions (�
in the corresponding locations are equal). (b) Relative change in the
critical temperature for the rectangular nanoflake in comparison to
the infinite sheet. Solid lines are constant-level curves. Dashed lines
are the same as in (a).

region 1. The largest gap in the system is located in the usual
corners in region 3 of the phase diagram in Fig. 13(a). Region
2 in parameter space became smaller in comparison to the
“closed structure” case [Fig. 12(a)] due to the expansion of
region 1. Regions 4 and 5 remained approximately the same.
Note that maximal critical temperature increased from 0.5 (for
nanoribbons and “closed structure” finite sample) to 0.6 in the
same considered range of μ and V .

Gap distributions 2–5 for the nanoflake [Fig. 13(c)]
are similar to those described in the previous subsection
[Fig. 12(c)]. The gap distribution in region 1 [Fig. 12(c)] is
similar to the distribution in region 3. However, it is localized
even in the smaller sample region. The main reason is an atom
with one bond can have incredibly high critical temperature
and due to the proximity effect; it opens a gap for a few
neighboring sites. It can be considered similar to a single
impurity effect.

Relative change in critical temperature for the structure is
shown in Fig. 13(b). Here the region of |μ| > 1 is similar to
the one in Fig. 12(b) so we will discuss only |μ| � 1. The
range of μ, V parameters with a relative increase higher than 1
is the biggest in comparison to all considered structures. For V
in the range [1.5; 2] increasing the chemical potential leads to
a rapid decrease in the relative change in critical temperature
in region 1.

One can explain transitions in the finite sample between
regions with different gap distributions from an energetic
point of view. From Secs. II and III, we know the critical
temperatures for the bulk state and boundary (armchair and
zigzag) states, respectively. Consequently, one can calculate
boundaries between the three regions (bulk and two boundary
states) on the V (μ) phase diagram. The method is described
in Appendix D with results quantitatively similar to phase
diagrams in Figs. 12(a) and 13(a).
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V. CONCLUSIONS

In conclusion, recently the problem of superconductiv-
ity near boundaries of a BCS superconductor was revisited
showing that scattering from the surface is very important
and one cannot apply simple approximations for averaging
over Friedel oscillations of density of states [6–11]. These
references studied the problem in continuum and on a square
lattice. Here we studied interplay of this physics with the
physics of nontrivial single-electron boundary states. To that
end, we considered one of the simplest examples: The prob-
lem of superconductivity on a honeycomb lattice with s-wave
pairing interaction. We found that the boundary superconduc-
tivity in that case allows a great diversity of patterns. The
gap patterns include surface superconductivity, including the
one with normal bulk, and corner superconductivity but also
suppression of superconducting gaps at various surfaces.

For the cases of an armchair and zigzag nanotubes, there
are two possible gap states: enhanced or suppressed gap at
the boundary. The latter state is usually observed for an al-
most filled (empty) band. However, for a zigzag nanotube,
the such state also exists for a filling close to the M point
in the Brillouin zone (μ = 1) and pairing potential V < 2.
In the case of an armchair nanotube gap does not depend
on the azimuth; however, a zigzag nanotube has nonuniform
gap distribution in the azimuth direction due to the alternation
of atoms with two and three bonds on the edges. A zigzag
nanotube has a drastically different superconductivity phase
diagram (in V and μ axes) from an infinite sample: In the
region of small doping (|μ| < 0.4) the pairing potential is
much smaller than V∞ for a given critical temperature. In the
case of fixing V , it means that we can get hundreds of times
higher critical temperature for zigzag nanotube boundaries
(because of logarithmic dependence V on critical temperature
for infinite sample).

A finite rectangular honeycomb sample has at least four
different gap states. The first two of them are the boundary
states with gap enhancement on the boundaries that were
found in nanotubes: either zigzag edge state or armchair edge
state. The third one is a corner state with gap enhancement.
For one of four rectangular geometries, the state is single,
because all corners are identical. However, three other rectan-
gular geometries have two types of corners: where boundary
atoms have two bonds and a type where in the corner one atom
has only one bond. The latter state nonzero gap is localized
in a smaller sample region in comparison to the first type
corner state. The corner state with a single bond atom is more
energetically favorable than the zigzag boundary type state
for small values of doping (|μ| < 0.7) due to lower V for a
given critical temperature. Consequently, the state has an even
higher critical temperature. The fourth gap state is the state
where boundaries and corners lead to suppression of critical
temperature, which emerges for an almost-filled band.

If one considers the superconducting transitions of a half-
filled rectangular honeycomb lattice sheet, one will see the
following picture during the cooling process. First, local su-
perconductivity emerges in the corners with a single bond

atom (if it exists in the sample). Then (for lower tempera-
tures) nonzero gap appears on zigzag boundaries and later on
armchair boundaries. Finally, the superconducting gap opens
in the bulk. However, for an almost filled/empty band super-
conducting critical temperature in the bulk is higher than the
critical temperature which corresponds to surface states. In
this case boundaries and corners lead to the suppression of
the gap.

We note that the calculations are based on mean-field ap-
proximation and these critical temperatures will be suppressed
by fluctuations in practice. However, short-range order could
still be present in low-dimensional samples. For example, su-
perconductivity was observed even in quasi-zero-dimensional
systems [51–54]. Moreover, some low-dimensional systems
find practical applications: Consider, for example, supercon-
ducting nanowires, which serve as single-photon detectors
[55]. So edge superconductivity may find similar applica-
tions. The broader implication of the findings is that they
illustrate that the system with normal bulk and nontrivial
single-electron surface states can have a strong dependence
on critical temperature and gap value on the surface. Some of
these features should also persist in multilayer or twisted bi-
layer graphene that may also, under certain conditions, exhibit
superconductivity only on boundary layers.
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APPENDIX A: DERIVATION OF SELF-CONSISTENT
EQUATIONS FOR LATTICE AND CONTINUUM MODELS

Mean-field Hamiltonian Eq. (2) is quadratic and it can be
diagonalized with the following Bogoliubov transformation
for a unit cell consisting of two atoms [56]:(

ai,σ

bi,σ

)
=

′∑
ν

(
uν

i

yν
i

)
γν,σ − σ

′∑
ν

(
vν∗

i

zν∗
i

)
γ

†
ν,−σ . (A1)

Here operator γ †
ν,σ (γν,σ ) creates (annihilates) a quasiparti-

cle in the state ν with the spin σ (σ =↑= 1, σ =↓= −1)
and the prime sign means summation over states with
positive excitation energy. These operators satisfy the
standard anticommutation relations {γν,σ , γ

†
ν ′,σ ′ } = δν,ν ′δσ,σ ′ ,

{γν,σ , γν ′,σ ′ } = {γ †
ν,σ , γ

†
ν ′,σ ′ } = 0. Diagonalized Hamiltonian

reads

HMF = Eg +
′∑
ν

∑
σ

E νγ †
ν,σ γν,σ , (A2)

where Eg is ground-state energy. E ν are excitation energies
(we are looking for E ν > 0) which can be obtained from the
following system of Bogoliubov–de Gennes equations with
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self-consistent conditions:

∑
j

[
H0(i, j) �(i, j)

�†(i, j) −H∗
0 (i, j)

]⎛
⎜⎜⎜⎝

uν
j

yν
j

vν
j

zν
j

⎞
⎟⎟⎟⎠ = E ν

⎛
⎜⎜⎜⎝

uν
i

yν
i

vν
i

zν
i

⎞
⎟⎟⎟⎠, (A3)

�i,A = V
′∑
ν

uν
i v

ν∗
i tanh

E ν

2T
, �i,B = V

′∑
ν

yν
i zν∗

i tanh
E ν

2T
. (A4)

where H0(i, j) and �(i, j) are 2×2 matrices. Using coordinate form of vectors i = (n, m) and j = (p, r) one can get explicit
expression for the matrices:

H0(i, j) = −
[

μδi,j δi,j + δp,n−1(δr,m+1 + δr,m−1)

δi,j + δp,n+1(δr,m+1 + δr,m−1) μδi,j

]
, (A5)

�(i, j) =
(

δi,j�i,A 0

0 δi,j�i,B

)
. (A6)

They satisfy relations H∗
0 (i, j) = H0(i, j), �T (i, j) = �(i, j)

as a consequence half of energies E ν have to be positive.
This comes from the theorem that if we know eigenvec-
tor (uν

i , yν
i , v

ν
i , zν

i )T corresponding to eigenenergy E ν for
Eq. (A3), then eigenvector (−vν

i ,−zν
i , uν

i , yν
i )† is the solution

for the same equations with eigenvalue −E ν .
The eigenvalue problem [Eq. (A3)] can be significantly

simplified in the limit of the infinite size of the system. Due to
transnational and rotational symmetries �i,A = �i,B = � in
this case. We use the translational symmetry in both x and
y directions because the order parameter is constant in the
above-mentioned limit. Applying Bloch’s theorem one can
expand eigenvectors in plane waves for i = (n, m):⎛

⎜⎜⎜⎝
uν

i

yν
i

vν
i

zν
i

⎞
⎟⎟⎟⎠ = 1√

NxNy/2

∑
kx,ky

ei(kxn+kym)

⎛
⎜⎜⎜⎝
Uk

Yk

Vk

Zk

⎞
⎟⎟⎟⎠, (A7)

where Nx (Ny) is number of atoms in x (y) direction and kx and
ky are wave numbers which located in the first Brillouin zone.
This Brillouin zone [Fig. 1(b)] is halved in the kx direction
and compressed 2/

√
3 times in the ky direction in comparison

to the conventional choice of Brillouin zone for honeycomb
lattice (which has a shape of regular hexagon with radius 4π/3
for the choice of unit length between nearest sites). Its area
S1st BZ = 2π2. Here ky has Ny different values, and kx has Nx/2
values because in the x direction the unit cell that we chose
consists of 2 atoms.

Substituting Eq. (A7) to Eq. (A3) and solving matrix equa-
tion one can obtain eigenvalues Es:

Es = ±
√

ε2
s + ��∗, (A8)

εs = −μ + s · ε0(kx, ky),

ε0(kx, ky) = √
3 + 4 cos kx cos ky + 2 cos 2ky, (A9)

where we introduced auxiliary functions εs and parameter
s = ±1.

Eigenvectors that correspond to eigenvalues Eq. (A8) have
the form⎛
⎜⎜⎜⎝
Uk,s

Yk,s

Vk,s

Zk,s

⎞
⎟⎟⎟⎠ = 1

2
√

Es(εs + Es)

⎡
⎢⎢⎢⎢⎣

− s(1+2e−ikx cos ky )(εs+Es )
ε0(kx,ky )

εs + Es

− s�∗(1+2e−ikx cos ky )
ε0(kx,ky )

�∗

⎤
⎥⎥⎥⎥⎦. (A10)

These eigenvectors are normalized with the rule
(Uk,s,Yk,s,Vk,s,Zk,s)(Uk,s,Yk,s,Vk,s,Zk,s)† = 1.

Let us simplify expression for order parameter [Eq. (A4)]
using results (A7) and (A10):

�i,B = � = V
1

NxNy/2

∑
s=±1

∑
kx,ky

YkZ∗
k tanh

Es

2T

= 2V

NxNy

∑
s=±1

∑
kx,ky

(εs + Es)�

4Es(εs + Es)
tanh

Es

2T

= V

2NxNy

∑
s=±1

∑
kx,ky

�

Es
tanh

Es

2T
. (A11)

Here we switched from summation over ν in (A4) to summa-
tion over s only for positive energies Es (A8). This expression
can be further simplified in assumption of constant � and with
change summation over kx and ky to integration in the limit
Nx, Ny → ∞:

1 = lim
Nx,Ny→∞

V

2NxNy

∑
s=±1

∑
kx,ky

tanh Es
2T

Es

= lim
Nx,Ny→∞

V

2NxNy

∑
s=±1

NxNy

2S1st BZ

∫∫
1st BZ

dkxdky
tanh Es

2T

Es

= V

4S1st BZ

∑
s=±1

∫∫
1st BZ

dkxdky
tanh Es

2T

Es
. (A12)

Considering self-consistent relation for A sites one can
come to an identical result.
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APPENDIX B: ZERO TEMPERATURE LIMIT
OF SELF-CONSISTENT EQUATION

Let us look at a self-consistent equation for a general two-
dimensional lattice case:

1

V
= C

∫∫
1st BZ

dkxdky
tanh E

2T

E
, (B1)

where C is some coefficient proportional to the area of the
1st BZ, E is energy which includes shift by chemical poten-
tial. We can divide the integral into two parts depending on
the energy value: energies above and below some threshold
(Etr). We can clarify constraints to the threshold in the form
T � Etr � 1. Note that we are approaching zero temperature,
so constraints can be satisfied. Equation (B1) can be rewritten
as

1

V
=C

∫∫
|E |>Etr

dkxdky

|E | + C
∫∫

|E |�Etr

dkxdky
tanh E

2T

E
. (B2)

The first integral does not depend on the temperature. Further,
we look only at the second integral. Energy is small, so it can
be expanded into a series:

E ≈ α(μ, k‖) · k⊥, (B3)

where we chose other momentum coordinates: k‖ is the mo-
mentum parallel to the Fermi surface, k⊥ is the momentum
perpendicular to the above-mentioned direction, and α is the
modulus of gradient in the point (μ, k‖). The second integral
in Eq. (B2) can be calculated as follows:∫∫

|E |�Etr

dkxdky
tanh E

2T

E
≈

∫∫
|E |�Etr

dk‖dk⊥
tanh E

2T

E

= 2lk‖

α

∫ Etr

0
dE

tanh E
2T

E

≈ 2lk‖

α

(
ln

Etr

2T
+ ln

4eγ

π

)
, (B4)

where lk‖ is the length of Fermi surface and γ is Euler’s con-
stant. Here we assumed a constant modulus of the gradient.
However, it depends on k‖ in general. Result (B4) can be used
as a lower boundary for the integral if we take αmax for a given
chemical potential and vice versa.

The final result for self-consistent equation (B1) is as fol-
lows:

1

V
= C

(∫∫
|E |>Etr

dkxdky

|E | + 2lk‖

α
ln

4eγ

π
+ 2lk‖

α
ln

Etr

2T

)
.

(B5)

The first two terms do not depend on temperature, so when ap-
proaching absolute zero one can neglect them in comparison
to the last one.

The same result can be obtained in a bit different way. Let
us calculate partial derivative of Eq. (B1) with respect to the
temperature:

∂
(

1
V

)
∂T

= − C

2T

∫∫
1st BZ

dkxdky

T cosh2
(

E
2T

) . (B6)

The integral has the following bounds:

Imin =
∫∫

1st BZ

dkxdky

T exp
( |E |

T

) , Imax = 4Imin. (B7)

The exponent is localized in the region |E | � T . Using ex-
pansion Eq. (B3) and switching to coordinates k‖, k⊥ bounds
Eq. (B7) have the form

Imin ≈ 2lk‖

αmax
, Imax ≈ 8lk‖

αmin
. (B8)

Therefore, partial derivative with respect to T Eq. (B6) has
bounds

− lk‖C

αmaxT
�

∂
(

1
V

)
∂T

� − 4lk‖C

αminT
. (B9)

The result has the same consequence: We have a diver-
gence of the partial derivative when approaching absolute
zero, which means that V → 0. Note that the derivation works
only in the case when Fermi surface has nonzero length. The
same conclusion can be obtained also for multiband systems.

APPENDIX C: LINEARIZED GAP EQUATION APPROACH

When the superconducting transition is second order at the
mean-field level (all �i → 0 when T → Tc) one can write
Bogoliubov–de Gennes equations (A3) up to the leading order
in �:

1

V
�i,type =

∑
i′,type′

Ki,type,i′,type′�i′,type′ , (C1)

Ki,type,i′,type′=
∑
s,s′

∑
k,k′

1 − f [εs(k)] − f [εs′ (k′)]
εs(k) + εs′ (k′)

w∗
s,k(i, type)

× w∗
s′,k′ (i, type)ws,k(i′, type′)ws′,k′ (i′, type′),

(C2)

where f (E ) is the Fermi distribution function [ f (E ) =
(1 + eE/T )−1] and wn are the one-electron wave functions in
the normal state (when � = 0) corresponding to eigenener-
gies εn. They can be found in many papers [26,43,50]. Here
summation over i′, type′ means summation over all system
sites, summation over k means summation over all allowed
kx and ky, and εs are eigenenergies in a normal state defined in
(A9). If the system [Fig. 4(a)] has Nx atoms in the horizontal
direction (along the armchair edge) and Ny atoms in the ver-
tical direction (along zigzag edge), then matrix Ki,type,i′,type′

has NxNy×NxNy dimensions. Equation (C1) is an eigenvalue
problem: The largest eigenvalue of K matrix gives V −1 and
the corresponding eigenvector is the energy gap distribution
close to superconducting transition.

APPENDIX D: COMPARISON OF THE SYSTEMS

In Sec. III we found configurations for nanotubes (similar
configurations have infinite nanoribbons). They correspond to
boundary states in finite rectangular nanoflakes. In the finite
sample, one can have the following configurations: bulk state,
corner states, or two types of boundary states. Usually, gap
distribution is a superposition of the above-mentioned states,
but in the majority of cases, one of the states clearly dom-
inates. The system chooses a configuration with the lowest
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FIG. 14. The difference between pairing potential for the infinite
system and the value for nanotubes (armchair and zigzag) as a func-
tion of chemical potential for Tc1 = Tc2 = 0.1.

energy. In reality, when μ and V are fixed it is a configuration
with the highest possible critical temperature. In further dis-
cussion, we fix critical temperature and plot V (μ), so the most
favorable configuration has the lowest V .

Figure 14 shows the difference between pairing potential
for the infinite system and the value for nanotubes from
Sec. III as a function of chemical potential. A finite system
chooses a state with the lowest V , and hence the plotted
value should be the biggest among positive ones (in the case
we have one of the boundary states) or if they are negative

system chooses a bulk state. In the regions μ ∈ [0; 0.44) ∪
(1.50; 2.23) V in the zigzag nanotube is the smallest, and
that is why finite nanoflake chooses to have a gap on zigzag
edges. In the regions μ ∈ (0.44; 1.50) ∪ (2.23; 2.37) V in the
armchair nanotube is the smallest, which is why the finite
system prefers to have a gap on the armchair edges. In the
region μ ∈ (2.37; 3) both plots are below zero. This means
that it is preferable to have a bulk state. It is quantitatively
consistent with the phase diagram in Fig. 12(a) (for the same
Tc = 0.1): For |μ| < 0.4 the “closed structure” system prefers
zigzag edge states and then for |μ| ∈ (0.48; 0.85) armchair
edge states. In the region of |μ| ∈ (1.85; 2.28) again zigzag
edges are favorable and for |μ| ∈ (2.28; 3] the bulk state
dominates. Our discussion in the Appendix does not take
into account corner states, which are definitely important in
finite samples. To determine the phase diagram corresponding
only to the corner states one should investigate a semi-infinite
rectangular corner system.

When applying the results to a “nonclosed structure” finite
sample [Fig. 13(a)] we have a smaller region of chemical
potential where the boundary states favorable. It is due to
the existence of two types of corner states. In the system,
the approach describes the transition between regions 4 and 5
which is located at μ = 2.28 (the Appendix approach predicts
μ = 2.4 at Tc = 0.1).
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