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Low-temperature T -linear resistivity in the strange metal phase of overdoped cuprate
superconductors due to umklapp scattering from a spin excitation
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The strange metal phase of overdoped cuprate superconductors exhibits a linear in temperature resistivity in
low temperatures; however, the origin of this remarkable anomaly is still not well understood. Here the linear
temperature dependence of the resistivity in the strange metal phase of overdoped cuprate superconductors is
investigated. The momentum dependence of the transport scattering rate is arisen from the electron umklapp
scattering mediated by the spin excitation and is employed to calculate the resistivity by making use of the
Boltzmann equation. It is shown that the resistivity is mainly dominated by the antinodal and nodal umklapp
scattering. In particular, a very low temperature Tscale scales with �2

p, where �p is the minimal umklapp vector
at the antinode. In the low temperature above Tscale, the resistivity is linear in temperature with a coefficient that
decreases with the increase of doping; however, in far lower temperatures below Tscale, the resistivity is instead
quadratic in temperature. The theory also shows that the same spin excitation that acts like a bosonic glue to
hold the electron pairs together also mediates scattering of electrons in the strange metal phase responsible for
the linear in temperature resistivity in low temperatures.
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I. INTRODUCTION

The parent compound of cuprate superconductors is iden-
tified as a Mott insulator [1], in which the absence of the
electronic conduction is due to the strong electron correla-
tion. Superconductivity then emerges when charge carriers are
doped into this Mott insulator [2], and therefore the physical
properties of cuprate superconductors mainly depend on the
extent of doping [3–10], and the regimes have been classified
into the underdoped, optimally doped, and overdoped, respec-
tively. At the temperature above the superconducting (SC)
transition temperature Tc, the electron is in a normal state.
Although the same strong electron correlation that leads to
the Mott insulating state persists into the doped regime, the
normal state retains a metallic character [2].

In the underdoped regime, the normal state is dominated
by a pseudogap. This pseudogap state is characterized by
a substantial suppression of the density of the low-energy
excitations [3–6]. However, the resistivity in the pseudogap
phase is quadratic in temperature (T -quadratic) [7–13], as
would be expected from the standard Landau Fermi-liquid
theory [14–16]. On the other hand, in the optimally doped
and overdoped regimes, the normal state is characterized by a
number of the anomalous low-temperature properties [7–10]
in the sense that they do not fit in with the standard Landau-
Fermi liquid theory [14–16]. This is why in the optimally
doped and overdoped regimes the phase above Tc is called
the strange metal phase [7]. In particular, in the early ex-
perimental measurements [17–19], it was observed that the
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variation of the resistivity near the optimal doping is linear
with temperature [19], extending to low temperatures of a few
kelvin and extrapolating to zero resistivity at zero tempera-
ture. This remarkable behavior of the linear in temperature
(T -linear) resistivity is in a striking contrast to the behavior
in conventional metals [14–16], where the low-temperature
resistivity follows one of several simple power laws, and
if the electron-electron scattering dominates, then the resis-
tivity decreases quadratically as the temperature decreases
to zero. In the latter, this low-temperature T -linear resistiv-
ity was detected experimentally in a wide doping range of
the overdoped regime [20–26]. In particular, the suppression
of superconductivity with a magnetic field reveals that the
low-temperature T -linear resistivity persists down essentially
to the zero temperature limit [27]. Recently, the systematic
experimental observations in the heavily overdoped regime
yielded the low-temperature T -linear resistivity all the way
up to the edge of the SC dome [25–28]. After intensive in-
vestigations over more than three decades, it has now become
clear that the long-standing low-temperature T -linear resis-
tivity [17–28] is a generic feature in the strange metal phase
of overdoped cuprate superconductors. In this case, a key
question posed by these experimental observations is raised:
Is there a common bosonic excitation that is responsible for
pairing the electrons also dominantly scatters the electrons in
the strange metal phase responsible for the low-temperature
T -linear resistivity?

Although the low-temperature T -linear resistivity in the
strange metal phase of overdoped cuprate superconductors is
well established by now [17–28], its origin remains the sub-
ject of the active research and debate. Theoretically, several
scenarios have been proposed for the origin of the T -linear
resistivity [29–41]. In particular, in the marginal Fermi-liquid
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phenomenology [29–31], a single T -linear scattering rate is
introduced responsible for the T -linear resistivity. Moreover,
it has been postulated that the T -linear behavior can be
attributed to the strongly interacting critical state anchored
at a quantum critical point (QCP) occurring at doping of
about 0.20 where a phase transition is tuned to zero temper-
ature [31–33]. With the close relation to the physics of QCP,
the T -linear resistivity has been interpreted in terms of the
Planckian dissipation [34–38] in which the relaxation-time
achieves a putative universal minimum value, irrespective of
the underlying mechanisms. On the other hand, it has been
argued that the elastic umklapp scattering processes, which
directly transfer momentum between the electron sea and the
underlying square lattice, lead to the T -linear resistivity in the
strange metal phase [39,40]. More specifically, it has been
shown recently that the resistance arises from the electron
umklapp scattering mediated by a critical bosonic mode [41],
where the resistivity is characterized by a highly anisotropic
scattering rate. This highly anisotropic scattering rate is T -
linear near the umklapp point and becomes T -quadratic as
one moves away from the umklapp point, which therefore
leads to a T -linear resistivity in the low-temperature region
and T -quadratic resistivity in the far-lower-temperature region
[41]. These studies [39–41] and many others [42–44] there-
fore indicate that the electron umklapp scattering dominates
the momentum-relaxation mechanism of the electrical trans-
port. However, up to now, the origin of the low-temperature
T -linear resistivity has not been discussed starting from a
microscopic theory, and no explicit calculations of the dop-
ing dependence of the low-temperature T -linear resistivity
has been made so far. Superconductivity with the highest Tc

emerges directly as an instability of the strange metal phase,
and it thus has long been recognized that the understanding
of the essential physics of the strange metal phase is crucial
for the understanding of the mystery of the unconventional
superconductivity.

In the recent works within the framework of the kinetic-
energy-driven superconductivity, we have studied the low-
energy electronic structure of cuprate superconductors both in
the SC state [45–47] and the strange metal phase [48], where
the electron normal self-energy in the particle-hole channel
and electron anomalous self-energy in the particle-particle
channel are generated by the coupling of the electrons with
the spin excitations. In particular, the electrons are renor-
malized by the electron normal self-energy, and then all the
exotic features of the low-energy electronic structure arise
from this renormalization of the electrons [45–48]. In this
paper, we start from this low-energy electronic structure in
the strange metal phase of overdoped cuprate superconductors
[48] to study the nature of the doping dependence of the
low-temperature resistivity, where the momentum dependence
of the transport scattering rate is arisen from the electron
umklapp scattering mediated by the same spin excitation
and is employed to calculate the resistivity in terms of the
Boltzmann equation. Our results show that the momentum
dependence of the transport scattering rate presents a similar
behavior of the single-particle scattering rate and is largest at
around the antinodes and smallest at around the tips of the
Fermi arcs, indicating that the resistivity is mainly dominated
by the antinodal and nodal umklapp scattering. In particu-

lar, a very low temperature Tscale scales with �2
p, where �p

is the minimal umklapp vector at the antinode. In the low-
temperature region (T > Tscale), the transport scattering rate is
T -linear with the coefficient that decreases with the increase
of doping. However, in the far-lower-temperature region (T <

Tscale), the transport scattering rate is instead T -quadratic.
This T -linear behavior of the transport scattering rate in the
low-temperature region and the T -quadratic behavior in the
far-lower-temperature region in turn generate respectively the
T -linear resistivity in the low-temperature region and the T -
quadratic resistivity in the far-lower-temperature region. Our
results therefore indicate that the same spin excitation that is
responsible for pairing the electrons also mediates the electron
umklapp scattering in the strange metal phase responsible for
the low-temperature T -linear resistivity.

The rest of this paper is organized as follows. In Sec. II,
we begin by a short summary of the unconventional features
of the low-energy electronic structure due to the coupling of
the electrons with the spin excitations, and then within the
framework of the Boltzmann transport theory, we formulate
the essential aspects of the electron umklapp scattering be-
tween a circular electron Fermi surface (EFS) and its umklapp
partner mediated by the same spin excitation for deriving the
resistivity. In Sec. III, the Boltzmann equation is employed
to study the doping dependence of the low-temperature re-
sistivity, where we show that both the strengths of the nodal
and antinodal umklapp scattering decrease with the decrease
of temperature. Finally, we give a summary and discussion
in Sec. IV. In Appendix A, we present the details of the
derivation of the electron-electron collision term in the Boltz-
mann equation. In Appendix B, we present the details for the
estimate of the energy scale in the transport scattering rate at
the umklapp point.

II. THEORY

A. t-J model in the fermion-spin representation

The crystal structure of cuprate superconductors is charac-
terized by the square-lattice copper-oxide layers [1–6], which
are sometimes considered to contain all the essential physics
[49–53]. Immediately after the discovery of superconduc-
tivity in cuprate superconductors, it was suggested that the
fundamental properties of the doped copper-oxide layer are
properly accounted by the square-lattice t-J model [49],

H = −
∑
ll ′σ

tll ′C
†
lσCl ′σ + μ

∑
lσ

C†
lσClσ + J

∑
〈ll ′〉

Sl · Sl ′ , (1)

acting on the restricted Hilbert-space with no double electron
occupancy

∑
σ C†

lσClσ � 1, where the operator C†
lσ (Clσ ) de-

notes the creation (annihilation) operator of an electron on
site l with spin σ ; Sl is the spin operator of the electron
with its components Sx

l , Sy
l , and Sz

l ; and μ is the chemical
potential. In this paper, the hopping of the constrained elec-
trons tll ′ is restricted to the nearest-neighbor (NN) sites η̂ with
the hoping amplitude tll ′ = t and next NN sites τ̂ with the
hoping amplitude tll ′ = −t ′. The summation 〈ll ′〉 indicates
a sum over the NN pairs, while the summation ll ′ is taken
over all the NN and next NN pairs. Throughout this paper, we
choose the parameters as t/J = 2.5 and t ′/t = 0.3 as in the
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previous discussions [48]. The magnitude of J and the lattice
constant of the square lattice are the energy and length units,
respectively. However, when necessary to compare with the
experimental data, we set J = 1000 K.

The essence of the strongly correlated physics is reflected
in the on-site local constraint of no double electron occupancy
[50–54]. To avoid the double electron occupancy, we employ
the fermion-spin transformation for the parametrization of the
constrained electron operators Cl↑ and Cl↓ as [55,56],

Cl↑ = h†
l↑S−

l , Cl↓ = h†
l↓S+

l , (2)

respectively, where the spin operator Sl keeps track of the
spin degree of freedom of the constrained electron, while
the spinful fermion operator hlσ = e−i�lσ hl keeps track of the
charge degree of freedom of the constrained electron together
with some effects of spin configuration rearrangements due
to the presence of the doped hole itself (charge carrier). The
advantages of this fermion-spin approach (2) can be summa-
rized as (i) the on-site local constraint of no double occupancy
is satisfied in actual analyses and (ii) the charge carrier or spin
itself is U (1) gauge invariant [55,56], and then the collective
mode for the spin is real and can be interpreted as the spin
excitation responsible for the dynamical spin response, while
the electron quasiparticle as a result of the charge-spin recom-
bination of a charge carrier and a localized spin is not affected
by the statistical U (1) gauge fluctuation [55,56] and is re-
sponsible for the electronic-state properties. This is why the
fermion-spin approach (2) is an efficient calculation scheme
which can provide a good description of the anomalous prop-
erties of cuprate superconductors [55,56].

In this fermion-spin representation (2), the original t-J
model (1) can be rewritten explicitly as

H =
∑
ll ′σ

tll ′ (h
†
l ′↑hl↑S+

l S−
l ′ + h†

l ′↓hl↓S−
l S+

l ′ )

− μh

∑
lσ

h†
lσ hlσ + Jeff

∑
〈ll ′〉

Sl · Sl ′ , (3)

where S−
l = Sx

l − iSy
l and S+

l = Sx
l + iSy

l are the spin-
lowering and spin-raising operators for the spin S = 1/2,
respectively; Jeff = (1 − δ)2J , δ = 〈h†

lσ hlσ 〉 = 〈h†
l hl〉 is the

charge-carrier doping concentration; and μh is the charge-
carrier chemical potential. As a natural consequence, the
kinetic-energy term in the t-J model (1) has been trans-
ferred as the coupling between charge and spin degrees of
freedom of the constrained electron, which reflects a basic
fact that even the kinetic energy term in the t-J model (1)
has the strong Coulombic contribution due to the restric-
tion of no double electron occupancy at an any given site
and therefore governs the unconventional features of cuprate
superconductors.

B. Coupling of electrons to the strongly
dispersive spin excitation

Starting from the t-J model (3) in the fermion-spin rep-
resentation, we [56–59] have developed the kinetic-energy-
driven superconductivity, where the charge-carrier attractive
interaction comes from the strong coupling between charge
and spin degrees of freedom of the constrained electron in

FIG. 1. The skeletal diagram for the electron normal self-energy
for scattering electrons from the strongly dispersive spin excitations.
The solid line represents the electron propagator G, and the dashed
line depicts the spin propagator D(0), while � describes the bare
vertex function �.

the kinetic energy of the t-J model (3) and induces the d-
wave charge-carrier pairing state, while the d-wave electron
pairs originated from the d-wave charge-carrier pairs are
due to the charge-spin recombination [59], and their con-
densation reveals the d-wave SC state. Similarly to other
distinct mechanisms for the spin-fluctuation-driven pairing
[60–63], the kinetic-energy-driven SC mechanism is purely
electronic without phonon, since the bosonic glue is iden-
tified into an electron pairing mechanism not involving the
phonon, the external degree of freedom, but the internal spin
degree of freedom of the constrained electron itself, indicating
that the strong electron correlation favors superconductivity.
Moreover, the kinetic-energy-driven SC state is controlled
by both the SC gap and single-particle coherence, which
leads the doping dependence of Tc exhibiting a domelike
shape with the underdoped and overdoped regimes on each
side of the optimal doping, where Tc reaches its maximum
[56–59]. In the kinetic-energy-driven superconductivity, the
self-consistent equations [59] that are satisfied by the single-
particle diagonal and off-diagonal propagators in the SC state
are obtained in terms of the Eliashberg formalism [64], and
when the SC gap parameter �̄ = 0, these self-consistent
equations in the SC state are reduced in the normal state
as [48]

G(k, ω) = G(0)(k, ω) + G(0)(k, ω)
ph(k, ω)G(k, ω), (4)

where G(0)(k, ω) is the single-particle (diagonal) propagator
of the t-J model (1) in the tight-binding approximation and
has been derived as G(0)−1(k, ω) = ω − εk. In this case, the
single-particle propagator G(k, ω) in Eq. (4) can be expressed
explicitly as

G(k, ω) = 1

ω − εk − 
ph(k, ω)
, (5)

where εk = −4tγk + 4t ′γ ′
k + μ is the electron energy disper-

sion in the tight-binding approximation, with γk = (coskx +
cosky)/2 and γ ′

k = coskxcosky, while the electron normal
self-energy 
ph(k, ω) sketched in Fig. 1 has been derived
as [48]


ph(k, ω) = − 4
∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dω′′

2π

nB(ω′′) + nF(ω′)
ω′′ − ω′ + ω

× t2

N

∑
p

ImG(p + k, ω′)ImP(0)(k, p, ω′′),

(6)
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where N is the number of lattice sites; nB(ω) and nF (ω) are
the boson and fermion distribution functions, respectively;
ImP(0)(k, p, ω) is the imaginary part of P(0)(k, p, ω); while
P(0)(k, p, ω) is called the effective spin propagator, which de-
scribes the nature of the spin excitation and can be expressed
as

P(0)(k, p, ω) = 1

N

∑
q

�2
p+q+k�(p, q, ω), (7)

with the bare vertex function �k = 4γk − 4(t ′/t )γ ′
k and the

spin bubble �(p, q, ω). This spin bubble �(p, q, ω) is a
convolution of two spin propagators and has been evaluated

as [48]

�(p, q, ipm) = 1

β

∑
iqm

D(0)(q, iqm)D(0)(q + p, iqm + ipm),

(8)

where pm and qm are the bosonic Matsubara frequencies,
while the spin propagator D(0)(k, ω) in the mean-field (MF)
level has been derived as

D(0)(k, ω) = Bk

ω2 − ω2
k

, (9)

with the MF spin excitation energy dispersion ωk and the
weight function of the spin excitation spectrum Bk that have
been obtained explicitly as [56]

ω2
k = αλ2

1

[
1

2
εχ1(A11 − γk )(ε − γk ) + χ z

1 (A12 − εγk )(1 − εγk )

]
+ αλ2

2

[(
χ z

2γ ′
k − 3

8
χ2

)
γ ′

k + A13

]

+αλ1λ2

[
χ z

1 (1 − εγk )γ ′
k + 1

2
(χ1γ

′
k − C3)(ε − γk ) + γ ′

k(Cz
3 − εχ z

2γk ) − 1

2
ε(C3 − χ2γk )

]
, (10a)

Bk = λ1
[
2χ z

1 (εγk − 1) + χ1(γk − ε)
] − λ2

(
2χ z

2γ ′
k − χ2

)
, (10b)

where ε = 1 + 2tφ1/Jeff , λ1 = 8Jeff , and λ2 = 16φ2t ′; the
charge-carrier’s particle-hole parameters φ1 = 〈h†

lσ hl+η̂σ 〉 and
φ2 = 〈h†

lσ hl+τ̂ σ 〉, A11 = [(1 − α)/8 − αχ z
1/2 + αC1]/(αχ1),

A12 = [(1 − α)/16 − αεχ1/8 + αCz
1]/(αχ z

1 ), and A13 =
[(1 − α)/(8α) − χ z

2/2 + C2]/2; and the spin correlation
functions χ1 = 〈S+

l S−
l+η̂

〉, χ2 = 〈S+
l S−

l+τ̂
〉, χ z

1 = 〈Sz
l Sz

l+η̂〉,
χ z

2 = 〈Sz
l Sz

l+τ̂ 〉, C1 = (1/16)
∑

η̂,η̂′ 〈S+
l+η̂

S−
l+η̂′ 〉, Cz

1 =
(1/16)

∑
η̂,η̂′ 〈Sz

l+η̂
Sz

l+η̂′ 〉, C2 = (1/16)
∑

τ̂ ,τ̂ ′ 〈S+
l+τ̂

S−
l+τ̂ ′ 〉,

C3 = (1/4)
∑

τ̂ 〈S+
l+η̂

S−
l+τ̂

〉, and Cz
3 = (1/4)

∑
τ̂ 〈Sz

l+η̂Sz
l+τ̂ 〉.

In order to satisfy the sum rule of the correlation function
〈S+

l S−
l 〉 = 1/2 in the case without an antiferromagnetic

long-range order (AFLRO), the important decoupling
parameter α has been introduced in the calculation [56],
which can be regarded as the vertex correction. At the
half-filling, the degree of freedom is local spin only, where
ε = 1, λ2 = 0, χ z

1 = χ1/2, Cz
1 = C1/2, and then the above MF

spin excitation energy dispersion ωk and the weight function

Bk in Eq. (10) are reduced as ωk = λ1

√
α|χ1|(1 − γ 2

k ) and
Bk = −2λ1χ1(1 − γk ), respectively. This spin excitation
energy dispersion at the half-filling is the standard spin-wave
dispersion. However, in the doped regime without an AFLRO,
although the expression form of the MF spin excitation energy
dispersion ωk in Eq. (10a) is rather complicated, the essential
feature of the spin-wave nature is the same as that in the case
of the half-filling [56].

Substituting the above MF spin propagator (9) into Eq. (8),
the spin bubble �(p, q, ω) can be derived as

�(p, q, ω) = − W̄ (1)
pq

ω2 − [
ω

(1)
pq

]2 + W̄ (2)
pq

ω2 − [
ω

(2)
pq

]2 , (11)

and then the effective spin propagator P(0)(k, p, ω) in Eq. (7)
is obtained directly from the above spin bubble (11), where
the spin excitation energy dispersions ω(1)

pq = ωq+p + ωq and

ω(2)
pq = ωq+p − ωq, and the weight functions of the effective

spin excitation spectrum,

W̄ (1)
pq = BqBq+p

2ωqωq+p
ω(1)

pq [nB(ωq+p) + nB(ωq) + 1], (12)

W̄ (2)
pq = BqBq+p

2ωqωq+p
ω(2)

pq [nB(ωq+p) − nB(ωq)]. (13)

It thus shows that the essential behaviors of the spin excitation
energy dispersions ω(1)

pq and ω(2)
pq are mainly governed by the

essential behaviors of the MF spin excitation energy disper-
sion ωk in Eq. (10a).

With the above effective spin propagator (7), the electron
normal self-energy 
ph(k, ω) in Eq. (6) has been obtained
explicitly in Ref. [48]. In particular, it should be emphasized
that all the order parameters and chemical potential μ in the
calculation of 
ph(k, ω) have been determined by the self-
consistent calculation [56–59]. In this sense, our calculation
for 
ph(k, ω) is controllable without using adjustable param-
eters. Moreover, the sharp peaks visible for low temperature in

ph(k, ω) and P(0)(k, p, ω) are actually a δ function, broad-
ened by a small damping used in the numerical calculation
for a finite lattice [65,66]. The calculation in this paper for

ph(k, ω) and P(0)(k, p, ω) is performed numerically on a
160×160 lattice in momentum space, with the infinitesimal
i0+ → i� replaced by a small damping � = 0.05J .

C. Electron Fermi surface

The single-particle spectrum function A(k, ω) now can be
obtained directly from the above single-particle propagator (5)
as

A(k, ω) = −2ImG(k, ω) = 2�k(ω)

[ω − Ēk(ω)]2 + �2
k(ω)

, (14)
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(a) (b)

FIG. 2. (a) The map of the electron Fermi surface and (b) the
surface plot of the electron spectral function for zero energy ω = 0
at δ = 0.18 with T = 0.002J , where the Brillouin zone center has
been shifted by [π, π ] and AN, TFA, and ND denote the antinode,
tip of the Fermi arc, and node, respectively.

with the corresponding single-particle scattering rate �k(ω)
and renormalized band structure Ēk(ω),

�k(ω) = |Im
ph(k, ω)|, (15a)

Ēk(ω) = εk + Re
ph(k, ω), (15b)

where Re
ph(k, ω) and Im
ph(k, ω) are the real and imag-
inary parts of the electron normal self-energy 
ph(k, ω),
respectively.

The shape of EFS has deep consequences for the low-
energy electronic properties [3–7] and has been also central
to addressing electrical transport [8–10]. In the previous stud-
ies [48], the topology of EFS in the strange metal phase
of cuprate superconductors has been discussed in terms of
the intensity map of the single-particle spectral function (14)
at zero energy ω = 0, where it has been shown that (i)
the EFS continuous contour is determined by the poles of
the single-particle propagator (5) at zero energy, i.e., εk +
Re
ph(k, 0) = ε̄k = 0, with the renormalized electron energy
dispersion ε̄k = ZF εk and the single-particle coherent weight
Z−1

F = 1 − Re
pho(k, 0) |k=[π,0], where 
pho(k, ω) is the an-
tisymmetric part of the electron normal self-energy 
ph(k, ω);
(ii) however, a strong redistribution of the spectral weight
on EFS is induced by the highly anisotropic momentum de-
pendence of the single-particle scattering rate �k(ω). For
a convenience in the following discussions of the electri-
cal transport, we plot (a) the EFS map and (b) the direct
surface plot of the single-particle spectral function A(k, ω)
for zero energy ω = 0 at doping δ = 0.18 with temperature
T = 0.002J in Fig. 2, where the Brillouin zone (BZ) center
has been shifted by [π, π ] and AN, TFA, and ND indicate
the antinode, tip of the Fermi arc, and node, respectively.
The most noteworthy in Fig. 2 are the following: (i) the
spectral weight at around the antinodal region is suppressed
strongly, reflecting a basic fact that EFS at around the antin-
odal region cannot be observed experimentally [67–79]; (ii)
the spectral weight at around the nodal region is suppressed
modestly, leading to the formation of the disconnected Fermi
arcs [67–79], where the Fermi arc increases its length as a
function of doping [73–79], and then it evolves into a con-
tinuous contour in momentum space near the end of the SC
dome; (iii) however, almost all the spectral weight on the
Fermi arcs is assembled at around the tips of the Fermi arcs

FIG. 3. The single-particle scattering rate �(θ ) as a function of
Fermi angle θ at δ = 0.18 with T = 0.05J for ω = 0.

[67–79]. In other words, the electrons at around the tips of
the Fermi arcs have a largest density of states, and then the
low-energy electronic properties are largely governed by these
electrons at around the tips of the Fermi arcs. In particular,
it has been observed experimentally that these characteristic
features shown in Fig. 2 in the zero energy case can persist
into the case for a finite binding energy even in the optimally
and overdoped regimes [79,80]. More importantly, the sup-
pression of the spectral weight at around the antinodal and
nodal regions can affect the electrical transport in two ways
[9]: through the reduction of the number of current-carrying
states and through the reduction in the density of electron
excitations at around the antinodal and nodal regions.

In our previous discussions [48], it has been shown that
the origin of the spectral redistribution to form the Fermi
arcs can be attributed to the highly anisotropic momentum
dependence of the single-particle scattering rate �(θ ), where
�(θ ) is defined as �(θ ) = �kF (θ )(0) and θ is the Fermi angle.
To see this highly anisotropic �(θ ) in momentum space more
clearly, we plot the angular dependence of �(θ ) along EFS
from the antinode to the node at δ = 0.18 with T = 0.05J in
Fig. 3, where the actual minimum of �(θ ) does not appear
at around the nodal region but resides exactly at around the
tip of the Fermi arc. However, the maximal �(θ ) appears at
around the antinodal region, and then �(θ ) decreases when the
Fermi angle is moved away from the antinode. In particular,
�(θ ) at around the nodal region is smaller than that around the
antinodal region. This angular dependence of �(θ ) therefore
leads to the spectral redistribution to form the Fermi arcs with
almost all the spectral weight inhabited at around the tips of
the Fermi arcs.

With the help of the above single-particle spectrum func-
tion (14), we have also studied the renormalization of the
electrons in the strange metal phase of overdoped cuprate
superconductors [48], including the EFS instability-driven
charge order together with the related octet scattering model
[76,77,79–84], the complicated line-shape in the energy dis-
tribution curve [85–89], and the kink in the electron dispersion
[90–95], and the obtained results are well consistent with
the corresponding experimental observations. In particular, it
should be emphasized that the similar results [96–99] have
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been also obtained based on the phenomenological spin-
fermion approach [62,99], where the coupling of a spin
excitation to electron quasiparticles leads to the emergence
of the spectral dip in the energy distribution curve and the
kink in the quasiparticle dispersion [96–99]. These results
[48,96–99] therefore show that the same spin excitation that is
responsible for pairing the electrons also dominantly scatters
the electrons in the strange metal phase responsible for the
low-energy electronic structure.

D. Boltzmann equation

Although the magnitude of the single-particle scattering
rate �(θ ) shown in Fig. 3 at a given Fermi angle is differ-
ent from that of the corresponding transport scattering rate
[31], both the scattering rates may have a similar behavior
of the angular dependence. In this sense, the result of the
angular dependence of �(θ ) in Fig. 3 also indicates that the
important electron scattering responsible for the resistivity
is mainly concentrated at around the antinodes and nodes.
For the discussions of the transport properties, it is needed
to determine how the momentum distribution relaxes in the
vicinity of these antinodes and nodes. However, in the strange
metal phase of overdoped cuprate superconductors, there are
no well-defined quasiparticle excitations [7–10]. In this case,
the momentum distribution relaxes in the system can be dis-
cussed in terms of the memory-matrix transport formalism
[100–105] or by solving the Boltzmann equation with the
input of the scattering processes [15,16]. The memory-matrix
transport formalism [100–105] has a crucial advantage of not
relying on the existence of well-defined quasiparticle excita-
tions. In particular, this memory-matrix transport approach
has been employed to study the electrical transport in the
strange metal phase of different strongly correlated models
[100–105], and the obtained results are consistent with the
rather severe set by experiments. On the other hand, in the
Boltzmann transport theory [15,16], it is crucial to assume
that either the quasiparticle excitations are well defined or that
the effective interaction between electrons via various bosonic
modes can be treated within the Eliashberg approach [64] as
shown by Prange and Kadanoff [106] for an electron-phonon
system. In this paper, we study the electrical transport in the
strange metal phase of overdoped cuprate superconductors by
solving the Boltzmann equation with the input of the scat-
tering process, since the electron interaction mediated by the
spin excitation in the framework of the kinetic-energy-driven
superconductivity [56–59] is treated within the Eliashberg
approach [64], as mentioned in Sec. II B. In the Boltzmann
transport theory [15,16], the essential behavior of the elec-
trons is depicted by the distribution function f (r, k, t ). In
the following discussions, we focus on the dc conductivity in
the homogeneous system only, where the position and time
dependence in the distribution function are absent, and then
the distribution function satisfies the following Boltzmann
equation [15,16]:

∂k
∂t

· ∇k f (k) =
(

df

dt

)
collisions

, (16)

where the right-hand side is the time rate of change due
to the electron-electron collision, while the factor ∂k/∂t is

equivalent to an acceleration, which is equal to the forces on
the electrons as

∂k
∂t

= −eE, (17)

with the charge e, where for a convenience in the following
discussions, the magnetic field has been dropped, i.e., H =
0, while only an electric field E is applied to the system. In
this case, we substitute Eq. (17) into Eq. (16) and rewrite the
Boltzmann equation (16) as

eE · ∇k f (k) +
(

df

dt

)
collisions

= 0. (18)

Following the discussions in Refs. [106] and [41], we now
introduce the linear perturbation from the equilibrium in terms
of the distribution function as

f (k) = nF (ε̄k ) − dnF (ε̄k )

d ε̄k
�̃(k), (19)

where �̃(k) has been interpreted as a local shift of the chemi-
cal potential at a given patch of EFS [41,106] and satisfies an
antisymmetric relation �̃(−k) = −�̃(k). With the help of the
above distribution function (19), the Boltzmann equation (18)
can be linearized with the result that can be expressed explic-
itly as

evk · E
∂nF (ε̄k )

∂ε̄k
= −

(
df

dt

)
collisions

= Ie−e, (20)

where vk = ∇kε̄k is the electron velocity and Ie−e is the
electron-electron collision term.

E. Electron umklapp scattering

For evaluating the electron-electron collision in the Boltz-
mann equation (20), the mechanism of the momentum
relaxation needs to be introduced [15,16]. After intensive
investigations over more than three decades, although the
mechanism of the momentum relaxation for the T -linear
resistivity still remains controversial, the electron umklapp
scattering is believed to be at the heart of the striking behav-
ior of the electrical transport in the strange metal phase of
overdoped cuprate superconductors [39–44]. In this paper, we
adopt the electron umklapp scattering as the mechanism of the
momentum relaxation, and then study the electrical transport
in the strange metal phase of overdoped cuprate supercon-
ductors. For a convenience in the following discussions, the
schematic picture for the electron umklapp scattering process
[41] is illustrated in Fig. 4, where an electron on a circular
EFS (left) is scattered by its partner on the umklapp EFS
(right). In Fig. 4, the intensity map of EFS is the same as in
Fig. 2(a), while the perfect circle (red) is the circle with the
radius kTFA

F , where kTFA
F is the Fermi wave vector of the tips

of the Fermi arcs. This perfect circle EFS (red) connects all
eight tips of the Fermi arcs and thus shows that almost all the
spectral weight of the electron excitation spectrum is accom-
modated on this circle EFS. It should be emphasized that in
the present case, the electron umklapp scattering is mediated
by the same spin excitation as in the case of the electron scat-
tering for the renormalization of the electrons in Sec. II B. To
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FIG. 4. Illustration of the umklapp scattering process [41] in
which an electron on a circular electron Fermi surface (left) is scat-
tered by its partner on the umklapp electron Fermi surface (right),
where the intensity map of the electron Fermi surface is the same
as shown in Fig. 2(a), while the perfect circle (red) is the cir-
cle with the radius kTFA

F , where kTFA
F is the Fermi wave vector of

the tips of the Fermi arcs. An electron on the electron Fermi surface
(left) parametrized by the Fermi angle θ is scattered to a point
parametrized by the Fermi angle θ ′ on the umklapp electron Fermi
surface (right) by the spin excitation carrying momentum p(θ, θ ′).
The minimal umklapp vector is �p at the antinode (the Fermi angle
θ = 0). This physical picture is repeated for the other three umklapp
electron Fermi surfaces that are closest to the original electron Fermi
surface.

understand the umklapp scattering mechanism in the present
case more clearly, the skeletal diagram of this umklapp scat-
tering mechanism in energy and momentum space is drawn in
Fig. 5.

In the recently pioneering work [41], a model of the
electrons scattered by a critical bosonic mode with the umk-
lapp scattering being the dominant momentum relaxation
mechanism has been studied, where the umklapp scattering
process is described as an electron-electron scattering via the
exchange of the critical boson propagator rather than the scat-
tering between electrons via the emission and absorption of
bosons. Following their discussions [41], the electron-electron
collision Ie−e in Eq. (20) originated from the electron umklapp
scattering shown in Fig. 5 can be evaluated as

Ie−e = 1

N2

∑
k′,p

2

T
|P(k, p, k′, ε̄k − ε̄k+p+G)|2{�̃(k)

+ �̃(k′) − �̃(k + p + G) − �̃(k′ − p)}
× nF (ε̄k )nF (ε̄k′ )[1 − nF (ε̄k+p+G)][1 − nF (ε̄k′−p)]

× δ(ε̄k + ε̄k′ − ε̄k+p+G − ε̄k′−p), (21)

which therefore leads to the appearance of the electrical
resistance [15,16], where G indicates a set of recipro-
cal lattice vectors, and the umklapp scattering process in
Eq. (21) is described as an electron-electron scattering via
the exchange of the effective spin propagator P(k, p, k′, ω),
rather than the scattering between electrons via the emission
and absorption of the spin excitation, while the effec-
tive spin propagator P(k, p, k′, ω) is obtained directly from

FIG. 5. The skeletal diagram of the umklapp scattering process
for scattering electrons from the spin excitation. The solid line repre-
sents the electron propagator G, and the dashed line depicts the spin
propagator D(0), while � describes the bare vertex function �.

Fig. 5 as

P(k, p, k′, ω) = 1

N

∑
q

�p+q+k�q+k′�(p, q, ω). (22)

The reason of the electron-electron scattering via the ex-
change of the effective spin propagator in the present case is
the same as in the case discussed in Ref. [41]. For the normal
scattering (G = 0), the conservation of the total momentum
in Eq. (21) is satisfied straightforwardly [41], since the dis-
tribution in the case of the normal scattering will rapidly
equilibrate to a fermion distribution function with a shifted
overall momentum �̃(k) ∝ k · E, which leads to that its con-
tribution to the integral of the electron-electron collision in
Eq. (21) is exactly zero. However, if we consider the scattering
between electrons via the emission and absorption of the spin
excitation, we would have to keep track of the extra shifted
boson distribution function as well, which introduces more
complications [41]. Moreover, it has been shown that the
vanishing of the normal scattering in the electron-electron col-
lision (21) is more general [41]. This is following a basic fact
that in order to stay on EFS and conserve the total momentum
and energy, the momentum of the normal scattering partner
k′ must equal to either k + p or −k. In the former case, the
last two terms in {. . . } in Eq. (21) cancel the first two terms.
However, in the latter case, since the antisymmetric relation
�̃(−k) = −�̃(k), the first two terms in {. . . } in Eq. (21)
cancel, while the same cancellation is valid for the last two
terms corresponding to the outgoing pair k + p and k′ − p.
These results therefore indicate that the contribution from
the normal scattering to the integral of the electron-electron
collision (21) is negligible [41].

In the usual case [15,16], the derivation of the Boltzmann
equation starting from the nonequilibrium electron propagator
involves integrating over energy ω. However, the electrons at
the bottom of the band (then the deep inside EFS) cannot be
thermally excited, and as a matter of the principle, all the
low-temperature conduction processes in the strange metals
should involve only states at around EFS [36]. In particular,
in the early discussions [106], it has been realized to pick a
patch of EFS specified by k(θ ) with the range θ ∈ [0, 2π ],
which defines a contour along EFS parametrized by the di-
rection θ of the Fermi momentum vector and integrate the
perpendicular momentum and hence over ε̄k instead. This is
a formula expressed entirely in terms of the EFS property.
Furthermore, this method has been employed to study the low-
temperature T -linear resistivity due to the umklapp scattering
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from a critical bosonic mode [41]. In the present case of the
electron umklapp scattering mediated by the spin excitation,
an electron on EFS parametrized by the Fermi angle θ is
scattered to a point parametrized by the Fermi angle θ ′ on
the umklapp EFS by the spin excitation carrying momentum
p(θ, θ ′) as shown in Fig. 4. In this case, the usual distribution
function f (k) can be replaced as f [k(θ )]. However, in the
usual formulation, the vector k is decomposed into k(θ ) and
the momentum in the perpendicular direction [41,106], which
is then represented by ε̄k. From this EFS parametrization,
the standard Boltzmann equation (20) now can be expressed
simply, where the component of the momentum k perpendic-
ular to EFS is replaced by ε̄k/vk and ε̄k in turn is replaced
by ω. After a straightforward calculation (see Appendix A),
the above electron-electron collision Ie−e in Eq. (21) can be
derived explicitly, and then the Boltzmann equation (20) can
be obtained as

evF (θ ) · E = −2
∫

dθ ′

2π
ζ (θ ′)F (θ, θ ′)[�(θ ) − �(θ ′)], (23)

where �(θ ) is defined as �̃[k(θ )] and satisfies an antisym-
metric relation [41] �(θ ) = −�(θ + π ), vF (θ ) is the Fermi
velocity at the Fermi angle θ and ζ (θ ′) = k2

F /[4π2v3
F ] is the

density of states factor at angle θ ′ with the Fermi wave vector
kF and Fermi velocity vF , while the coefficient of �(θ ) in the
first term of the right-hand side of Eq. (23),

γ (θ ) = 2
∫

dθ ′

2π
ζ (θ ′)F (θ, θ ′), (24)

is defined as the scattering out rate [41] from the state of k(θ ),
which also is called the angular dependence of the transport
scattering rate, while the kernel function F (θ, θ ′) depends on
the Fermi angles θ and θ ′ in terms of the magnitude of the
momentum transfer p(θ, θ ′), i.e., F (θ, θ ′) connects the points
θ and θ ′ on the umklapp EFS as shown in Fig. 4, and is given
by

F (θ, θ ′) = 1

T

∫
dω

2π

ω2

p(θ, θ ′)
|P̄[k(θ ), p(θ, θ ′), ω]|2

×nB(ω)[1 + nB(ω)], (25)

where the reduced effective spin propagator
P̄[k(θ ), p(θ, θ ′), ω] has been given in Appendix A. This
kernel function F (θ, θ ′) can be also called as the probability
weight or the strength of the umklapp scattering.

III. LOW-TEMPERATURE T -LINEAR RESISTIVITY

The dc conductivity then is evaluated in a standard way
by the momentum (then the Fermi angle θ ) integral of the
umklapp scattering process on EFS, where the current density
is given by [15,16]

J = −en0
1

N

∑
k

vk f (k), (26)

with the momentum relaxation that is generated by the action
of the electric field on the mobile electrons [36] at around EFS
with the density n0. Substituting the distribution function f (k)
in Eq. (19) into the above current density equation (26) and
performing the radial integration, the current density now can

be obtained as

J = en0
1

N

∑
k

vk
dnF (ε̄k )

d ε̄k
�̃(k)

= −en0
kF

vF

∫
dθ

(2π )2
vF (θ )�(θ ). (27)

For deriving the dc conductivity, we need to obtain the
local shift of the chemical potential �(θ ). The spectral weight
of ImP(kF , p − kF , k′

F , ω) in Eq. (21) achieves its maximal
value at around the antinodal region (see Fig. 12 in Ap-
pendix A), where the scattering probability for two electrons
is largest. In other words, the main contribution to the kernel
function F (θ, θ ′) comes from such umklapp scattering pro-
cess in which the electron at around the antinodal region of the
circular EFS (left) shown in Fig. 4 is scattered by its partner
at around the antinodal region of the umklapp circular EFS
(right), where the Fermi angle θ ′ is almost identical with the
Fermi angle π − θ , and then according to the antisymmetric
relation satisfied by �(θ ), the following relation:

�(θ ′) = �(π − θ ) = −�(θ ), (28)

is valid. In this relaxation-time approximation, the local shift
of the chemical potential �(θ ) can be derived straightfor-
wardly from Eqs. (23) and (24) as [41]

�(θ ) = −evF cos(θ )Ex̂

2γ (θ )
, (29)

where the electric field E has been chosen along the x̂ axis.
Substituting the above result of �(θ ) into Eq. (27), the dc
conductivity therefore is obtained explicitly as

σdc(T ) = 1

2
e2n0kF vF

∫
dθ

(2π )2
cos2(θ )

1

γ (θ )
, (30)

and then the resistivity is obtained directly from the above dc
conductivity as

ρ(T ) = 1

σdc(T )
. (31)

Now we are ready to discuss the striking features of the
electrical transport in the strange metal phase of overdoped
cuprate superconductors. We have made a series of calcula-
tions for the resistivity ρ(T ) in Eq. (31) at different doping
levels, and the results of the resistivity ρ(T ) as a function
of temperature at the doping concentrations δ = 0.15 (black
line), δ = 0.18 (blue line), and δ = 0.24 (red line) are plotted
in Fig. 6. Apparently, the experimental results of the dop-
ing dependence of the low-temperature resistivity [17–28]
are qualitatively reproduced, where the highly unconventional
features can be summarized as (i) the resistivity ρ(T ) as a
function of temperature is a perfect straight line down to the
temperature T ∼ 0.015J = 15 K and (ii) the low-temperature
T -linear resistivity extends over a wide doping range in the
overdoped regime, where the T -linear resistivity coefficient
A1 (then the strength of the T -linear resistivity) decreases with
the increase of doping. To see this doping dependence of the
T -linear resistivity coefficient more clearly, we plot A1 versus
doping δ in Fig. 7, where A1increases monotonically as the
doping concentration is reduced in the overdoped regime; this
tendency of the doping dependence is in qualitative agreement
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FIG. 6. The resistivity as a function of temperature at δ = 0.15
(black line), δ = 0.18 (blue line), and δ = 0.24 (red line).

with the experimental observations on overdoped cuprate su-
perconductors [25,27]. (iii) However, the resistivity deviates
from the pure T -linearity in the far-lower-temperature re-
gion T < 0.015J = 15 K, while our numerical fit indicates
that in this far-lower-temperature region, the resistivity de-
creases quadratically as the temperature decreases. The results
in Fig. 6 therefore also indicate that the same spin exci-
tation that acts like a bosonic glue to hold the electron
pairs together responsible for superconductivity [56–59] also
dominates the electron umklapp scattering responsible for
the low-temperature T -linear resistivity in the strange metal
phase.

Finally, it should be emphasized that the local shift of the
chemical potential �(θ ) can be also evaluated directly by the
numerical solution of the Boltzmann equation (23) together
with an additional electron-impurity collision without mak-
ing the relaxation-time approximation [41], where the Fermi
angle θ ′ variable in Eq. (23) can be discretized, and then the
integral-differential equation (23) is converted into the matrix
equation. The accurate result of �(θ ) is obtained in terms of
the numerical calculation of the inverse of this matrix. In this

FIG. 7. T -linear resistivity coefficient as a function of doping.

FIG. 8. The transport scattering rate γ (θ ) as a function of Fermi
angle θ at δ = 0.18 with T = 0.05J .

case, we have also performed a numerical calculation �(θ )
[then ρ(T )], and the results show that although the resistiv-
ity saturates to a constant ρ0(T ) induced by the impurity,
the qualitative behavior of the resistivity is the same as that
obtained in the above relaxation-time approximation except
for the subtle difference of slopes, which is also qualitatively
consistent with the results obtained from the electron umklapp
scattering mediated by a critical bosonic mode [41].

From the dc conductivity in Eq. (30) [then the resistivity
in Eq. (31)], it thus shows that the low-temperature T -linear
resistivity in the strange metal phase can be attributed to the
angle and temperature dependence of the transport scattering
rate γ (θ, T ) in Eq. (24). To see this point more clearly, we
first plot γ (θ ) as a function of Fermi angle θ at δ = 0.18 with
T = 0.05J in Fig. 8. In a comparison with the corresponding
angular dependence of the single-particle scattering rate �(θ )
in Fig. 3, it shows that although the magnitude of γ (θ ) at
an any given Fermi angle is less than that of �(θ ) at the
corresponding Fermi angle, the global behavior of the angular
dependence of γ (θ ) is similar to that of �(θ ), where γ (θ ) is
largest at around the antinodal region and smallest at around
the tips of the Fermi arcs, which is also consistent with the
strong momentum dependence of the effective spin propa-
gator P(k, p − k, k′, ω) shown in Fig. 12 in Appendix A.
In other words, both the transport scattering rate γ (θ ) and
single-particle scattering rate �(θ ) as a function of Fermi
angle presents a similar behavior of the effective spin prop-
agator P(k, p − k, k′, ω). The result in Fig. 8 therefore also
shows that the resistivity is mainly dominated by the transport
scattering rate at both the antinodal and nodal regions.

On the other hand, for an any given Fermi angle θ , γ (θ, T )
varies strongly with temperature. To see this temperature de-
pendence of γ (θ, T ) more clearly, we plot γ (T ) as a function
of temperature for δ = 0.18 at the antinode in Fig. 9. It is sur-
prising that γ (T ) is entirely T -linear in the low-temperature
region T > 0.015J = 15 K, where it decreases linearly with
temperature as the temperature decreases to T ∼ 0.015J =
15 K, while this transport scattering rate γ (T ) is instead T -
quadratic in the far-lower-temperature region T < 0.015J =
15 K. Moreover, although γ (θ, T ) is highly anisotropic in
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FIG. 9. The transport scattering rate γ (T ) at the antinode as a
function of temperature for δ = 0.18.

momentum-space, this low-temperature T -linear γ (θ, T ) oc-
curs at an any given Fermi angle θ (then for all directions),
in agreement with the experimental observations [28]. In a
comparison with the corresponding results of the temperature
dependence of the resistivity shown in Fig. 6, we therefore
find that the T -linear behavior of γ (T ) together with the
temperature region and the T -quadratic behavior of γ (T )
together with the temperature region are respectively the same
as the corresponding behaviors and regions in the resistivity
ρ(T ), which shows clearly that the T -linear resistivity with
the temperature region and the T -quadratic resistivity with the
temperature region are governed respectively by the T -linear
transport scattering rate with the temperature region and T -
quadratic transport scattering rate with the temperature region.

For a further understanding of the nature of the transport
scattering rate γ (θ, T ), we discuss the temperature depen-
dence of the kernel function F (θ, θ ′) in Eq. (25), since the
temperature dependence of γ (θ, T ) in Eq. (24) is mainly
determined by the temperature dependence of F (θ, θ ′). In
Fig. 10, we plot the surface plot of F (θ, θ ′) at δ = 0.18

FIG. 10. The surface plot of the kernel function F (θ, θ ′) at
δ = 0.18 with T = 0.05J , where AN, TFA, and ND denote the antin-
ode, tip of the Fermi arc, and node, respectively.

with T = 0.05J , where the probability weight of the electron
umklapp scattering has been separated clearly into three char-
acteristic regions: (i) the antinodal region, where a particularly
large fraction of the probability weight is located, leading to
that γ (θ ) is largest at around the antinodal region; (ii) the
nodal region, where a small amount of the probability weight
is inhabited, leading to that the magnitude of γ (θ ) at around
the nodal region is much smaller than that at around the antin-
odal region; (iii) the region at around the tips of the Fermi arcs,
where the strength of the umklapp scattering is anomalously
small, leading to the appearance of the weakest scattering at
around the tips of the Fermi arcs. The characteristic feature of
the tips of the Fermi arcs is that both the real and imaginary
parts of the electron normal self-energy have the anomalously
small values [48], indicating that the interaction (then the
scattering) between electrons at around the tips of the Fermi
arcs is particularly weak. In other words, although the electron
density of states is largest at around the tips of the Fermi
arcs, the electron scattering at around the tips of the Fermi
arcs is quite weak, and then the electrons at around the tips of
the Fermi arcs move more freely than those at other parts of
EFS. The above result in Fig. 10 indicates that the electron
umklapp scattering is concentrated at around the antinodes
and nodes and therefore is well consistent with the result of
the angular dependence of γ (θ, T ) shown in Fig. 8. However,
the strengths of the antinodal and nodal umklapp scattering are
temperature dependent, which induces a competition between
the antinodal and nodal umklapp scattering and can be well
understood in terms of the ratio of the strength of the nodal
umklapp scattering to the strength of the antinodal umklapp
scattering,

RF (T ) = F (θND, θ ′
ND, T )

F (θAN, θ ′
AN, T )

.

However, as we have mentioned in Sec. II B, the calculation in
this paper is performed numerically for a finite lattice, which
leads to that the weight of the δ-function-type peak in F (θ, θ ′)
at the antinode (node) spreads on the extremely small area
{θAN} [{θND}] around the antinode (node) as shown in Fig. 10.
In particular, the summation of these spread weights around
this extremely small area {θAN} [{θND}] is less affected by the
calculation for a finite lattice. In this case, a more appropriate
ratio can be obtained as

R̄F (T ) = F̄ND(T )

F̄AN(T )
, (32)

for the reduction of the size effect in the finite-lattice calcula-
tion, where F̄AN(T ) and F̄ND(T ) are given by

F̄AN(T ) = 1

2π

∑
θAN∈{θAN}
θ ′

AN∈{θ ′
AN}

F (θ, θ ′, T ),

F̄ND(T ) = 1

2π

∑
θND∈{θND}
θ ′

ND∈{θ ′
ND}

F (θ, θ ′, T ),

with the summation θAN ∈ {θAN}[θ ′
AN ∈ {θ ′

AN}] that is re-
stricted to the extremely small area {θAN} [{θND}] around the
antinode (node). In this case, we have carried out a series of
calculations for the ratio R̄F (T ) at different doping levels, and
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FIG. 11. The ratio of the strength of the nodal umklapp scattering
to the strength of the antinodal umklapp scattering as a function of
temperature for δ = 0.18.

the result of R̄F (T ) as a function of temperature at δ = 0.18 is
plotted in Fig. 11, where R̄F (T ) decreases monotonically with
the increase of temperature. In other words, although both

the strengths of the nodal and antinodal umklapp scattering
decrease with the decrease of temperature, the decrease of the
strength of the nodal umklapp scattering is slower than that of
the antinodal umklapp scattering.

We now turn to show why the transport scattering rate γ (T )
[then the resistivity ρ(T )] exhibits a crossover from the T -
linear behavior in the low-temperature region into T -quadratic
behavior in the far-lower-temperature region? The expression
form of the kernel function F (θ, θ ′) in Eq. (25) indicates
that F (θ, θ ′) is proportional to the effective spin propagator
P(k, p, k′, ω). For a convenience in the following discussions,
the effective spin propagator P(k, p, k′, ω) in Eq. (22) can be
rewritten as

P(k, p, k′, ω) = − 1

N

∑
q, j

(−1) j+1 � j (k, p, k′, q)

ω2 − [
ω

( j)
pq

]2 , (33)

with j = 1, 2, the weight functions �1(k, p, k′, q) and
�2(k, p, k′, q) that are given by

�1(k, p, k′, q) = �k+p+q�q+k′W̄ (1)
pq , (34a)

�2(k, p, k′, q) = �k+p+q�q+k′W̄ (2)
pq . (34b)

Substituting above result in Eq. (33) into Eq. (25), the
kernel function F (θ, θ ′) can be rewritten as

F (θ, θ ′) = 1

T

1

N2

∑
q,q′, j j′

(−1) j+ j′P
∫ ∞

−∞

dω

2π

ω2

p(θ, θ ′)
eβω

[eβω − 1]2

� j (θ, θ ′, q)

ω2 − [
ω

( j)
θθ ′ (q)

]2

� j′ (θ, θ ′, q′)

ω2 − [
ω

( j′ )
θθ ′ (q′)

]2

= 1

N2

∑
q,q′, j j′

(−1) j+ j′ � j (θ, θ ′, q)� j′ (θ, θ ′, q′)
2π p(θ, θ ′)

1

T 2
i2π I[Cj (θ, θ ′, q),Cj′ (θ, θ ′, q′)], (35)

with � j (θ, θ ′, q) = � j[k(θ ), p(θ, θ ′), k′
F , q], � j′ (θ, θ ′, q) = � j′ [k(θ ), p(θ, θ ′), k′

F , q′], ω
( j)
θθ ′ (q) = ω

( j)
p(θ,θ ′ )q, ω

( j′ )
θθ ′ (q′) =

ω
( j′ )
p(θ,θ ′ )q′ , and the function,

I j j′ (θ, θ ′, q, q′) = P
∫ ∞

−∞

dx

i2π

ex

(ex − 1)2

x2[
x2 − C2

j (θ, θ ′, q)
][

x2 − C2
j′ (θ, θ ′, q′)

] , (36)

where Cj (θ, θ ′, q) and Cj′ (θ, θ ′, q′) are defined as Cj (θ, θ ′, q) = ω
( j)
θθ ′ (q)/T and Cj′ (θ, θ ′, q′) = ω

( j′ )
θθ ′ (q′)/T , respectively. From

the MF spin propagator in Eq. (9), the spin spectral function can be obtained directly as

Aspin(k) = π
Bk

ωk
[δ(ω − ωk ) − δ(ω + ωk )], (37)

where the MF spin excitation energy spectrum ωk is an even function of momentum k and in particular, ωk|k=kA has an extremely
small value [56] [ωkA = 0.00205J ≈ 2 K at doping δ = 0.18], where kA = [±π,±π ] is the antiferromagnetic wave vector,
which therefore leads to that the spin excitations at around the kA point of BZ have the largest density of states, and then the spin
response is mainly governed by these spin excitations. In this case, the effective spin excitation energy dispersions ω(1)

pq and ω(2)
pq

in Eq. (11) can be expanded, and then can be expressed approximately as

ω(1)
pq = ωq+p + ωq ≈ a(q)p2 + 2ωq, (38a)

ω(2)
pq = ωq+p − ωq ≈ a(q)p2, (38b)

where a(q) = (d2ωq/d2q). The results in Eq. (38) therefore indicate that the effective spin propagator P(k, p, k′, ω) in Eq. (33)
is scaled by p2. However, due to this p2 scaling in the effective spin propagator (33), the temperature scale when the electron
umklapp scattering kicks in can be very low [41], being proportional to �2

p, where �p is the minimal umklapp vector at the
antinode shown in Fig. 4. In other words, ā�2

p is referred to as the temperature scale, i.e., Tscale = ā�2
p, where ā = (1/N )

∑
q a(q)

is the average value and is a constant at a given doping. Moreover, this temperature scale is obtained numerically as Tscale =
ā�2

p = 0.01513J ≈ 15 K at doping δ = 0.18, which is well consistent with the crossover temperature shown in Fig. 6. In this
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case, the function I j j′ (θ, θ ′, q, q′) in the above equation (36) can be derived respectively in three different temperature regions
as follows:

(i) In the region for finite values of Cj (θ, θ ′, q) and Cj′ (θ, θ ′, q′), the function I j j′ (θ, θ ′, q, q′) in Eq. (36) can be evaluated
(see Appendix B) as

I j j′ (θ, θ ′, q, q′) = i
1

2
[
C2

j (θ, θ ′, q) − C2
j′ (θ, θ ′, q′)

]
{

Cj (θ, θ ′, q)eCj (θ,θ ′,q)

[eCj (θ,θ ′,q) − 1]2
− Cj′ (θ, θ ′, q′)eCj′ (θ,θ ′,q′ )

[eCj′ (θ,θ ′,q′ ) − 1]2

}
. (39)

In particular, in the low-temperature region, which is corresponding to the case of T > [Tscale + ωkA ], the function
I j j′ (θ, θ ′, q, q′) in the above equation (39) can be reduced as I j j′ (θ, θ ′, q, q′) ∼ −iT 3/[4(ā�2

p)3], and then kernel function in
Eq. (35) in the low-temperature region is obtained explicitly as

F (θ, θ ′) ≈ 1

N2

∑
q,q′, j j′

(−1) j+ j′ � j (θ, θ ′, q)� j′ (θ, θ ′, q′)
2p(θ, θ ′)

T

ω
( j)
θθ ′ (q)ω( j′ )

θθ ′ (q′)
[
ω

( j)
θθ ′ (q) + ω

( j′ )
θθ ′ (q′)

] ∝ T, (40)

which leads to the transport scattering rate γ (T ) ∝ T [then the resistivity ρ(T ) ∝ T ] in the low-temperature region.
(ii) On the other hand, in the far-lower-temperature region, which is corresponding to the case of T < Tscale, the function

I j j′ (θ, θ ′, q, q′) in Eq. (36) can be derived straightforwardly as

I j j′ (θ, θ ′, q, q′) = −i
1

2πC2
j (θ, θ ′, q)C2

j′ (θ, θ ′, q′)

∫ ∞

0
dx

ex

(ex − 1)2

x2[
1 − x2/C2

j (θ, θ ′, q)
][

1 − x2/C2
j′ (θ, θ ′, q′)

]

= −i
1

2πC2
j (θ, θ ′, q)C2

j′ (θ, θ ′, q′)

∫ ∞

0
dx

exx2

(ex − 1)2

⎡
⎣1 + x2

C2
j (θ, θ ′, q)

+
(

x2

C2
j (θ, θ ′, q)

)2

+ · · ·
⎤
⎦

×
⎡
⎣1 + x2

C2
j′ (θ, θ ′, q′)

+
(

x2

C2
j′ (θ, θ ′, q′)

)2

+ · · ·
⎤
⎦ ≈ −i

1

2πC2
j (θ, θ ′, q)C2

j′ (θ, θ ′, q′)

∫ ∞

0
dx

exx2

(ex − 1)2

= −i
1

6C2
j (θ, θ ′, q)C2

j′ (θ, θ ′, q′)
= −i

T 4

6
[
ā�2

p

]2[
ā�2

p + ωkA

]2 , (41)

and then the kernel function in Eq. (35) can be obtained in the far-lower-temperature region as

F (θ, θ ′) ≈ 1

N2

∑
q,q′, j j′

(−1) j+ j′ � j (θ, θ ′, q)� j′ (θ, θ ′, q′)
6p(θ, θ ′)

1

T 2

T 4[
ā�2

p

]2[
ā�2

p + ωkA

]2 ∝ T 2, (42)

which naturally gives rise to a T -quadratic behavior of
the transport scattering rate γ (T ) ∝ T 2 [then the resistivity
ρ(T ) ∝ T 2] in the far-lower-temperature region.

(iii) However, in the temperature region of Tscale < T <

Tscale + ωkA , which is corresponding to the crossover region
of the transport scattering rate. In this extremely narrow
crossover region (from ∼15 K to ∼17 K), the resistivity
is neither T -linear nor T -quadratic but is a nonlinear in
temperature. The above results therefore explain why the re-
sistivity has a crossover from the T -linear behavior in the
low-temperature region into the T -quadratic behavior in the
far-lower-temperature region. The above results also show
that the effect of the umklapp scattering via the exchange of
the effective spin propagator is not exponentially small at the
low-temperature region as in the case of the electron-phonon
coupling but is power law down to the far-lower-temperature
region as in the case of the coupling of the electrons with a
critical bosonic mode [41].

IV. SUMMARY AND DISCUSSION

Starting from the low-energy electronic structure of the
strange metal phase in overdoped cuprate superconductors,

we have studied the nature of the low-temperature electri-
cal transport, where the angular dependence of the transport
scattering rate is arisen from the umklapp scattering between
electrons by the exchange of the effective spin propagator
and is employed to evaluate the resistivity by making use
of the Boltzmann equation. Our results show that although
the magnitude of the transport scattering rate at an any given
Fermi angle is smaller than the corresponding value of the
single-particle scattering rate, the transport scattering rate
presents a similar behavior of the single-particle scattering
rate, where the transport scattering rate is largest at around
the antinodal region and smallest at around the tips of the
Fermi arcs, indicating that the resistivity is mainly dominated
by the antinodal and nodal umklapp scattering. In particular,
a very low temperature Tscale scales with �2

p, this leads to
that in the low-temperature region (T > Tscale), the transport
scattering rate is T -linear with the T -linear resistivity coef-
ficient that decreases with the increase of doping. However,
in the far-lower-temperature region (T < Tscale), the transport
scattering rate is instead T -quadratic. This T -linear behavior
of the transport scattering rate in the low-temperature re-
gion and T -quadratic behavior in the far-lower-temperature
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FIG. 12. The intensity map of the imaginary part of the effec-
tive spin propagator ImP(k, p − k, k′, ω) along k = k′ = kF in a
[px, py] plane at δ = 0.18 for energy ω = −0.05J with T = 0.002J .

region in turn induces respectively the T -linear resistivity in
the low-temperature region and T -quadratic resistivity in the
far-lower-temperature region. Our theory also shows that the
same spin excitation that acts like a bosonic glue to hold
the electron pairs together responsible for the exceptionally
high Tc also mediates the electron umklapp scattering in the
strange metal phase of overdoped cuprate superconductors
responsible for the T -linear resistivity.

It should be emphasized that the effective spin propagator
P(k, p, k′, ω) in Eq. (22) is obtained in the MF level [48,56],
i.e., P(k, p, k′, ω) in Eq. (22) is obtained as a convolution
of two MF spin propagators in Eq. (9). Thus the umklapp
scattering between electrons in Eq. (21) by the exchange
of this effective MF spin propagator is better suited for the
discussions of the electrical transport in the strange metal
phase of overdoped cuprate superconductors as in case of
the umklapp scattering between electron by the exchange
of the phenomenologically critical bosonic mode [41]. This
follows a basic fact that in the overdoped regime, the effect
of the magnetic fluctuation becomes quite weak [1,9,10,99],

and then the scattering between electrons by the exchange of
the effective MF spin propagator can give a suitable descrip-
tion of the renormalization of the electrons [45–48] and the
related electrical transport discussed in this paper. However,
in the underdoped regime, where the magnetic fluctuation is
particularly strong [1,9,10,99] and can be described in terms
of the full spin propagator [107–109], the spin self-energy is
derived in terms of the charge-carrier bubble, and then the
umklapp scattering between electrons should be mediated by
the exchange of the effective full spin propagator for a suit-
able discussion of the electrical transport in the underdoped
cuprate superconductors. These and the related issues are
under investigation now. The transport scattering mechanism
developed in this paper for the understanding of the electrical
transport in the strange metal phase of overdoped cuprate
superconductors can be also employed to study the electrical
transport in other families of strange metals [110,111] in the
doped regime, where the magnetic fluctuation is rather weak.
In particular, based on this transport scattering theory, we
have also discussed the low-temperature T -linear resistivity of
the electron-doped cuprate superconductors in the overdoped
regime [112], where we show the common mechanism linking
the electrical transport of both the hole- and electron-doped
cuprate superconductors in the overdoped regime. These and
the related works will be presented elsewhere.
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APPENDIX A: DERIVATION OF ELECTRON-ELECTRON
COLLISION

The aim of this Appendix is to derive the electron-electron
collision Ie−e in Eq. (23) of the main text. The electron-
electron collision in Eq. (21) can be also rewritten as

Ie−e = 1

N2

∑
k′,p

2

T
|P(k, p − k, k′, ε̄k − ε̄p+G)|2[�̃(k) + �̃(k′) − �̃(p + G) − �̃(k′ + k − p)]

× nF (ε̄k )nF (ε̄k′ )[1 − nF (ε̄p+G)][1 − nF (ε̄k′+k−p)]δ(ε̄k + ε̄k′ − ε̄p+G − ε̄k′+k−p), (A1)

with the effective spin propagator P(k, p − k, k′, ω) that can be expressed explicitly as

P(k, p − k, k′, ω) = 1

N

∑
q

�p+q�q+k′�(p − k, q, ω) =
∫ ∞

−∞

dω′

π

ImP(k, p − k, k′, ω′)
ω′ − ω

, (A2)

where the imaginary part of the effective spin propagator ImP(k, p − k, k′, ω) is directly related to the effective spin spectral
function and is also defined as the scattering probability for two electrons. However, in our previous discussions [113], we have
shown that for given momentums k and k′, ImP(k, p − k, k′, ω) exhibits a remarkable evolution with momentum p and ω

except for ω = 0, where ImP(k, p − k, k′, 0) = 0. To see this unusual momentum p dependence of ImP(k, p − k, k′, ω) more
clearly, we plot the intensity map of ImP(k, p − k, k′, ω) along EFS k = k′ = kF in a [px, py] plane at δ = 0.18 for energy ω =
−0.05J with T = 0.002J in Fig. 12, where the spectral weight of ImP(kF , p − kF , k′

F , ω) along EFS k = k′ = kF converges
on the corresponding EFS p = kF, i.e., ImP(kF , p − kF , k′

F , ω) �= 0 for p = kF, and otherwise ImP(kF , p − kF , k′
F , ω) = 0.

In particular, the spectral weight of ImP(kF , p − kF , k′
F , ω) exhibits a largest value at around the antinodal region, however,
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the most striking feature is that the actual minimum of the spectral weight of ImP(kF , p − kF , k′
F , ω) does not appear at around

the node, but locates exactly at the tips of the Fermi arcs. This special angular dependence of ImP(kF , p − kF , k′
F , ω) therefore

induces an EFS reconstruction to form the Fermi arcs as shown in Fig. 2 with almost all the spectral weight of the electron
excitation spectrum that resides at around the tips of the Fermi arcs.

The result shown in Fig. 12 therefore indicates that the main contribution in P(k, p − k, k′, ω) comes from the part of the
momentum p = k. In this case, the term �(k′) − �(k′ + k − p) ∼ 0 in the right-hand side of Eq. (A1), and then δ(ε̄k + ε̄k′ −
ε̄p+G − ε̄k′+k−p) in the right-hand side of Eq. (A1) can be replaced by the integral identity as [41]

δ(ε̄k + ε̄k′ − ε̄p+G − ε̄k′+k−p) =
∫ ∞

−∞
dωδ(ε̄k − ε̄p+G − ω)δ(ω + ε̄k′ − ε̄k′+k−p). (A3)

On the other hand, the umklapp scattering process occurs mainly at around EFS, i.e., k′ ≈ k′
F , therefore the momentum

k′ in the effective spin propagator P(k, p − k, k′, ω) can be approximately replaced by the reduced effective spin propagator
P̄(k, p − k, ω),

P̄(k, p − k, ω) = 1

Wsp
P(k, p − k, k′

F , ω), (A4)

where following the common practice, the scattering probability for two electrons has been normalized with the normalization
factor W 2

sp = (1/N2)
∑

k,p

∫ |ImP̄(k, p − k, ω)|2dω. Substituting above results in Eqs. (A3) and (A4) into Eq. (A1), the electron-
electron collision in Eq. (A1) can be expressed explicitly as [41]

Ie−e = 1

N2

∑
k′,p

2

T
|P̄(k, p − k, ε̄k − ε̄p+G)|2[�̃(k) − �̃(p + G)]nF (ε̄k )nF (ε̄k′ )[1 − nF (ε̄p+G)][1 − nF (ε̄k′+k−p)]

×
∫ ∞

−∞
dωδ(ε̄k − ε̄p+G − ω)δ(ω + ε̄k′ − ε̄k′+k−p)

= 1

N2

∑
k′,p

2

T
|P̄(k, p, ε̄k − ε̄p+k+G)|2[�̃(k) − �̃(p + k + G)]nF (ε̄k )nF (ε̄k′ )[1 − nF (ε̄p+k+G)][1 − nF (ε̄k′−p)]

×
∫ ∞

−∞
dωδ(ε̄k − ε̄p+k+G − ω)δ(ω + ε̄k′ − ε̄k′−p). (A5)

Now we replace the momentum k′ integration by an integration along EFS and one perpendicular to it, i.e., (1/N )
∑

k′ =∫
k′dk′dθk′/(2π )2, where the θk′ specifies a patch of EFS in the direction θk′ as shown in Fig. 4, and then the radial integration∫
dk′ is replaced by an integral over

∫
dk′ = ∫

d ε̄k′/vF . In this case, the above electron-electron collision in Eq. (A5) can be
simplified as

Ie−e = 1

2π

2kF

T v2
F

1

N

∑
p

1

|p|
∫

dω

2π
|P̄(k, p, ε̄k − ε̄p+k+G)|2[�̃(k) − �̃(p + k + G)]nF (ε̄k )

× [1 − nF (ε̄p+k+G)]ω[1 + nB(ω)]δ(ε̄k − ε̄p+k+G − ω). (A6)

For the obtain of the above equation (A6), the following identity:∫ +∞

−∞
dεnF (ε − ω)[1 − nF (ε)] = ω[1 + nB(ω)], (A7)

has been used, where the appearance of the boson distribution function nB(ω) in the right-hand side signals that we are describing
a particle-hole effective spin excitation which has the boson statistics [41].

Now we turn to evaluate the momentum p integration, which is quite similar to the evaluation of the momentum k′ integration
in Eqs. (A5) and (A6). After a straightforward calculation for the momentum p integration in Eq. (A6), the electron-electron
collision term can be obtained explicitly as

Ie−e = 1

(2π )2

2k2
F

T v3
F

∫
dθ ′

2π

∫
dω

2π

1

p(θ, θ ′)
|P̄[k(θ ), p(θ, θ ′), ω]|2[�(θ ) − �(θ ′)]nF (ε̄k(θ ) )[1 − nF (ε̄k(θ ) − ω)]ω[1 + nB(ω)], (A8)

where �̃(k) and �̃(p + k + G) in the right-hand of side have been replaced by �(θ ) and �(θ ′), respectively, and at low-energy
regime, the Boltzmann equation in Eq. (20) can be expressed as

evF · E
∂nF (ε̄k(θ ) )

∂ε̄k(θ )
= 1

(2π )2

2k2
F

T v3
F

∫
dθ ′

2π

∫
dω

2π

1

p(θ, θ ′)

× |P̄[k(θ ), p(θ, θ ′), ω]|2[�(θ ) − �(θ ′)]nF (ε̄k(θ ) )[1 − nF (ε̄k(θ ) − ω)]ω[1 + nB(ω)]. (A9)
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Integrating both the left-hand and right-hand sides over the energy ε̄k(θ ), the Boltzmann equation in Eq. (A9) can be obtained
explicitly as

evF · E = − 1

(2π )2

2k2
F

T v3
F

∫
dθ ′

2π

∫
dω

2π

1

p(θ, θ ′)
|P̄[k(θ ), p(θ, θ ′), ω]|2[�(θ ) − �(θ ′)]ω2nB(ω)[1 + nB(ω)]

= −2
∫

dθ ′

2π
ζ (θ ′)F (θ, θ ′)[�(θ ) − �(θ ′)], (A10)

which is the same as quoted in Eq. (23) of the main text.

APPENDIX B: DERIVATION OF FUNCTION Ij j′ (θ, θ′, q, q′ )

In this Appendix, we sketch the derivation of the function I j j′ (θ, θ ′, q, q′) in Eq. (36) of the main text. For a convenience in
the following discussions, we define the functions: C = Cj (θ, θ ′, q), C′ = Cj′ (θ, θ ′, q′), and I (C,C′) = I j j′ (θ, θ ′, q, q′). In this
case, the function I j j′ (θ, θ ′, q, q′) in Eq. (36) of the main text can be rewritten in the complex-plane as

Iz(C,C′) =
∫

dz

i2π

ez

(ez − 1)2

z2

[z2 − C2][z2 − C′2]
, (B1)

with the closed integration path in the upper complex-plane, and then this integration along the real axis can be obtained as

I (C,C′) = P
∫ ∞

−∞

dx

i2π

ex

(ex − 1)2

x2

[x2 − C2][x2 − C′2]
= res[z = iωn = i2πn(n ∈ N+)]

+1

2

∑
z0

lim
z→z0

(z − z0)
ez

(ez − 1)2

z2

[z2 − C2][z2 − C′2]
, (B2)

where z0 = iωn, z0 = ±C, and z0 = ±C′ are the poles. With the help of the above results in Eq. (B2), the function I (C,C′) in
Eq. (36) can be expressed in terms of the residues of the corresponding poles as

I (C,C′) = P
∫ ∞

−∞

dx

i2π

ex

(ex − 1)2

x2

[x2 − C2][x2 − C′2]
= −2

∑
n>0

iωn[iω4
n − C2C′2][

iω2
n − C2

]2[
iω2

n − C′2]2

= −
∑

n

i|ωn|
[
iω4

n − C2C′2][
iω2

n − C2
]2[

iω2
n − C′2]2 . (B3)

For obtaining the above result in Eq. (B3), the following identities:

lim
z→0

z
ez

(ez − 1)2

z2

[z2 − C2][z2 − C′2]
= 0, (B4a)

lim
z→±C

(z − ±C)
ez

(ez − 1)2

z2

[z2 − C2][z2 − C′2]
= ±1

2

eC

[eC − 1]2

C

C2 − C′2 , (B4b)

lim
z→±C′

(z − ±C′)
ez

(ez − 1)2

z2

[z2 − C2][z2 − C′2]
= ±1

2

eC′

[eC′ − 1]2

C′

C′2 − C2
, (B4c)

res[z = iωn = i2πn(n ∈ N+)] = −2
iωn[iω4

n − C2C′2][
iω2

n − C2
]2[

iω2
n − C′2]2 , (B4d)

have been used. We now introduce the following integration:

Īz(C,C′) =
∫

dz

i2π

|z|[z4 − C2C′2]

[z2 − C2]2[z2 − C′2]2
nB(z), (B5)

with the integration path along the closed path at infinity in the complex-plane, which can be derived directly as

Īz(C,C′) =
∑

n

|ωn|
[
iω4

n − C2C′2][
iω2

n − C2
]2[

iω2
n − C′2]2 +

∑
z0

lim
z→z0

d

dz
(z − z0)2 |z|[z4 − C2C′2]

[z2 − C2]2[z2 − C′2]2
nB(z) = 0, (B6)
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where the poles are located at z0 = ±C and z0 = ±C′, while the derivative in the above equation (B6) can be calculated
straightforwardly as

d

dz
(z − z0)2 |z|[z4 − C2C′2]

[z2 − C2]2[z2 − C′2]2
nB(z)

∣∣∣∣∣
z→z0

= d

dz

|z|[z4 − C2C′2]

[z + z0]2
[
z2 − z′2

0

]2 nB(z)

∣∣∣∣∣
z→z0

= z2
0

(
z2

0 − z′2
0

)2[|z0|′
(
z4

0 − C2C′2) + 4|z0|z3
0

] − |z0|z0
(
z2

0 − z′2
0

)(
z4

0 − C2C′2)(5z2
0 − z′2

0

)
4z4

0

(
z2

0 − z′2
0

)4

1

ez0 − 1

− |z0|
(
z4

0 − C2C′2)
4z2

0

(
z2

0 − z′2
0

)2

ez0

(ez0 − 1)2
, (B7)

and then the residues in Eq. (B6) corresponding to the poles at z0 = ±C and z0 = ±C′ are derived explicitly as

res(z0 = C) = res(z0 = −C) = C

4(C2 − C′2)

eC

(eC − 1)2
, (B8a)

res(z0 = C′) = res(z0 = −C′) = C′

4(C′2 − C2)

eC′

(eC′ − 1)2
, (B8b)

respectively. With the help of the above results of the residues, the following identity is obtained explicitly,

−
∑

n

|ωn|
(
iω4

n − C2C′2)(
iω2

n − C2
)2(

iω2
n − C′2)2 = 1

2(C2 − C′2)

[
CeC

(eC − 1)2
− C′eC′

(eC′ − 1)2

]
. (B9)

Substituting the above result in Eq. (B9) into Eq. (B2), the function I (C,C′) can be obtained explicitly as,

I (C,C′) = i

2[C2 − C′2]

(
CeC

[eC − 1]2
− C′eC′

[eC′ − 1]2

)
, (B10)

which is the same as quoted in Eq. (39) of the main text.
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