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Robustness of chiral surface current and subdominant s-wave Cooper pairs
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The robustness of the chiral surface current of chiral superconductors against surface roughness is studied
utilizing the quasiclassical Eilenberger theory. We consider the general chiral superconductors where the pair
potential is given by the spherical harmonics Y m

l such that the (l, m) = (1,±1) state corresponds to a (px ± ipy)-
wave superconductor. The self-consistent calculations demonstrate that the robustness of the chiral current is
determined by whether subdominant s-wave Cooper pairs are induced by disorder. The induced s-wave pairs act
as an effective pair potential. As a result, the spontaneous chiral current of (px + ipy)- and (dx2−y2 + idxy)-wave
superconductors is robust against the roughness because the subdominant s-wave Cooper pairs are present.
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I. INTRODUCTION

Chiral superconductivity is realized by Cooper pairs with
finite orbital angular momenta. The nonzero angular momenta
give rise to the so-called chiral current at a surface of a
chiral superconductor (SC) spontaneously [1–18]. The di-
rection of the chiral current is chosen by the Cooper-pair
condensate with the spontaneous symmetry breaking. Ob-
serving the spontaneous surface current can be conclusive
evidence to demonstrate the realization of chiral supercon-
ductivity. However, the spontaneous surface current has never
been observed in any chiral SCs discovered so far [19,20].

The simplest chiral superconducting state is the px +
ipy-wave state (e.g., 3He -A). The intrinsic total angu-
lar momentum in the px + ipy-wave state has been a
longstanding problem. In addition to the px + ipy-wave
state, other types of chiral SCs have been proposed as a
pairing symmetry in several unconventional superconduc-
tors [11–18,21–23]. The possibility of the two-component
d-wave superconductivity (e.g., dx2−y2 + idxy-wave pairing)
has been discussed in layered materials such as NaxCoO2 ·
yH2O [24–28], doped graphene [29–32], and SrPtAs [33–37].
In addition, three-dimensional pairings for the two-component
d-wave superconductivity are possible. The dzx + idyz-wave
pairing has been discussed to reveal the superconductivity in a
uranium compound URu2Si2 [38–40], and pnictide compound
LaPt3P [41]. This pairing has recently been proposed as a
new candidate for an unconventional SC Sr2RuO4 [18,42–
49]. Furthermore, the possibility of the spin-triplet f + i f ′-
wave superconductivity has been discussed to elucidate the
superconductivity in UPt3 [50–59].

To achieve the observation of the spontaneous chiral cur-
rent, we cannot avoid the effects of surface roughness. In
real-life experiments, the sample quality at a surface is not
as specular as assumed in theoretical models. Although the
total chiral current is estimated by assuming the secular sur-
face [2,3], the surface roughness causes random reflections
that are known to affect the surface Andreev bound states
[5,7,14,18,60–63] in unconventional SCs such as high-Tc SCs.
Indeed, it has been shown that the surface quality significantly

modifies the chiral current for higher-order chiral SCs [14].
Moreover, the suppression of the chiral current is deeply re-
lated to the pairing symmetry of the chiral SC. In the previous
paper [18], the robustness of the chiral surface currents in the
px + ipy-wave and dzx + idyz-wave SCs has been compared. It
has been demonstrated that the chiral current for a px + ipy-
wave SC can survive under the surface roughness, whereas
that for the dzx + idyz-wave SC disappears even under weak
roughness. The difference is well explained by the existence
of the subdominant s-wave pairs at the surface. The s-wave
pairs appear at a surface of the px + ipy-wave SC and act as
an effective pair potential, leading to the robust chiral surface
current of the px + ipy-wave SC. In the dzx + idyz-wave case,
on the contrary, no s-wave pair is induced, resulting in the
fragile surface chiral current.

In this paper, we examine the robustness of the sponta-
neous surface current in general chiral SCs, in particular, by
focusing on the subdominant s-wave pairs at the surface. The

FIG. 1. Schematic superconducting gaps in the homogeneous
limit. The superconducting gap of a general chiral superconductor
is given by the spherical harmonics Y m

l with m > 0. The color means
the phase of the pair potential. The inner sphere indicates the Fermi
sphere.
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FIG. 2. Schematics of the systems. Superconductors with
(a) rough surfaces and (b) dirty metallic surfaces. The disordered
superconducting and normal-metal regions are indicated by S′ and
N′. The surfaces are perpendicular to the x axis and located at x = 0
and L. The width of the disordered region is denoted by w.

pair potential is given in a general form using the spherical
harmonics Y m

l (m � 1), as shown in Fig. 1. Chiral SCs with
rough surfaces and those covered with dirty normal metals are
considered (Fig. 2). By solving the Eilenberger equation with
the self-energy by random scatterings at the surface, the spa-
tial profiles of the pair potentials, current density, and the
s-wave pair amplitude are determined self-consistently.

We conclude that the chiral surface current in the Y 1
1 , and

Y 2
2 , and Y 3

3 [i.e., px + ipy-, dx2−y2 + idxy-, and fx(x2−3y2 ) +
i fy(3x2−y2 )-wave] SCs can survive under the strong-roughness
limit. In particular, the chiral currents in Y 1

1 and Y 2
2 SCs are

sufficiently large to be observed in experiments. The chiral
current in the Y 3

3 SC remains finite, but may not be large
enough to be detected. In the other chiral SCs, specular sur-
faces are required to observe the spontaneous current because
the surface currents in these cases disappear even with a weak
roughness. We also confirm that the subdominant s-wave
Cooper pairs are essential for the observable spontaneous
surface current by comparing the calculated current density
with and without the subdominant s-wave Cooper pairs. We
show that if there were no s-wave Cooper pairs, the spon-
taneous chiral currents for all chiral SCs could not survive,
even under weak surface roughness. Namely, the robustness
of the spontaneous current can be judged only by whether the
subdominant s-wave Cooper pairs emerge.

II. QUASICLASSICAL EILENBERGER THEORY

We examine the effects of surface roughness utilizing the
quasiclassical Eilenberger theory [64] in equilibrium [65].
The SC has a pair of parallel surfaces which are perpendicular
to the x axis. The distance between two surfaces is denoted
by L. The thin dirty regions and thin dirty normal metals with
width w are introduced at the surfaces, as shown, respectively,
in Figs. 2(a) and 2(b). The model in Fig. 2(b) is similar to
the one that was first proposed by Ovchinnikov [66–68]. The
Green’s functions obey the Eilenberger equation, which is
valid in the weak-coupling limit,

ivF · ∇ǧ + [iωnτ̌3 + Ȟ , ǧ]− = 0, (1)

ǧ =
(

ĝ f̂
− f̂

˜
−ĝ

˜

)
, �̌ =

(
0 �̂

�̂
˜

0

)
, (2)

Ȟ = �̌ + �̌ =
(

ξ̂ η̂

η̂
˜

ξ̂
˜

)
, �̌ = i

2τ0
〈ǧ〉, (3)

where 〈· · · 〉 = ∫ π

0

∫ π

−π
· · · sin θdϕdθ/4π is the angle

average on the Fermi sphere, the unit vector k =

(sin θ cos φ, sin θ sin φ, cos θ ) represents the direction of
the Fermi momentum, ǧ = ǧ(r, k, iωn) is the quasiclassical
Green’s function in the Matsubara representation,
�̌ = �̌(r, k) is the pair-potential matrix, and �̌ = �̌(r, iωn)
is the self-energy with the mean free path � = vF τ0. In this
paper, the accents ·̌ and ·̂ mean matrices in particle-hole
and spin space. The identity matrices in particle-hole
and spin space are, respectively, denoted by τ̌0 and
σ̂0. The Pauli matrices are denoted by τ̌ν and σ̂ν with
ν ∈ {1, 2, 3}. All of the functions satisfy the symmetry
relation K̂ (r, k, iωn) = [K̂

˜
(r,−k, iωn)]∗. The effects of the

vector potential are ignored because they only quantitatively
affect the surface states. The quasiclassical Green’s function
is supplemented by the normalization condition

ǧǧ = τ̌0. (4)

Throughout this paper, we use the units kB = h̄ = 1.
The Eilenberger equation (1) can be simplified by the so-

called Riccati parametrization [69–71]. The Green’s function
can be expressed in terms of the coherence function γ̂ =
γ̂ (r, k, iωn),

ǧ = 2

(
Ĝ F̂

−F̂
˜

−Ĝ
˜

)
− τ̌3, (5)

Ĝ = (1 − γ̂ γ̂
˜

)−1, F̂ = (1 − γ̂ γ̂
˜

)−1γ̂ . (6)

The equation for γ̂ is given by

(ivF · ∇ + 2iωn)γ̂ + ξ̂ γ̂ − γ̂ ξ̂
˜

− η̂ + γ̂ η̂
˜
γ̂ = 0. (7)

Assuming no spin-dependent potential and single-spin �̂, we
can parametrize the spin structure of the functions,

�̂ = i�k,ν (iσ̂ν σ̂2), (8)

�̂
˜

= −i�∗
−k,ν (iσ̂ν σ̂2)∗ = i�∗

k,ν (iσ̂ν σ̂2)†, (9)

ĝ = gσ̂0, f̂ = fν (iσ̂ν σ̂2), f̂
˜

= f
˜

ν (iσ̂ν σ̂2)†, (10)

η̂ = iην (iσ̂ν σ̂2), η̂
˜

= iη
˜
ν (iσ̂ν σ̂2)†, (11)

where ν = 0 (ν ∈ {1, 2, 3}) is for the spin-singlet (spin-triplet)
SC. In the following, we make ν explicit only when necessary.
Equation (7) can be reduced to

vF · ∇γ + 2ω̃γ − η + η
˜
γ 2 = 0, (12)

ω̃ = ωn + Re〈g〉
2τ0

, (13)

ην = �k + 〈 f 〉
2τ0

, η
˜
ν = �∗

k − Sν

〈 f 〉∗
2τ0

, (14)

with Sν = +1 (−1) for the spin-triplet (spin-singlet) SC. In
the homogeneous limit, γ is given by

γ̄ (k, iωn) = �k

ωn + √
ω2

n + |�k|2
, (15)

where ·̄ means the bulk value.
The pair potential of chiral superconductors is described by

the two-component pair potential as summarized in Table I.
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TABLE I. Momentum dependence of the pair potential and attractive potentials. We use the modified spherical harmonics so that
max[Y m

l (k)] = 1. The amplitude of each component �1(2) is determined by the self-consistent gap equation.

Deep inside the superconductor, the momentum dependence
of the pair potential is given by

�k = �̄Ỹ m
l (k), (16)

where we use the modified spherical harmonics Ỹ m
l which

satisfy max[Ỹ m
l (k)] = 1. The chiral superconductivity is de-

scribed by m � 1. The schematic gap amplitudes in the bulk
are shown in Fig. 1, where the color means the phase of the
pair potential arg[�(k)] and the inner silver sphere means
the Fermi sphere [72]. The spatial dependence of �1(r) and
�2(r) is determined by the self-consistent gap equation which
relates f and �,

�μ(r) = 2λN0
π

iβ

ωc∑
ωn

〈Vμ(k′) f (r, k′, iωn)〉, (17)

where μ = 1 or 2, β = 1/T , Tc is the critical temperature, N0

is the density of the states (DOS) in the normal state at the
Fermi energy, and nc is the cutoff integer which satisfies 2nc +
1 < ωc/πT < 2nc + 3. The attractive potentials V1 and V2 are
also summarized in Table I. The coupling constant λ is finite
in the superconducting region,

λ = 1

2N0

[
ln

T

Tc
+

nc∑
n=0

1

n + 1/2

]−1

. (18)

In the normal metal, the coupling constant is set to λ = 0.
The spontaneous chiral current is calculated from the

Green’s function,

jy(r) =
ωc∑

ωn>0

jn, (19)

jn = evF
4πN0

β
〈kyIm[g(r, k, iωn)]〉, (20)

with e < 0 is the charge of a quasiparticle.
In the numerical simulations, we fix the parameters as

L = 80ξ0, w = 3ξ0, ωc = 10πTc, and T = 0.4Tc, with ξ0 =
vF /2πTc being the coherence length.

III. ROUGH SURFACE

We begin with the chiral surface current with rough sur-
faces as shown in Fig. 2(a). The partial chiral surface currents
jn=0 for each chiral SC are shown in Fig. 3. In the clean
limit, the chiral surface currents for the m = 1 chiral SCs

(i.e., Y 1
1 , Y 1

2 , and Y 1
3 ) are sufficiently large to observe in ex-

periments [2,19,20], as shown in Figs. 3(a), 3(b) and 3(d). On
the other hand, the chiral surface currents for the m > 1 chiral
SCs are smaller because the contributions from each chiral
channel compensate each other [see Figs. 3(c), 3(e) and 3(f)]
[12–17].

When the surface is rough, the chiral currents in the Y 1
2 , Y 1

3 ,
and Y 2

3 SCs disappear by the roughness shown in Figs. 3(b),
3(d) and 3(e), where the ratio of the coherence length and the
mean free path is set to ξ0/� = 5. On the other hand, the chiral
currents in the Y 1

1 , Y 2
2 , and Y 3

3 SCs survive even under the
rough surface [Figs. 3(a), 3(c) and 3(f)]. The chiral surface
current in the Y 3

3 SC is, however, small in both the clean and
rough-surface cases. Therefore, in a sample with nonspecular
surfaces, we can observe the chiral surface current only when
the sample is a Y 1

1 SC (i.e., px + ipy-wave SC) or Y 2
2 SC (i.e.,

dx2−y2 + idxy-wave SC).
In the previous paper [18], we pointed out that the subdom-

inant s-wave Cooper pairs 〈 f 〉 play an important role under the
disorder. The spatial dependences of the s-wave Cooper pairs
〈 f 〉 in each chiral SC are shown in Fig. 4, where ωn = ω0

and the strength of the disorder is set to ξ0/� = 0, 1, or 5.
In the Y 1

2 and Y 2
3 SCs (i.e., chiral SCs with fragile chiral

currents), the amplitude of the s-wave Cooper pairs is exactly
zero because of the kz dependence of �k ∼ kz (therefore, the
results are not shown). When the chiral current is robust, there
are always s-wave Cooper pairs induced by the disorder. In
the Y 1

1 and Y 2
2 cases, the large amplitude of the s-wave pairs

〈 f 〉 [Figs. 4(a) and 4(b)] results in the robust chiral surface
current. The s-wave Cooper pairs act as an effective pair
potential in the disordered region [see Eq. (14)] [73]. In this
case, the internal interface between the clean and disordered
region can be regarded as an interface between an effective
s-wave SC and a chiral SC without a barrier potential. The
quasiparticles feel this effective interface and give rise to the
spontaneous current along it. In the chiral f -wave SCs (Y 1

3
and Y 3

3 ), the s-wave pairs in the disordered region are present,
but the amplitude is much smaller than the Y 1

1 and Y 2
2 cases.

The s-wave pairs have the largest amplitude inside the clean
region (x > w). In this case, the s-wave pairs cannot affect the
quasiparticle, as indicated by Eq. (14), because � → ∞ in the
clean region.

To examine the effect of the s-wave Cooper pairs 〈 f 〉,
we calculate the chiral surface currents under the condition
〈 f 〉= 0 in Eq. (14). This condition is not realistic, but clarifies
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FIG. 3. Partial current densities at the lowest Matsubara fre-
quency jy,0 in each chiral SC. The results for the clean surface, rough
surface, and rough surface without 〈 f 〉 are plotted with the solid
(Clean), one-dot chain (Rough), and broken lines (w/o 〈 f 〉). The
roughness parameters are set to ξ0/� = 5 and w = 3ξ0. The shaded
regions indicate the surface disordered region. The pair potential is
assumed to be (a) Y 1

1 , (b) Y 1
2 , (c) Y 2

2 , (d) Y 1
3 , (e) Y 2

3 , and (f) Y 3
3 . Note

that the amplitude of the partial current density strongly depends on
the pairing symmetry. When there are no s-wave Cooper pairs (i.e.,
〈 f 〉 = 0), the chiral current disappears in all chiral SCs. The current
densities are normalized to j0 = |e|vF πN0/β. We fix the parameters
as L = 80ξ0, w = 3ξ0, ωc = 10πTc, and T = 0.4Tc.

the effect of the s-wave subdominant pairs 〈 f 〉. The results
are shown in Fig. 3 with the broken lines. Even in the Y 1

1 SC,
the chiral current is significantly suppressed if there are no
s-wave Cooper pairs 〈 f 〉. The chiral currents in the Y 2

2 and
Y 3

3 SCs are also significantly suppressed compared to the full
calculation with 〈 f 〉. From these simulations, we conclude
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FIG. 4. Spatial profiles of the s-wave Cooper pairs 〈 f 〉 at ω0. The
strength of the roughness is set to ξ0/� = 0, 1, and 5. The s-wave
pairs have a large amplitude in the Y 1

1 SC. In (c),(d), the s-wave pairs
have finite amplitudes in the disordered region, but smaller than those
in (a),(b). We have confirmed that 〈 f 〉 = 0 in the Y 1

2 and Y 2
3 SCs

because �k ∼ kz.

that the robust chiral current under surface roughness is sup-
ported by the s-wave subdominant Cooper pairs induced by
the disorder.

The roughness dependences of the chiral surface current
are shown in Fig. 5, where the parameters on the surface
roughness are set to w = 3ξ0 and ξ0/� = 0.0, 0.2, 0.5, and 1.0.
In the Y 1

1 and Y 2
2 case, the peak of the current density moves

from the surface to the interface with increasing the roughness
[Figs. 5(a) and 5(c)]. The chiral current in those SCs would be
observed regardless of the surface quality of the sample. In
the Y 3

3 case, the amplitude of the chiral current remains finite,
even in the rough surface. However, the amplitude is small
even in the clean limit. It is not clear if the chiral surface
current in the Y 3

3 SC can be observed in experiments. When
the s-wave pairs 〈 f 〉 are absent or sufficiently small, the chiral
surface current is easily destroyed even by the weak roughness
(e.g., � > ξ0) [Figs. 5(b), 5(d) and 5(e)]. The observed chiral
current would be much smaller than that estimated in the clean
limit. Therefore, one needs to fabricated a sample with a suffi-
ciently clean surface to observe the chiral current in these SCs.

The existence of the s-wave subdominant pairs also af-
fects the pair potentials. The self-consistent pair potentials
are shown in Fig. 6, where the strength of the disorder is
set to ξ0/� = 5. The results for the Y 1

1 and Y 2
2 are shown in

134501-4



ROBUSTNESS OF CHIRAL SURFACE CURRENT AND … PHYSICAL REVIEW B 108, 134501 (2023)

0.0

0.2

0.0

0.1

-0.02

0.00

0.02

 0  3  6  9

0.0

0.1

0.00

0.02

0.00

0.01

 0  3  6  9

FIG. 5. Roughness dependence of the total current density in
each chiral superconductor. The strength of the surface roughness
is set to ξ0/� = 0, 0.2, 0.5, and 1.0. The other parameters are set
to the same values as used in Fig. 3. When the subdominant s-
wave pairs are present, the chiral current flows along the internal
interface as in (a), (c), and (f). On the other hand, the chiral current
without the s-wave pairs is smeared out by the roughness as in (b),
(d), and (e).

Figs. 6(a) and 6(b), and 6(c) and 6(d), respectively [74]. In
the clean limit, the emergence of the Andreev bound states
(ABSs) suppresses one of the pair potential, depending on the
momentum dependence [see Figs. 6(a) and 6(c)] [2]. One of
the pair potentials that changes its sign during the quasipar-
ticle reflection at the surface (e.g., px-wave component of Y 1

1
SC) is responsible to form the ABSs [75]. Correspondingly,
the other component of the pair potential is slightly enhanced
at the surface [Figs. 6(b) and 6(c)]. When the surface is rough,
both of the components are significantly suppressed. The chi-

FIG. 6. Pair potentials for (a),(b) Y 1
1 and (e),(f) Y 2

2 superconduc-
tors. The first and second components are shown, respectively, in
(a),(c) and (b),(d). The surface roughness significantly suppresses
the pair potential near the surface. The amplitudes of the suppression
depend on the presence of 〈 f 〉.

ral superconductivity is realized by anisotropic Cooper pairs,
which are fragile against impurity scatterings (e.g., Ander-
son’s theorem [76]). The roughness dependence of the pair
potentials is discussed in the Appendix.

The calculated pair potentials without the s-wave pairs 〈 f 〉
are also shown in Fig. 6. In the Y 1

1 case, �1 with 〈 f 〉 is smaller
than that without 〈 f 〉. This behavior means the s-wave Cooper
pairs induce the effective pair potential in the disordered
region and make the internal interface an effective boundary.
The other component of the pair potentials is also affected
by the s-wave Cooper pairs. A similar behavior can be seen
in the Y 2

2 case. Namely, �2 with 〈 f 〉 is slightly more
suppressed than the one without 〈 f 〉, whereas �1 with 〈 f 〉 is
slightly more enhanced than the one without 〈 f 〉. However,
the effect is much smaller than the Y 1

1 case because the
amplitude of the s-wave pairs is much smaller [see Fig. 4(b)].
We do not show the results for Y 1

2 , Y 1
3 , Y 2

3 , and Y 3
3 because

the s-wave subdominant pairs are absent or sufficiently small.
The details of the spatial profiles of the pair potentials are
discussed in the Appendix.

IV. NORMAL-METAL SURFACE

The surface roughness also affects the chiral surface cur-
rent through modifying the pair potential near the surface.

134501-5
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FIG. 7. Current density of each chiral SC with normal surfaces.
The results are plotted in the same manner as in Fig. 3. When the
s-wave pairs have a large amplitude, the chiral current can survive as
in (a), (c), and (f).

To examine the effect through the pair potential, we have
introduced the normal-metal surface [Fig. 2(b)], where the
coupling constant is zero (i.e., �1(2) = 0). The chiral surface
currents with a thin normal-metal surface are shown in Fig. 7,
where the results are plotted in the same manner as in Fig. 5.
We have confirmed that the pair potentials do not strongly
depend on the roughness parameter ξ0/� (see the Appendix).
The normal metal with w = 3ξ0 is indicated by the shaded
regions.

When the surface is in a clean-metallic state, the chiral
surface current is small and would not be able to be measured
in experiments regardless of the symmetry of the SC, as shown
in Fig. 7 [9,10]. When the surface is a clean normal metal,
jy does not depend on x in the normal metal because of � = 0.

Compared with that in a two-dimensional (2D) model [10],
the surface effect in a 3D model is more prominent because
there are more channels with the low injection angles. Those
quasiparticles travel in the disordered region longer than those
with high injection angles.

When the surface normal metal is disordered, the larger
chiral current flows in the Y 1

1 SCs compared with the results
with the clean-metal surface (i.e., ξ0/� = 0). In the Y 2

2 and Y 3
3

SCs, the total current does not seem to change with increasing
the roughness, even though the spatial dependence changes
drastically. The current density in the Y 1

2 , Y 1
3 , and Y 2

3 SCs is
simply suppressed with increasing the roughness. The differ-
ence comes from whether the s-wave pairs are present in the
surface normal metal. As happened in the rough-surface SCs
(Figs. 3–5), the s-wave subdominant pairs cause the effective
superconductivity and the chiral current flows along the in-
ternal interface [Figs. 7(a), 7(c) and 7(f)]. When there is no
(or significantly small) s-wave pairing in the normal metal, no
effective superconductivity is expected; as a result, the chiral
current does not arise along the internal interface [Figs. 7(b),
7(d) and 7(e)]. Note that a finite current flows inside the SC
(e.g., Y 1

2 and Y 1
3 ) and similar profiles appear in the rough-

surface model (Fig. 3). This current emerges because of the
spatial gradient of the pair potential. This current density is,
however, much smaller than those estimated in the clean limit.

Comparing the results with a rough surface and those
with a normal-metal surface, we see that the existence of the
s-wave subdominant pairs is essential for the observable chiral
current. The suppression of the pair potential is less important
than the presence of the s-wave pairs. Namely, we can judge
the robustness of the chiral current by whether the s-wave
pairs are induced as a subdominant Cooper pairs at a surface.

V. CONCLUSION

We have studied the effects of the surface roughness on
the spontaneous chiral surface current of the general chiral
SC utilizing the quasiclassical Eilenberger theory. We have
considered a three-dimensional chiral SC with a rough or
a dirty-normal-metallic surface, where the pair potential is
generally described by the spherical harmonics Y m

l with a
finite magnetic quantum number (m 
= 0).

From the self-consistent solutions, the spontaneous cur-
rent in Y 1

1 and Y 2
2 (i.e., px + ipy- and dx2−y2 + idxy-wave)

SCs is sufficiently large to detect in experiments, even un-
der the strong surface roughness. The spontaneous current in
the Y 3

3 [i.e., fx(x2−3y2 ) + i fy(3x2−y2 )-wave] SC survives under
the strong roughness, but might be too small to be observed.
The surface chiral currents in Y 1

2 , Y 1
2 , and Y 1

2 SCs are easily
destroyed even by weak surface roughness (i.e., � > ξ0).

By comparing the calculated current densities with and
without the subdominant s-wave Cooper pairs induced by the
roughness, we have concluded that the robust chiral current
is supported by the s-wave Cooper pairs. The s-wave Cooper
pairs act as an effective pair potential in the disordered region.
The current density in this case flows along the effective
interface between the disordered and clean regions that can
be regarded as an interface between an effective SC and the
chiral SC.
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FIG. 8. Roughness dependence of the pair potentials for
(a),(b) Y 1

1 , (c),(d) Y 1
2 , and (e),(f) Y 2

2 . The first and second components
are, respectively, shown in (a),(c),(e) and (b),(d),(f). The surface-
roughness parameters are set to w = 3ξ0, ξ0/� = 0.0, 0.2, 0.5, and
1.0. The surface roughness significantly suppresses the pair potential.
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FIG. 9. Roughness dependence of the pair potentials with the
thin dirty normal metal. The pair potentials are assumed to be
(a),(b) Y 1

1 , (c),(d) Y 1
2 , and (e),(f) Y 2

2 . The first and second components
are, respectively, shown in (a),(c),(e) and (b),(d),(f). The surface-
roughness parameters are set to w = 3ξ0, ξ0/� = 0.0, and 1.0. The
results are plotted in the same manner as in Fig. 8.

APPENDIX: EFFECT OF THE SURFACE ROUGHNESS
ON PAIR POTENTIALS

The spatial dependences of the pair potential in SCs with
rough surfaces are shown in Fig. 8, where the strength
of the roughness is set to ξ0/� = 0, 0.2, 0.5, and 1.0.
The pair potentials are suppressed by the surface rough-
ness through the random scatterings. The suppression in the
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pair potentials becomes more significant with increasing the
roughness strength. The chiral superconductivity is realized
with anisotropic Cooper pairing. The random quasiparticle
scatterings kill such pairings with anisotropic momentum de-
pendence. As a consequence, the pair potential decreases in
the disordered region. The spatial dependences of the pair
potentials of the Y m

l SCs with l = 3 (not shown) are similar
to those in the Y 1

2 SC because the amplitude of the s-wave
pairs is zero or sufficiently small.

The spatial dependences of the pair potential in SCs with
dirty-normal-metal surfaces are shown in Fig. 9, where the
strength of the roughness is set to ξ0/� = 0 or 1.0. Differing
from the results with a rough surface, the pair potentials do
not strongly depend on the strength of the roughness. The
spatial dependences of the pair potentials of the Y m

l SCs with
l = 3 (not shown) are similar to those in the Y 1

2 SC be-
cause the amplitude of the s-wave pairs is zero or sufficiently
small.
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