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Emergent electric field from magnetic resonances in a one-dimensional chiral magnet
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The emergent electric field (EEF) is a fictitious electric field acting on conduction electrons through the Berry
phase mechanism. The EEF is generated by the dynamics of noncollinear spin configurations, and it becomes
nonzero even in one dimension. Although the EEF has been studied for several one-dimensional chiral magnets,
most of the theoretical studies were performed in limited situations with respect to the strength and direction
of the magnetic fields. Furthermore, the effect of the edges of the system has not been clarified, whereas it can
be crucial in nanoscale and microscale samples. Here, we perform a comprehensive theoretical study on the
momentum-frequency profile of the EEF in a one-dimensional chiral magnet using the Landau-Lifshitz-Gilbert
equation while changing the strength and direction of the static and ac magnetic fields for both bulk and finite-size
chains with edges. From the bulk calculations under the periodic boundary condition, we find that the EEF is
resonantly enhanced at the magnetic resonance frequencies; interestingly, the higher resonance modes are more
clearly visible in the frequency profile of the EEF response than in the magnetic one. Furthermore, we show that
the EEF is amplified along with the solitonic feature of the spin texture introduced by the static magnetic field
perpendicular to the chiral axis. We also show that the static magnetic field parallel to the chiral axis drives the
EEF in the field direction, in addition to much slower drift motion in the opposite direction associated with
the Archimedean screw dynamics, suggesting a dc electric current generation. For the finite-size chains under
the open boundary condition, we find additional resonance modes localized at the edges of the system that are
also more clearly visible in the EEF response than the magnetic one. Moreover, we show that a substantial
EEF is generated from the edges even in the forced-ferromagnetic phase, although it is absent in the bulk case.
Our results reveal that the emergent electric phenomena in one-dimensional chiral magnets can be tuned by the
magnetic field and the sample size, and they provide not only a good probe of the magnetic resonances but also
a platform for the applications to electronic devices.

DOI: 10.1103/PhysRevB.108.134436

I. INTRODUCTION

The Berry phase, a phase factor acquired in an adiabatic
motion of quantum particles [1], brings about a fictitious
electromagnetic field [2,3], which leads to intriguing quan-
tum transport and optical phenomena for electrons in solids.
For instance, the fictitious magnetic and electric fields aris-
ing from the Berry phase in momentum space bring about
a quantum Hall effect [4] and a quantized charge pumping
[5], respectively. Meanwhile, the Berry phase in real space is
also of importance, especially in magnets, where the fictitious
electromagnetic fields, often called the emergent electromag-
netic fields, are generated by noncollinear and noncoplanar
spin textures [3,6–9]. The emergent magnetic field arises as
a fictitious magnetic flux through a plaquette when the sur-
rounding spins are noncoplanar, i.e., when the scalar spin
chirality is nonzero, and hence it requires two- or three-
dimensional noncoplanar spin textures. The typical example
is found in magnetic skyrmions [10–13], which give rise to
the topological Hall effect via the emergent magnetic field
[14–18]. In contrast, the emergent electric field (EEF) does
not require noncoplanar spin configurations; it arises from
the time evolution of noncollinear spin textures, and hence
it can be generated even in one-dimensional systems [6,19–
22]. Therefore, the emergent electric phenomena arise in a

wider range of magnetic materials than the emergent magnetic
phenomena.

Quantum phenomena arising from the EEF in magnets
have been intensively studied over the past decade. Experi-
mental detection of the EEF has been done for field-induced
motion of a magnetic domain wall [23], ferromagnetic res-
onance in a patterned ferromagnetic film [24], and gyrating
motion of a magnetic vortex [25]. Recently, the EEF has
attracted renewed interest in the dynamics induced by an
electric current. It was pointed out that the EEF by a current-
induced motion of swirling spin textures gives rise to an
inductance [26], and such behavior was observed in helical
magnets [27] even at room temperature [28].

The central question that we address in this study is how
to enhance the EEF in magnets by an external magnetic field.
To clarify the fundamental behavior of the EEF, we will focus
on a simple model for one-dimensional chiral magnets. Thus
far, the EEF in one-dimensional chiral magnets has been the-
oretically studied, mostly by using the collective coordinate
method in continuum space [29–31]. However, such analytical
studies were limited with respect to the strength and direction
of the magnetic fields, and comprehensive studies have not
yet been done, even though the system shows a variety of
spin textures and their magnetic excitations depending on the
fields. In addition, as the EEF is generated by the dynamics
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of spin textures, it is important to elucidate the relationship
between the EEF and the magnetic excitations, but a large
part of it also remains unexplored. To clarify these issues, it is
desired to systematically study the dependence of the EEF on
the static and dynamical magnetic fields beyond the previous
studies.

In addition, we aim to investigate the contributions to the
EEF from not only the bulk but also the edges of the system,
since the latter can be crucial in experiments for nanoscale
and microscale samples. The effect of the edges has been
discussed for both static and dynamical properties in magnets.
For instance, in one-dimensional chiral magnets, the magne-
tization varies discretely as a function of the magnetic field
in finite-size systems with edges [32–36]. It was also shown
that the edges affect the magnetic resonance and generate
additional edge modes [37]. Given the edge effects on the spin
textures and the magnetic excitations, the EEF is expected to
be strongly influenced by the presence of edges as well, but a
systematic study has not yet been conducted.

In this paper, we perform a systematic theoretical study of
the EEF in a one-dimensional chiral magnet. By numerical
simulations of the real-space and real-time spin dynamics
based on the Landau-Lifshitz-Gilbert (LLG) equation, we
clarify the momentum-frequency profile of the EEF while
changing the strength and direction of the static and ac mag-
netic fields for systems under a periodic boundary condition
(PBC) and an open boundary condition (OBC). For the bulk
response calculated under the PBC, we show that the EEF
becomes prominent at the magnetic resonance frequencies,
and it is enlarged along with the solitonic feature enhanced
by the perpendicular component of the static magnetic field
to the chiral axis, regardless of the direction of the ac mag-
netic field. We find that the higher-frequency resonance modes
are more clearly visible in the frequency profile of the EEF
response than the magnetic one. Furthermore, by analyzing
the spatiotemporal profiles, we also show that the parallel
component of the static magnetic field drives the EEF in the
field direction due to the magnon propagation, in addition
to much slower drift to the opposite direction due to the
Archimedean screw dynamics [38]. Meanwhile, for the edge
contributions calculated under the OBC, we find additional
resonance modes of the EEF localized at the system edges,
whose response can be comparable to or larger than the bulk
ones, depending on the system size, and again more visible
than the magnetic response. In addition, we show that the EEF
is generated even in the forced-ferromagnetic (FFM) phase in
the presence of the edges. These systematic analyses provide
a comprehensive understanding of the EEF associated with
the magnetic resonance in a one-dimensional chiral magnet,
which would be useful for further exploration of emergent
electric phenomena.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model (Sec. II A), the numerical method
(Sec. II B), and the definitions of the physical quantities
(Sec. II C) used in the following analyses. In Sec. III, we show
the results for the bulk contribution obtained under the PBC.
We first show the complex admittance of the EEF for various
combinations of the static and ac magnetic fields (Sec. III A),
and then we compare the results with the dynamical spin
susceptibility (Sec. III B). We also show the spatiotemporal

FIG. 1. Schematic picture of the setup in this study. The arrows
represent spin configurations in the model in Eq. (1); the color
denotes the Sz component of spins. The pale curves attached to
the arrowheads represent the trajectories of the spins in the time
evolution under the static magnetic field hstat and the ac magnetic
field hac depicted in the inset.

profiles of the spin textures and the EEF in the resonance
modes (Sec. III C). In Sec. IV, we show the results for the
edge contribution obtained under the OBC in a similar manner
in Sec. III. We discuss the results in Sec. V. Section VI is
devoted to a summary of this paper.

II. MODEL AND METHOD

In this section, we introduce the model for a one-
dimensional chiral magnet and the numerical method to study
the dynamics of the model. In Sec. II A, we introduce the
model Hamiltonian with the setting of parameters and two
types of boundary conditions. We describe the method based
on the LLG equation in Sec. II B and the definitions of the
quantities to be measured in Sec. II C.

A. Model

In this study, we consider a one-dimensional chiral mag-
net, which is described by the time-dependent Hamiltonian
given by

H (t ) =
∑

l

[ − JSl (t ) · Sl+1(t ) − Dx̂ · [
Sl (t ) × Sl+1(t )

]

+ h(t ) · Sl (t )
]
, (1)

where Sl (t ) represents the classical spin at site l and time t
with |Sl (t )| = 1. The first and second terms in the summa-
tion denote the Heisenberg and Dzyaloshinskii-Moriya (DM)
interactions, respectively. The DM vector is taken along the
chain direction parallel to the unit vector x̂. Hereafter, we set
the energy scale as J = 1 and the lattice constant as unity, and
we take D = tan

(
π
10

)
. This stabilizes a helical spin structure in

the equilibrium state at zero magnetic field, in which the spins
rotate in the yz plane with a period of 20 lattice sites. The last
term in Eq. (1) describes the Zeeman interaction, where h(t )
represents a time-dependent external magnetic field in the unit
of gμB, where g is the electron g-factor and μB is the Bohr
magneton. Note that we take the convention of a positive sign
for this term. In the following, we consider both static and ac
magnetic fields, denoted by hstat and hac(t ), respectively, as

h(t ) = hstat + hac(t ). (2)

See Fig. 1 for the setup of the model.
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When only the static field is applied, the model in Eq. (1)
stabilizes a conical spin structure, a chiral soliton lattice
(CSL), and their mixture, in addition to the FFM, depending
on the field strength and direction [39–43]. In this study, with-
out loss of generality, we consider the static magnetic field in
the xz plane, i.e., hstat = (hstat

x , 0, hstat
z ). Then, by increasing

hstat
x with hstat

z = 0, the spins on the yz plane in the zero-field
helical state cant uniformly in the x direction to form the
conical spin structure. In this case, the magnetic period is
unchanged, until the phase transition to the FFM phase. In
contrast, when hstat

x = 0, hstat
z introduces a solitonic feature in

the spin structure, leading to the CSL. In this case, the mag-
netic period increases with hstat

z and diverges at the transition
to the FFM state. When both hstat

x and hstat
z are nonzero, a com-

plicated spin texture with a mixture of the conical state and the
CSL is stabilized, as exemplified in Fig. 1. We will study how
the ac field modulates these spin textures and generates the
EEF.

In the following calculations, to clarify not only bulk but
also edge contributions, we compare the results for the sys-
tems under the PBC and the OBC. In both cases, we set the
system size as L = 103 spins, except for the study of the
system size dependence in the OBC case in Sec. IV B. For
the PBC case, we confirm that L = 103 is sufficiently large to
study the bulk contributions. The sum in Eq. (1) is taken for
l = 0, 1, . . . , L − 1, where we impose SL(t ) = S0(t ) for the
PBC case, whereas SL(t ) = 0 for the OBC case.

B. Landau-Lifshitz-Gilbert equation

We study the real-time dynamics of the model in Eq. (1) by
using the LLG equation given by [44,45]

∂Sl (t )

∂t
= 1

1 + α2

[−Sl (t ) × heff
l (t )

+αSl (t ) × (
Sl (t ) × heff

l (t )
)]

, (3)

where α is the Gilbert damping and heff
l (t ) is the mean mag-

netic field at time t defined by

heff
l (t ) = ∂H (t )

∂Sl (t )
= −J (Sl+1(t ) + Sl−1(t ))

+ Dx̂ × (Sl+1(t ) − Sl−1(t )) + h(t ).

(4)

Note that the length constraint of |Sl (t )| = 1 is deferred only
when taking the derivative of the Hamiltonian with respect to
Sl (t ). Here, we impose S−1(t ) = SL−1(t ) and S−1(t ) = 0 for
the PBC and OBC cases, respectively. We numerically solve
Eq. (3) by using the fourth-order Runge-Kutta method with
a time step �t = 0.02. In the following calculations, we take
α = 0.04, which is a typical value for ferromagnetic metals
[46–49].

C. Physical quantity

The EEF is generated by the time evolution of noncollinear
spin textures, which is calculated as [9]

Ē em(t ) = 1

L

∑
l

E em
l (t ), (5)

with

E em
l (t ) = Sl (t ) ·

(
δ̂Sl (t ) × ∂Sl (t )

∂t

)
, (6)

from the spin structure obtained by numerically solving the
LLG equation in Eq. (3). In Eq. (6), the spatial derivative
∂S(x)
∂x in continuum space [3,6–9] is calculated by the discrete

difference δ̂Sl (t ) = 1
2 [Sl+1(t ) − Sl−1(t )]. For the edges in

the OBC case, we use δ̂S0(t ) = − 3
2 S0(t ) + 2S1(t ) − 1

2 S2(t )
and δ̂SL−1(t ) = 3

2 SL−1(t ) − 2SL−2(t ) + 1
2 SL−3(t ) to reduce

the discretization errors [50].
We compute the complex admittance of the EEF defined as

χE ,μ(ω) = Ē em(ω)

hac
μ (ω)

, (7)

where μ = x, y, z and the Fourier component of the quantity
O(t ) is obtained by

O(ω) = 1

Nt

Nt −1∑
n=0

O(tn)e−iωtn . (8)

Here, we measure the quantity every 50 time steps, and the
time at the nth measurement and the total number of measure-
ments are denoted by tn = 50n�t = n and Nt , respectively.
We also calculate the dynamical spin susceptibility defined as

χS,νμ(ω) = �S̄ν (ω)

hac
μ (ω)

, (9)

where �S̄(t ) = 1
L

∑
l [Sl (t ) − Sl (0)] is the time variation of

the magnetization.
In the actual calculations of χE ,μ(ω) and χS,νμ(ω) in

Secs. III and IV, we apply a pulse magnetic field hpulse(t )
instead of hac(t ) in Eq. (2). This enables us to obtain the whole
spectrum at once, instead of the study of steady states for each
ω. We set

hpulse(t ) =
{
�hμ̂ (0 � t < 1),
0 (1 � t � 6000), (10)

where �h = 0.002, and μ̂ denotes the unit vector in the direc-
tion of μ = x, y, z. By Fourier transforming the responses, the
spectra of χE ,μ(ω) and χS,νμ(ω) are respectively obtained by
Eqs. (7) and (9) with the substitution of hac

μ (ω) by hpulse
μ (ω).

Meanwhile, for the calculations of the spatiotemporal profiles
in Secs. III C and IV C, we apply an ac magnetic field with a
frequency ω in the direction of μ̂ given by

hac(t ) = �h(1 − e−t/t0 ) sin(ωt )μ̂ (0 � t � 10 000),

(11)

where the damping factor with t0 = 50 is introduced to sup-
press the initial disturbance by switching on the field.

III. RESULT: BULK PROPERTIES

In this section, we show the results of the bulk EEF ob-
tained from the calculations for the system with the PBC. In
Sec. III A, we present the maximum values of |χE ,μ(ω)| on
the plane of hstat

x and hstat
z , and the typical frequency spectra.

In Sec. III B, we discuss the relation between the EEF and
the magnetic excitations by comparing χE ,μ(ω) and χS,νμ(ω).
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Maximum values of |χE ,μ(ω)|, χmax
E ,μ , calculated for the model in Eq. (1) with the PBC for (a) hac ‖ x̂ (μ = x), (b) hac ‖ ŷ (μ = y),

and (c) hac ‖ ẑ (μ = z), as represented in the insets. The frequency dependences of |χE ,μ(ω)| along the yellow dashed lines in (a), (b), and
(c) are shown in (d), (e), and (f), respectively: (d) hac ‖ x̂ with hstat

x = 0, (e) hac ‖ ŷ with hstat
x = 0, and (f) hac ‖ ẑ with hstat

x = 0.06. The orange
circles and crosses in (d), (e), and (f) indicate the parameters for which the real-space behaviors are presented in Fig. 4.

In Sec. III C, we show the spatiotemporal profiles of the spin
textures and the EEF of the resonance modes.

A. Complex admittance of the EEF

We show the results of the complex admittance χE ,μ(ω) in
Eq. (7) for three different directions of the ac magnetic field:
hac ‖ x̂ (μ = x), hac ‖ ŷ (μ = y), and hac ‖ ẑ (μ = z). Let us
first discuss the results for hac ‖ x̂. In Fig. 2(a), we show the
maximum values of |χE ,x(ω)|, denoted by χmax

E ,x , on the plane
of hstat

x and hstat
z . We find that χmax

E ,x has a nonzero value in a
region of 0 � hstat

x � 0.103 and 0 � hstat
z � 0.063, where the

system in the static magnetic field shows a noncollinear spin
texture, i.e., the CSL for hstat

x = 0, conical for hstat
z = 0, and

their mixture otherwise. Within this region, χmax
E ,x increases

with increasing hstat
z , but decreases with increasing hstat

x ; the
EEF is maximally generated at (hstat

x , hstat
z ) � (0, 0.06), which

is close to the phase transition from the CSL to the FFM.
Meanwhile, outside this region, the spins are fully polarized
by the magnetic field and χE ,x(ω) vanishes, indicating that the
FFM phase does not generate the EEF.

We plot the spectrum of |χE ,x(ω)| in Fig. 2(d) while
changing hstat

z at hstat
x = 0, along the yellow dashed line

in Fig. 2(a). |χE ,x(ω)| shows several peaks, on top of an
almost ω-independent contribution (the origin will be dis-
cussed in Sec. III B). The peak frequencies decrease but their

intensities increase as hstat
z approaches the critical value for

the FFM transition, hstat,c
z � 0.063. |χE ,x(ω)| takes the max-

imum value at the lowest-frequency peak at ω � 0.1, which
we denote ωbulk

1 . We find the second peak above ωbulk
2 � 0.2,

but the higher ones are difficult to identify in the contour
plot [see the ω profile in Fig. 3(a)]. These peak structures
are related to magnetic resonance, as will be discussed in
Sec. III B.

Next, we discuss χmax
E ,y for hac ‖ ŷ shown in Fig. 2(b).

The EEF is again maximally generated in the CSL phase for
hstat

x = 0, but at a slightly lower hstat
z � 0.05 below the critical

value for the FFM transition. The intensity is stronger than
that in Fig. 2(a). We find another weaker peak at (hstat

x , hstat
z ) �

(0.07, 0.04), which is a remnant of the peak for the case
of hac ‖ ẑ discussed below for Fig. 2(c). We note that χmax

E ,y

is strongly reduced in the conical state at hstat
z = 0 in con-

trast to the case of hac ‖ x̂ in Fig. 2(a). This is due to
twofold rotational symmetry about the x axis accompanied
by time translation by a half-period of hac, π

ω
[51]. The

spectrum of |χE ,y(ω)| for hstat
x = 0 [the yellow dashed line

in Fig. 2(b)] is shown in Fig. 2(e). We can identify three
sharp peak structures within this ω range, rather more easily
than in Fig. 2(d). We note that, in contrast to the case of
Fig. 2(d), there is no ω-independent contribution, and that the
peak intensities are maximized at hstat

z � 0.05, and decreased
for hstat

z � 0.05.
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(a)

(b)

(c)

FIG. 3. Comparison between |χE ,μ(ω)| and the imaginary part of
the dynamical spin susceptibility, Im χS,μμ(ω), for several values of
hstat

z : (a) hac ‖ x̂ with hstat
x = 0, (b) hac ‖ ŷ with hstat

x = 0, and (c) hac ‖
ẑ with hstat

x = 0.06 for the model in Eq. (1) with the PBC. The data
for the FFM phases are denoted by the dotted lines and scaled for
better visibility.

Lastly, we show the results for hac ‖ ẑ in Figs. 2(c) and 2(f).
In this case, the EEF is maximally generated at (hstat

x , hstat
z ) �

(0.06, 0.045), which is close to the subdominant maximum in
Fig. 2(b). Similar to the case of Fig. 2(b), χmax

E ,z is strongly sup-
pressed for hstat

z = 0 by symmetry [51]. Moreover, in contrast
to the cases of Figs. 2(a) and 2(b), χmax

E ,z is zero for hstat
x = 0

due to twofold rotational symmetry about the z axis. Under
these symmetric constraints, the peak of hac ‖ ẑ appears in the
intermediate region near the phase boundary to the FFM state.
Figure 2(f) shows |χE ,z(ω)| for hstat

x = 0.06, along the yellow
dashed line through the peak of χmax

E ,z in Fig. 2(c). As in the
case of Fig. 2(e), we find several peaks, whereas each peak
splits into two, as most clearly seen at the lowest-frequency

peak ωbulk
1 . This is understood from the magnon dispersion

for the noncoplanar spin state, but the details will be discussed
elsewhere.

B. Comparison with magnetic excitations

In this section, we discuss the results of |χE ,μ(ω)| in
comparison with the magnetic excitation spectrum. Figure 3
displays the comparisons between |χE ,μ(ω)| and the imagi-
nary part of the dynamical spin susceptibility, Im χS,μμ(ω),
calculated by Eq. (9) for different field configurations: hac ‖ x̂
(μ = x) and hstat

x = 0 in Fig. 3(a), hac ‖ ŷ (μ = y) and hstat
x =

0 in Fig. 3(b), and hac ‖ ẑ (μ = z) and hstat
x = 0.06 in Fig. 3(c)

[on the yellow dashed lines in Figs. 2(a), 2(b), and 2(c),
respectively]. In each figure, the different colors represent the
different values of hstat

z . The solid lines denote the results in
the noncollinear spin phase where |χE ,μ(ω)| is nonzero
in Figs. 2(a)–2(c), while the dashed lines denote the results
in the outside, i.e., the FFM phase where |χE ,μ(ω)| = 0.

Let us first discuss the results for hac ‖ x̂ and hstat
x = 0. As

shown in Fig. 3(a), |χE ,x(ω)| and Im χS,xx(ω) have peaks at the
same frequencies, except for hstat

z = 0.07 where the system is
in the FFM phase and |χE ,x(ω)| vanishes. This indicates that
the EEF is amplified at the magnetic resonance frequencies
in the noncollinear spin phase. The resonance frequencies de-
crease as hstat

z increases, which is consistent with the previous
studies for the magnetic resonance in the CSL phase [52,53].
Interestingly, the higher-ω peaks are more clearly visible in
|χE ,x(ω)| rather than those in Im χS,xx(ω). This indicates that
the EEF response has an advantage to observe the higher-ω
excitations than the magnetic one. This is presumably due to
an additional ω-linear factor from ∂Sl (t )

∂t in Eq. (6); see also
Eq. (A6) in Appendix A.

While |χE ,x(ω)| accompanies an almost ω-independent
contribution (see below), the peak heights measured from it
grow from zero as hstat

z increases from zero, in good agreement
with the growth of the peaks in Im χS,xx(ω). We note that
the growth rate of the peaks in |χE ,x(ω)| decreases as hstat

z
approaches the critical field hstat,c

z , in contrast to the rapid
increase of the growth rate in Im χS,xx(ω). This feature is
qualitatively understood from the decreases of ωbulk

1 and the
vector spin chirality that bridges χE ,x(ω) and χS,xx(ω). Here,
the vector spin chirality in the ground state is defined as

C̄vc = 1

L

L−1∑
l=0

Sl (0) × Sl+1(0). (12)

This quantity measures the overall spin noncollinearity, and
hence is rapidly reduced as hstat

z approaches hstat,c
z where the

spin texture acquires a strong solitonic feature. This and the
decrease of ωbulk

1 suppress the growth rate of the peaks in
|χE ,x(ω)|; see Eq. (A6) in Appendix A.

The ω-independent contributions in |χE ,x(ω)| are ex-
plained by the consideration of the large-ω behavior as
follows. For large ω, we can derive the relation

χE ,μ(ω) � − α

1 + α2
C̄vc · μ̂. (13)

See Appendix B for the derivation. Thus, the large-ω behav-
ior is independent of ω, and it is given by the overall spin
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noncollinearity C̄vc · x̂ = C̄vc
x . Since C̄vc

x decreases with in-
creasing hstat

z , the ω-independent component of |χE ,x(ω)| is
reduced, as shown in the upper panel of Fig. 3(a). We note
that this contribution corresponds to the collective dynamics
of spin textures called coherent sliding dynamics [29]. We will
return to this point in Sec. III C.

Next, we discuss the results for hac ‖ ŷ and hstat
x = 0. In this

case also, |χE ,y(ω)| shows peaks corresponding to the mag-
netic resonances in Im χS,yy(ω), and the higher-ω modes are
more clearly visible in |χE ,y(ω)| than Im χS,yy(ω), as shown
in Fig. 3(b). In contrast to the case with hac ‖ x̂, however, the
peak heights in |χE ,y(ω)| increase for 0 � hstat

z � 0.055 but
decrease for hstat

z � 0.055, while Im χS,yy(ω) shows resonance
peaks even for hstat

z = 0 and grows monotonically with hstat
z .

This nonmonotonic behavior of |χE ,y(ω)| is already observed
in Fig. 2(b). The decrease of |χE ,y(ω)| can be ascribed to the
slow increase of Im χS,yy(ω) in the lower panel of Fig. 3(b),
in addition to the decreases of C̄vc

x and ωbulk
1 discussed above.

Furthermore, there is no ω-independent contributions, since
C̄vc

y = 0 in Eq. (12), leading to χE ,y(ω) � 0 in Eq. (13) for
large ω [54].

In Fig. 3(c), we show the results for hac ‖ ẑ and hstat
x =

0.06. Similar to the above two cases, the higher-ω peaks
are more clearly visible for |χE ,z(ω)| than Im χS,zz(ω). The
lowest-energy peak in |χE ,z(ω)|, which shows a shoulderlike
feature reflecting the splitting mentioned in Sec. III A, grows
with hstat

z , as in the case of hac ‖ x̂. This is understood from the
increase of C̄vc

z with hstat
z ; see again Eq. (A6) in Appendix A. In

contrast, the peak heights in Im χS,zz(ω) are almost unchanged
for hstat

z since the solitonic feature in the spin texture is not well
developed in this range of hstat

z .

C. Real-space behavior

In this section, we present the spatiotemporal profiles of
spins Sl (t ) and the EEF E em

l (t ) in Eq. (6). Figure 4 displays
the results for the lowest-ω resonance mode: The data are
calculated for the parameters indicated by the circles and
crosses in Figs. 2(d)–2(f). In each figure of Fig. 4, the top
panel shows the spin precession motions, the middle panel
shows the time evolution of each spin component, and the
bottom panel shows the time evolution of E em

l (t ) during a
single period of hac for 60 sites at the center of the 1000-site
system with the PBC.

First, we discuss the results for hac ‖ x̂ and hstat
x = 0, cor-

responding to Fig. 2(d). Figure 4(a) is for the helical state
at (hstat

x , hstat
z ) = (0, 0) and ω = 0.143, indicated by the cross

in Fig. 2(d). In this case, the spin dynamics is strongly
suppressed, leaving very weak oscillations, as visible in the
enlarged plot of Sl,x(t ) in the middle panel of Fig. 4(a). We
note that such oscillations are induced not only at the reso-
nance frequency but also for general ω, and they are called the
coherent sliding dynamics [29]. In this situation, we obtain a
weak, spatially uniform E em

l (t ), as shown in the bottom panel
of Fig. 4(a). The spatial average in Eq. (5), however, can be
comparable to those for the other resonance modes, which
leads to the ω-independent contribution in Fig. 3(a).

Figure 4(b) is also for hac ‖ x̂, but at (hstat
x , hstat

z ) =
(0, 0.06) and ω = 0.103, indicated by the circle in Fig. 2(d).
In contrast to the above helical case, the spin dynamics in this

CSL state is resonantly activated, especially in the regions
between the solitons with Sl,z(t ) � +1, as shown in the top
and middle panels of Fig. 4(b). In contrast, the EEF is largely
generated around the solitons, as shown in the bottom panel.
This trend is understood from the fact that the vector spin
chirality is large near the solitons. The spatially averaged EEF
takes a large value, leading to the resonance peak of |χE ,x(ω)|
in Figs. 2(d) and 3(a). We note that in this resonance with
hstat

x = 0, the spin texture is just oscillating around the original
position in real space, and the EEF behaves like a standing
wave, as shown in Fig. 5(a). This is due to twofold rotational
symmetry about the z axis with time translation by π

ω
.

Next, we discuss the results for hac ‖ ŷ and hstat
x = 0, cor-

responding to Fig. 2(e). Figure 4(c) is for the helical state at
hstat

z = 0 and ω = 0.143, indicated by the cross in Fig. 2(e).
In this case, the spins pointing in the ±y directions do not
precess and constitute the nodes of oscillating Sl (t ), and those
pointing in the ±z directions are the antinodes, where the
spin precessions become maximum. The EEF vanishes at the
nodes, whereas it is maximally generated at the antinodes
reflecting the large spin precessions. Note, however, that the
spatial average of the EEF is strongly suppressed due to
twofold rotational symmetry about the x axis accompanied by
π
ω

time translation of hac [51]. Meanwhile, Fig. 4(d) is for a
CSL state at hstat

z = 0.05 with ω = 0.124 corresponding to the
circle in Fig. 2(e). In this case, in the regions between (near)
the solitons, the amplitude of the spin precessions is enhanced
(suppressed), while E em

l (t ) is suppressed (slightly enhanced).
The spatially averaged E em

l (t ) leads to the sharp resonance
peak in Figs. 2(e) and 3(b). In these cases with hstat

x = 0
also, the spin texture and the EEF behave like standing waves
similar to those in Fig. 5(a) because of the symmetry.

Finally, we discuss the results for hac ‖ ẑ; here we take
hstat

x = 0.06 since Ē em(t ) vanishes for hstat
x = 0, as explained

in Sec. III A. Figure 4(e) is for the conical state at hstat
z = 0 and

ω = 0.131, indicated by the cross in Fig. 2(f). In this case,
the spin precessions become larger (smaller) for Sl,z(t ) � 0
[Sl,y(t ) � 0], since the ac magnetic field is applied along the
z direction. In contrast to the above cases with hstat

x = 0, we
find that E em

l (t ) no longer behaves like a standing wave and
the EEF propagates from left to right, as shown more clearly in
the main panel of Fig. 5(b). In this mode, the EEF propagates
from one soliton to the next one during a cycle of time;
hence, the velocity is estimated as v � ω

Q0
� 0.42, where Q0

is the ordering wave number. Such a motion is hardly seen in
Sl,y(t ) and Sl,z(t ), but is discernible in Sl,x (t ) in the middle
panel of Fig. 4(e). Since the motion in Sl,x(t ) corresponds to
spin precession, the fast propagation of the EEF to the field
direction is associated with the magnon propagation in the
conical state. In addition, the spin texture is driven from right
to left with much slower velocity, as shown in the inset of
the left panel of Fig. 5(b); the velocity is estimated as v′ �
−0.0035. This is a drift motion known as the Archimedean
screw dynamics [38], which is induced as a counteraction of
the magnon propagation. Similar phenomena were discussed
for skyrmions [55,56]. Reflecting this drift motion, the EEF
is also driven from right to left with the same velocity, as
shown in the inset of the right panel of Fig. 5(b). Thus, the
parallel component of the static magnetic field, hstat

x , activates
two types of propagating motions of the EEF: the fast motion
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(a)

(c)

(b)

(d)

(e) (f)

300

FIG. 4. Real-space spin configurations (top and middle) and real-space distributions of the EEF (bottom) in the steady states under the
ac magnetic field hac: (a) and (b), (c) and (d), and (e) and (f) are for hac ‖ x̂, hac ‖ ŷ, and hac ‖ ẑ, respectively, at (a) (hstat

x , hstat
z ) = (0, 0)

and ω = 0.143, (b) (hstat
x , hstat

z ) = (0, 0.06) and ω = 0.103, (c) (hstat
x , hstat

z ) = (0, 0) and ω = 0.143, (d) (hstat
x , hstat

z ) = (0, 0.05) and ω = 0.124,
(e) (hstat

x , hstat
z ) = (0.06, 0) and ω = 0.131, and (f) (hstat

x , hstat
z ) = (0.06, 0.04) and ω = 0.123. All the frequencies are set at the values for

the lowest-ω resonance mode denoted by the orange crosses and circles in Figs. 2(d)–2(f). The results are shown for 60 sites at the center
of the 1000-site system with the PBC. In each figure, the top panel displays the spin configurations by the arrows with the lines representing
the trajectories of the arrowheads during a single period of hac. Meanwhile, the middle panel displays the spin components Sl,x (t ), Sl,y(t ), and
Sl,z(t ) by the red, green, and blue lines, respectively, and the bottom panel displays the EEF at each site, E em

l (t ), during the corresponding
period of hac. The color and gray-scale intensities in the middle and bottom panels, respectively, increase with time evolution in the single
period of hac. In the middle panel of (a), Sl,x (t ) is multiplied by a factor of 300 for better visibility.

to the field direction due to the magnon propagation, and the
slow drift to the opposite direction due to the Archimedean
screw dynamics of the spin texture. Although the spatially
averaged EEF Ē em(t ) vanishes in the case with hstat

z = 0, it
becomes nonzero for nonzero hstat

z , as a solitonic feature is
induced in the spin texture. Such results are shown in Fig. 4(f)
for hstat

z = 0.04 and ω = 0.123 corresponding to the circle
in Fig. 2(f). In this case also, the spin texture and the EEF
are driven to the left associated with the Archimedean screw
dynamics, while the EEF also propagates to the right with

much faster velocity associated with the magnon propagation,
similar to Fig. 5(b).

IV. RESULT: EDGE CONTRIBUTIONS

Thus far, we have shown the results for the bulk con-
tributions in the system with the PBC. In this section, we
turn our attention to the contributions from the edges of the
system by employing the OBC. In Sec. IV A, we first present
the results of |χE ,μ(ω)| to show the edge contributions to
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(a)

(b)

0

10000

0

10000

0

10000

0

10000

FIG. 5. Real-space and real-time distribution of the z component of spins Sl,z(t ) (left) and E em
l (t ) (right) within 10 periods of hac on the

plane of l and t : (a) and (b) correspond to Figs. 4(b) and 4(e), respectively. The insets show the results for a longer time window.

the EEF through additional resonance modes. In Sec. IV B,
we discuss the difference between the bulk resonance modes
and the additional modes based on the spectra of |χE ,μ(ω)|
and Im χS,μμ(ω), including the system size dependence. In
Sec. IV C, we show the spatiotemporal profiles of the spin
textures and the EEF for the additional resonance modes to
explicitly show that these modes are localized at the edges of
the system.

A. Complex admittance of the EEF

As in Sec. III A, we show the results of the complex admit-
tance χE ,μ(ω) for the system with the OBC. First, we discuss
the results for hac ‖ x̂ shown in Figs. 6(a) and 6(d). Similar to
the PBC case, in the noncollinear spin phase, χmax

E ,x increases
as hstat

x decreases and hstat
z increases, showing the maximum

at (hstat
x , hstat

z ) � (0, 0.06). Notably, however, χmax
E ,x becomes

nonzero also in the FFM phase outside of this region, being
comparably larger near the phase boundary at (hstat

x , hstat
z ) �

(0.04, 0.055). This contribution originates purely from the
edges of the system with the OBC since it was absent for the
PBC case in Fig. 2(a). In addition, an additional resonance
mode appears in the noncollinear spin phase, as shown in the
spectrum of |χE ,x(ω)| in Fig. 6(d) along the yellow dashed
line in Fig. 6(a); besides several peaks on top of an almost

ω-independent contribution already present in the PBC case
in Fig. 2(d), |χE ,x(ω)| shows a sharp peak at a lower ω.
The resonance frequency of this additional mode, which we
denote ωedge, increases as hstat

z increases, in contrast to the bulk
resonance frequencies ωbulk

n . This is the edge mode reported
in the previous study [37]. We will show that the intensity at
ωedge depends on the system size and that the spin dynamics
and the EEF associated with this resonance mode are localized
near the edges of the system in the following sections.

The situation is similar for the case of hac ‖ ŷ shown in
Figs. 6(b) and 6(e); we obtain an additional resonance mode
at ωedge, in addition to nonzero contributions even in the FFM
phase. In contrast, for hac ‖ ẑ in Figs. 6(c) and 6(f), instead of
the additional resonance peak, we find a sharp dip at ωedge on
top of the long tail of ωbulk

1 . This is due to the fact that χE ,z(ω)
from the edges has an opposite sign to that for the bulk; see the
next section. We also note that |χE ,z(ω)| shows a sharper peak
in the FFM phase, compared to the other cases in Figs. 6(d)
and 6(e).

B. Comparison with magnetic excitations

Next, we compare the results of |χE ,μ(ω)| with
Im χS,μμ(ω) for the system with the OBC, as in Sec. III B.
Let us first discuss the results for hac ‖ x̂ and hstat

x = 0 shown
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3

(a) (b) (c)

(d) (e) (f)

FIG. 6. Maximum value of |χE ,μ(ω)|, χmax
E ,μ , calculated for the model in Eq. (1) with the OBC for (a) hac ‖ x̂ (μ = x), (b) hac ‖ ŷ (μ = y),

and (c) hac ‖ ẑ (μ = z). The system size is L = 1000. The frequency dependences of |χE ,μ(ω)| along the yellow dashed lines in (a), (b), and
(c) are shown in (d), (e), and (f), respectively: (d) hac ‖ x̂ with hstat

x = 0, (e) hac ‖ ŷ with hstat
x = 0, and (f) hac ‖ ẑ with hstat

x = 0.06. The orange
circles in (d), (e), and (f) indicate the parameters for which the real-space behaviors are presented in Fig. 8.

in Fig. 7(a); the solid and dashed lines denote the results
with L = 1000 and 500, respectively, in the noncollinear spin
phase for hstat

z � 0.063, while the dotted and dashed-dotted
lines denote the results with L = 1000 and 500, respectively,
in the FFM phase for hstat

z � 0.063. In the noncollinear spin
phase, both |χE ,x(ω)| and Im χS,xx(ω) exhibit a resonance
peak at ωedge � 0.06–0.08, in addition to the bulk resonance
peaks at higher ωbulk

n and the ω-independent contribution
already observed in the PBC case. We will show explicitly
that this additional contribution originates from the localized
modes at the edges in the next section. Accordingly, the edge
contribution shows conspicuous system size dependences:
The peak heights for L = 1000 become about twice as small
as those for L = 500, while the bulk ones do not change
much. As |χE ,x(ω)| describes the response averaged over
the system, the result indicates that the edge contribution
is almost system-size-independent, while the bulk one is
proportional to the system size. Notably, the intensity of
the edge resonance peak of |χE ,x(ω)| increases with hstat

z
and can be stronger than the bulk ones, even though that of
Im χS,xx(ω) is much weaker than the bulk ones, as shown in
the lower panel of Fig. 7(a). We also find that |χE ,x(ω)| shows
a broad peak in the FFM phase for hstat

z � 0.063, in contrast
to the PBC case.

Similar results are obtained for hac ‖ ŷ, as shown in
Fig. 7(b). Meanwhile, for hac ‖ ẑ, |χE ,z(ω)| shows a dip at

ωedge as shown in Fig. 7(c), as a result of a cancellation
between the long tail of the bulk response at ωbulk

1 and the
edge resonance contribution with the opposite sign. This is
confirmed by the observation that the dip becomes almost
twice as shallow for L = 1000 compared to that for L = 500.
We note that the edge contribution is much weaker in both
|χE ,z(ω)| and Im χS,zz(ω) compared to the previous two cases
due to the less solitonic feature of the spin texture. In contrast,
the additional peaks in the FFM phase are much sharper than
the previous ones.

C. Real-space behavior

The spatiotemporal profiles of Sl (t ) and E em
l (t ) for the

additional mode at ωedge are shown in Fig. 8. Here, we display
the spin textures and the EEF for each of the 60 sites at
the left and right edges of the system with L = 1000. Fig-
ure 8(a) shows the result for hac ‖ x̂ in the CSL state with
(hstat

x , hstat
z ) = (0, 0.06) and ω = 0.077, indicated by the or-

ange circle in Fig. 6(d). In this case, as shown in the top and
middle panels of Fig. 8(a), we find that the spin dynamics with
ωedge is localized around the edges, where the spins are twisted
in the ground state, known as the chiral surface twist [57].
Accordingly, the EEF is also localized around the edges, as
shown in the bottom panel. Hence, the additional mode found
in Sec. IV A is the edge mode. Note that the EEF E em

l (t ) at
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FIG. 7. Comparison between |χE ,μ(ω)| and Im χS,μμ(ω) for sev-
eral values of hstat

z : (a) hac ‖ x̂ with hstat
x = 0, (b) hac ‖ ŷ with hstat

x = 0,
and (c) hac ‖ ẑ with hstat

x = 0.06 for the model in Eq. (1) with the
OBC. The solid and dashed (dotted and dashed-dotted) lines denote
the data in the noncollinear spin (FFM) phase with L = 1000 and
500, respectively. The data for the FFM phases are scaled for better
visibility.

both edges has the same sign, and its amplitude is about ten
times larger than that in the bulk, leading to a comparably
large contribution to the bulk responses shown in Fig. 7(a).
Figure 9(a) shows the time evolution of Sl,z(t ) and E em

l (t ).
Both patterns obey twofold rotational symmetry about the z
axis with time translation by π

ω
with respect to the center of

the system, but E em
l (t ) appears to propagate from the edges to

the inside, as shown in the right panel, while Sl,z(t ) on the left
does not clearly show such a behavior.

We observe similar spatiotemporal profiles of the edge
mode for hac ‖ ŷ, as shown in Fig. 8(b). Meanwhile, as already
discussed in Sec. IV B, the edge mode for hac ‖ ẑ is less

(a)

(b)

(c)

FIG. 8. Real-space spin configurations (top and middle) and real-
space distributions of the EEF (bottom) in the steady states under the
ac magnetic field hac: (a), (b), and (c) are for hac ‖ x̂, hac ‖ ŷ, and
hac ‖ ẑ, respectively, at (a) (hstat

x , hstat
z ) = (0, 0.06) and ω = 0.077,

(b) (hstat
x , hstat

z ) = (0, 0.06) and ω = 0.077, and (c) (hstat
x , hstat

z ) =
(0.06, 0.04) and ω = 0.061. All the frequencies are set at the values
for the edge mode at ωedge denoted by the orange circles in Figs. 6(d)–
6(f). The results are shown for each of the 60 sites at the left and right
edges of the 1000-site system with the OBC. The notations are the
same as those in Fig. 4.

significant, as shown in Fig. 8(c). In this case, the EEF prop-
agates from left to right similar to the PBC case, even near
the edges, as shown in the right panel of Fig. 9(b), while the
pattern near the right edge looks complicated.

V. DISCUSSION

A. Bulk contribution

Through the calculations for the PBC case in Sec. III,
we showed that the EEF is enhanced at the magnetic reso-
nance. An interesting finding is that the EEF resonance peaks
are more clearly visible compared to the magnetic ones for

134436-10



EMERGENT ELECTRIC FIELD FROM MAGNETIC RESONANCES … PHYSICAL REVIEW B 108, 134436 (2023)

(a)

(b)

FIG. 9. Real-space and real-time distribution of Sl,z(t ) (left) and E em
l (t ) (right) within 10 periods of hac on the plane of l and t : (a) and

(b) correspond to Figs. 8(a) and 8(c), respectively. The results are shown for 60 sites at the left edge, center, and right edge of the 1000-site
system.

higher-frequency modes. Thus, the measurement of the EEF
could be a good probe of the high-frequency magnetic res-
onances. In addition, the EEF is amplified by the solitonic
feature of the spin textures, which can be controlled by the
static magnetic field as well as the direction of the ac magnetic
field. In particular, it is strongly enhanced when hstat, hac, and
the chiral axis are orthogonal to each other, as exemplified in
Figs. 2(b) and 2(e). As the total voltage generated by the EEF
is proportional to the system size, the solitonic noncollinear
spin structure is a promising platform for exploring the emer-
gent electric phenomena, compared to magnetic domain walls
[23].

Besides the total EEF, the spatiotemporal profile of the EEF
in Sec. III C is important for electronic transport phenomena.
When hstat

x = 0, the EEF behaves like a standing wave, and
hence only an ac electric current is expected for electrons
coupled to the spin texture. When hstat

x becomes nonzero, how-
ever, the EEF begins to propagate in the x direction along with
the magnon propagation, in addition to the slower drift to the
opposite direction due to the Archimedean screw dynamics.
The propagating EEF corresponds to the spatially periodic
electric potential moving in the field direction, and hence it
is expected to give rise to a unidirectional electric transport;
charged particles are dragged by the moving potential. In
addition, it was pointed out that the drift of the spin texture
associated with the Archimedean screw dynamics also drags

electrons and brings about another electron flow [38]. These
motions of the EEF give rise to a dc electric current as well as
the ac one, and hence the noncollinear spin texture works as a
generator of the ac and dc electric currents through the EEF,
which can be tuned by the static and ac magnetic fields. The
current direction as well as the velocity may depend on how
the electrons couple to the spin texture.

B. Edge contribution

From the calculations for the OBC case in Sec. IV, we
showed that there is a sizable contribution to the EEF from the
edges of the system, which can be comparable to or larger than
the bulk one depending on the system size. It is worth noting
that the edge resonances of the EEF are more conspicuous
than the magnetic ones. Thus, the EEF is also a good probe
of the edge modes, in addition to the higher-frequency bulk
modes.

In CrNb3S6, which is one of the candidate materials for
the monoaxial chiral helimagnets, the lattice spacing between
neighboring spins along the chiral axis is about 0.6 nm and the
magnetic modulation period of the CSL phase ranges from 50
to 100 nm depending on the magnetic field [58]. The situation
is similar to that in our calculations, suggesting that a large
edge contribution of the EEF comparable to the bulk one is
expected for this material even in micrometer samples. We
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note that while the magnetic resonances were measured for
CrNb3S6, the edge contribution has not been clearly observed
[59]. It is thus worth measuring the EEF to identify the edge
contributions. For this purpose, measurements for samples
with different sizes would be useful since the edge contribu-
tion is independent of the system size, in contrast to the bulk
one that is proportional to the system size.

C. Order estimate

Finally, let us estimate the amplitude of the EEF ex-
pected in real materials. Experimentally, the noncollinear
spin phase including the CSL has been observed, e.g., in
CrNb3S6 [58], MnNb3S6 [60], strained Cu2OSeO3 [61], and
Yb(Ni1−xCux )3Al9 [62]. The actual value of the EEF depends
on the energy scale of the magnetic interactions and the length
scale set by the lattice constant in each material. By assuming
the typical values of the Heisenberg interaction J and the
lattice constant being 1 meV and 1 nm, respectively, the time
unit t = 1, the frequency ω = 1, the magnetic field h = 1,
and the EEF Ē em = 1 correspond to ∼0.66 ps, ∼241 GHz,
∼8.6 T, and ∼5 × 105 V/m, respectively. In our results, we
typically obtained |χE ,μ(ω)| ∼ 0.01 at the lowest-energy res-
onance frequency ωbulk

1 ∼ 0.1 ∼ 24.1 GHz, and hence the ac
magnetic field with |hac| ∼ 0.01 ∼ 860 Oe can generate the
EEF of Ē em ∼ 50 V/m. This leads to the electric voltage
∼500 µV for a sample with a 10 μm length scale, which
could be experimentally measurable. Note that the resonance
frequency observed in CrNb3S6 is in good agreement with our
results [59].

Meanwhile, our spatiotemporal profile of the EEF revealed
that the local value of E em

l (t ) reaches ∼10−2, which corre-
sponds to the electric field of ∼5 kV/m. Thus, even though
the total EEF is relatively small, electrons coupled to the
noncollinear spin texture would be largely influenced by such
a strong local electric field. This may bring about intriguing
electric responses, such as the ac and dc electric currents
mentioned in Sec. V A. Note that the local EEF takes such
a large value even in the helical and conical states where the
solitonic feature is absent.

We note that the generated EEF depends on the value of
the Gilbert damping α in Eq. (3). The EEF associated with
the resonance dynamics is roughly proportional to 1/α. This
is because the peak intensity of χE ,μ(ω) is approximately
proportional to χS,μμ(ω) [see Eq. (A6)], and Im χS,μμ(ω) is
proportional to 1/α. Meanwhile, the EEF by the coherent slid-
ing dynamics, which gives the ω-independent contribution, is
proportional to α, as implied by Eq. (13) for small α. The
value of α depends on materials, and the realistic estimate is
not an easy task, while we used α = 0.04 as a typical value
for ferromagnetic metals [46–49].

VI. SUMMARY

To summarize, we have theoretically studied the EEF in
a one-dimensional chiral magnet by using numerical simula-
tions based on the LLG equation. In the system with the PBC,
we clarified that the bulk contribution of |χE ,μ(ω)| consists
of the resonance peaks reflecting the magnetic resonances
and the ω-independent contribution arising from the coherent
sliding dynamics. We showed that the peak height of |χE ,x(ω)|

increases with the solitonic feature of the spin textures; it
is maximally enhanced when the static magnetic field, the
ac one, and the chiral axis are perpendicular to each other.
Meanwhile, the ω-independent contribution decreases with
the vector spin chirality in the direction of the ac magnetic
field; it vanishes when the ac magnetic field is perpendicular
to the chiral axis and the static magnetic field. Comparing
the spectra of |χE ,μ(ω)| with those of Im χS,μμ(ω), we re-
vealed that the higher-ω resonance peaks are more clearly
visible in |χE ,μ(ω)| rather than in Im χS,μμ(ω), since the EEF
includes an additional ω-linear factor coming from the time
derivative of the spin configuration. In addition to the bulk
averaged responses, by directly investigating the spatiotem-
poral profiles of the EEF and the spin texture, we revealed
that the local EEF associated with the resonance dynamics can
take a considerable value even when the total EEF vanishes.
The amplitude of the EEF is maximized around the solitons
where the vector spin chirality is maximized. Furthermore,
we showed that the EEF behaves like a standing wave when
the static magnetic field is perpendicular to the chiral axis;
in contrast, when the static field has a nonzero component
along the chiral axis, the EEF is driven to the field direction by
the magnon propagation, in addition to the slower drift to the
opposite direction due to the Archimedean screw dynamics of
the spin texture. This works as a generator of ac and dc electric
currents.

In addition to the bulk contribution, we have studied the
effect of edges of the system under the OBC. We observed
the additional resonance mode in the EEF spectra at a lower
frequency, corresponding to the edge mode in the magnetic
excitations. The frequency of the additional edge mode in-
creases with the solitonic feature of the spin texture, in
contrast to the bulk resonance frequencies. We also found
that the peak intensity of the edge mode can be greater than
those of the bulk modes; the former is inversely proportional
to the system size, while the latter is almost system-size-
independent. From the spatiotemporal profiles for the edge
mode, we found that the local EEF near the edges can be more
than one order of magnitude larger than deep inside the bulk.
Furthermore, we showed that the EEF can be generated even
in the FFM phase in contrast to the PBC case.

Our findings unveil the systematic changes of the EEF for
the static and ac magnetic fields in a one-dimensional chiral
magnet. They would pave the way to enhance the EEF and
explore intriguing electronic and magnetic functionalities in
chiral magnets. To reveal such functionalities explicitly, fur-
ther studies including electrons coupled to the chiral magnetic
textures are desired. While the present study was limited to
the one-dimensional case, various topological spin textures
have been found in two- and three-dimensional magnets, e.g.,
skyrmions [10–13], Bloch points [63–65] (or equivalently,
magnetic hedgehogs [6,66,67]), and hopfions [68–70]. It is
also intriguing to extend our study to the emergent electric
phenomena in these topologically nontrivial spin textures.
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APPENDIX A: χE,μ(ω) ON RESONANCE

In this Appendix, we discuss χE ,μ(ω) at resonance fre-
quencies analytically in the continuum limit. In continuous
space, the EEF at position x and time t in Eq. (6) is written as

E em(x, t ) = ∂S(x, t )

∂t
· Cvc(x, t ), (A1)

where Cvc(x, t ) is the vector spin chirality given by

Cvc(x, t ) = S(x, t ) × ∂S(x, t )

∂x
. (A2)

The Fourier component of the EEF is obtained as

E em(q, ω) = −i
∫

dq′
∫

dω′ ω′

× S(q′, ω′) · Cvc(q − q′, ω − ω′). (A3)

Then, at a resonance frequency, the spatially averaged EEF,
Ē em(ω) = E em(q = 0, ω), is well approximated by

Ē em(ω) � −iω
∫

dq S(q, ω) · Cvc(−q, ω = 0). (A4)

For the noncollinear spin textures discussed in the main
text, Cvc(q, 0) is dominated by the q = mQ components,
where m is an integer and Q is the ordering wave number.
Thus, χE ,μ(ω) for the resonance dynamics is approximately
given by

χE ,μ(ω) � −iω
∑

m

S(mQ, ω) · Cvc(−mQ, ω = 0)

hac
μ (ω)

. (A5)

In the helical state with hstat
x = hstat

z = 0, Cvc(q, ω = 0)
consists of only the q = 0 component (m = 0). Thus, when
hstat

x and hstat
z are small and the modulation from the helical

spin texture is weak, Eq. (A5) is further approximated by

χE ,μ(ω) � −iωχS,νμ(ω)C̄vc
ν , (A6)

where χS,νμ(ω) is the dynamical spin susceptibility in Eq. (9),
and C̄vc

ν is the ν component of the vector spin chirality for the
ground state given by

C̄vc = 1

L

∫
dx Cvc(x, t = 0). (A7)

The lattice discretized version is used in Eq. (12). In
Eq. (A6), χE ,μ(ω) is linear in ω. This explains why the

resonance peaks with high frequencies appear more clearly in
χE ,μ(ω) than in χS,μν (ω), as found in Sec. III B.

APPENDIX B: χE,μ(ω) IN THE LARGE-ω REGION

In this Appendix, we show that χE ,μ(ω) in the case of
large ω can be understood from the vector spin chirality, as
in Eq. (13). For simplicity, we consider the continuum limit
again. By plugging Eq. (3) into Eq. (6), we obtain

E em(x, t ) = 1

1 + α2
[−S(x, t ) × heff (x, t )

+αS(x, t ) × (S(x, t ) × heff (x, t ))]

·
(

S(x, t ) × ∂S(x, t )

∂x

)

= − 1

1 + α2
heff (x, t )

·
(

∂S(x, t )

∂x
+ αS(x, t ) × ∂S(x, t )

∂x

)
. (B1)

Since heff (x, t ) − h(t ) is always perpendicular to ∂S(x,t )
∂x , the

averaged EEF is calculated as

Ē em(t ) = 1

L

∫ L

0
dx E em(x, t )

= − 1

L(1 + α2)

[
h(t ) ·

∫ L

0
dx

∂S(x, t )

∂x

+α

∫ L

0
dx heff (x, t ) ·

(
S(x, t ) × ∂S(x, t )

∂x

)]
.

(B2)

The first term in the square brackets vanishes in the PBC
case, while it remains in the order of 1/L in the OBC
case. Hence, in the following, we focus on the second
term. Note that it vanishes when α = 0, indicating that the
dissipative dynamics is essential for generating the bulk
EEF [29].

For sufficiently large ω, the spins hardly follow the ac
magnetic field, and hence it is a good approximation to re-
place S(x, t ) with the ground-state spin configuration at t =
0, S(x, 0). In this approximation, heff (x, t ) can be decom-
posed as

heff (x, t ) = hac(t ) + heff (x, 0). (B3)

By substituting Eq. (B3) into Eq. (B2), the EEF is given by

Ē em(t ) � − α

L(1 + α2)
hac(t ) ·

∫ L

0
dx S(x, 0) × ∂S(x, 0)

∂x

= − α

1 + α2
hac(t ) · C̄vc. (B4)

Note that the contribution from heff (x, 0) vanishes as
Ē em(0) = 0 and hac(0) = 0. Equation (B4) leads to Eq. (13).
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