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Negative tripartite mutual information after quantum quenches in integrable systems
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We build the quasiparticle picture for the tripartite mutual information (TMI) after quantum quenches in spin
chains that can be mapped onto free-fermion theories. A nonzero TMI (equivalently, topological entropy) signals
quantum correlations between three regions of a quantum many-body system. The TMI is sensitive to entangled
multiplets of more than two quasiparticles, i.e., beyond the entangled-pair paradigm of the standard quasiparticle
picture. Surprisingly, for some nontrivially entangled multiplets, the TMI is negative at intermediate times. This
means that the mutual information is monogamous, similar to holographic theories. Oppositely, for multiplets
that are “classically” entangled, the TMI is positive. Crucially, a negative TMI reflects that the entanglement
content of the multiplets is not directly related to the Generalized Gibbs Ensemble (GGE) that describes the
postquench steady state. Thus the TMI is the ideal lens to observe the weakening of the relationship between
entanglement and thermodynamics. We benchmark our results in the XX chain and in the transverse field Ising
chain. In the hydrodynamic limit of long times and large intervals, with their ratio fixed, exact lattice results are
in agreement with the quasiparticle picture.
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I. INTRODUCTION

Recent years witnessed the stunning success of hydro-
dynamic approaches to describe entanglement dynamics in
integrable quantum many-body systems. The so-called quasi-
particle picture, which was originally put forward [1] in the
context of conformal field theory (CFT), spurred a tremendous
amount of activity [2–5]. The tenet of the quasiparticle picture
is that in integrable systems after a quantum quench [6–8]
the entanglement growth is attributable to the ballistic prop-
agation of entangled pairs of quasiparticles. The quasiparticle
picture proved to be succesful in generic quenches in free
theories [2], as well as in interacting integrable systems [3,9].
Crucially, the quasiparticle picture relies on thermodynamic
information. Precisely, in the presence of entangled pairs, the
quasiparticles and the entanglement shared between them are
extracted from the Generalized Gibbs Ensemble [6] (GGE)
that describes the steady state after the quench. The only
ingredient of nonthermodynamic origin is the pair structure
itself, or, in general, the number of entangled quasiparticles
generated after the quench. This entanglement pattern, i.e., the
type of entangled multiparticle excitations that are resposible
for the entanglement spreading, is enforced by the initial state.
Interestingly, the pair structure is related to a special class
of “integrable” quenches [10], for which the GGE can be
obtained in closed form.

Here we study quantum quenches that give rise to entan-
gled multiplets of excitations, through the lens of the tripartite
mutual information (TMI). An interesting quench producing
entangled multiplets was already explored in Ref. [11]. In
that setup, however, the entanglement content of the multi-
plet is fully determined by the GGE, and it is traced back
to a classical-in-nature constraint between the quasiparticles
forming the multiplet. Precisely, the focus of Ref. [11] was
on quenches in the so-called XX chain (see Sec. II). The

prequench initial states were obtained by repeating a unit cell
of n sites containing a single fermion. During the postquench
dynamics entangled multiplets formed by n quasiparticles are
generated. However, as anticipated, the link between entangle-
ment and thermodynamics is only mildly broken because the
entanglement between the quasiparticles forming the multi-
plet can be obtained from the GGE describing the steady state
after the quench. We anticipate that this is reflected in the TMI
being positive. Interestingly, it was shown in Ref. [12] that it
is possible to engineer quantum quenches giving rise to gen-
uinely quantum-correlated multiplets. Similar to Ref. [11],
entangled multiplets of quasiparticles are produced after the
quench. The quasiparticles propagate ballistically, implying
that a hydrodynamic description of entanglement spreading
is possible. However, the entanglement shared between the
quasiparticles cannot be extracted from the GGE. Hence, the
link between entanglement dynamics and thermodynamics is
strongly broken. As we will show in Sec. VI this leads to
negative TMI. Still, even in the presence of multiplets (cf.
Refs. [11,12]) standard measures of bipartite entanglement
[13–15], such as the von Neumann entropy, exhibit the usual
linear growth at short times, followed by a volume-law scaling
at asymptotically long times.

Here we show that the tripartite mutual information is
a much more revealing tool to highlight the presence of
entangled multiplets and the concomitant breaking of the re-
lationship between entanglement and thermodynamics. The
TMI became popular [16,17] as a witness of topological order,
which is an intrinsically nonlocal quantum correlation. Let us
consider a tripartition of a subsystem A as A = A1 ∪ A2 ∪ A3

(see Fig. 1). The tripartite mutual information is defined
as [18]

I3 := I2(A1 : A2) + I2(A2 : A3) − I2(A2 : A1 ∪ A3). (1)
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FIG. 1. Multiparticle entangled excitations in spin chains and
tripartite mutual information (TMI) dynamics. (a) Example of an en-
tangled multiplet formed by n different quasiparticle species. (b) The
TMI [cf. Eq. (1)] measures correlations shared between the three
intervals Aj and between them and the rest. Here we focus on
three adjacent intervals Aj , j = 1, 2, 3 of equal length �. Within the
quasiparticle picture, only multiplets that are shared between all the
intervals Aj , and between the intervals and the rest contribute to
the TMI. For instance, in (b), we show a quadruplet produced in
A2. The circles denote the times at which a quasiparticle changes
subsystem. For t2 � t � t3 the quadruplet is shared between all the
subsystems, but not with their complement Ā. Thus the TMI is zero
for 0 � t � t3. At t3 the leftmost particle leaves A1 and the quadruplet
starts to contribute to the TMI.

Here the mutual information I2 measures the correlation be-
tween two intervals, and it is defined as

I2(Ai : Aj ) := S(Ai ) + S(Aj ) − S(Ai ∪ Aj ), (2)

where S(Aj ) is the von Neumann entropy of subsystem Aj .
We consider only the case of three adjacent intervals of equal
length � (see Fig. 1). The generalization to the case of disjoint
intervals is straightforward.

The TMI was studied extensively [19] in free quantum
field theories (QFTs) (see also Ref. [20] for recent results)
at equilibrium. Interestingly, in holographic theories one can
show [21] that I3 � 0, which means that the mutual infor-
mation is monogamous. This suggests that correlations are
genuinely quantum. Indeed, as it is clear from (1), a negative
TMI reflects that the correlation shared between the three
intervals is more than the sum of the pairwise correlations be-
tween them, and hence is quantum-delocalized. Some general
results on the sign of the TMI in random states of few qubits
was presented in Ref. [22]. It is challenging, however, to ob-
tain the TMI in equilibrium and out-of-equilibrium quantum
many-body systems [23–26]. In out-of-equilibrium systems, a
negative TMI is routinely used as a fingerprint of the so-called
quantum information scrambling [27–29], which is associated
with chaotic dynamics. Chaotic systems lack a well-defined
notion of quasiparticles, implying that the spreading of quan-
tum information does not happen in a “localized” manner,
for instance, via the propagation of entangled quasiparticles.
As a result, quantum information is quickly dispersed in the
global correlations. A “weak” form of scrambling is present
in integrable systems as well [30,31]. A negative TMI was
also linked with thermalization in CFTs with a gravity dual
[32,33]. The TMI received constant attention in generic CFTs
[34–36]. Interestingly, it was shown [37] that in the so-called
“minimal-cut” picture for entanglement spreading [38], which
is supposed to apply to chaotic systems, the TMI is always
negative. This is supported by exact results in random lo-
cal unitary circuits [39], showing that the TMI decreases
linearly with time. Recently, it was shown that [40,41] in
one-dimensional models the steady-state TMI after a quantum

quench admits a field-theoretical interpretation. Finally, in
free-fermion models under continuous monitoring the TMI is
negative at any time, and saturates to a negative value in the
steady state [42].

Here we show that the TMI can be negative even af-
ter quenches in integrable spin chains that can be mapped
onto free theories. Precisely, we consider quenches from low-
entanglement initial states in the so-called XX chain and
in the quantum Ising chain with inhomogeneous transverse
field. We focus on quenches that produce entangled multiplets
of quasiparticles. For quenches that produce only entangled
pairs, the TMI vanishes in the so-called hydrodynamic limit
t, � → ∞, with fixed ratio t/� (see Ref. [43] for a derivation
for quenches in the XY chain); this happens because the pairs
can entangle only two intervals at a time. For the following,
we should stress that all our results hold in the hydrodynamic
limit. We show that, despite the presence of multiplets, it is
possible to construct a quasiparticle picture for the TMI. First,
only multiplets that are shared between the three intervals
A1, A2, and A3 and between the intervals and their comple-
ment Ā contribute to the TMI [as illustrated in Fig. 1(b)]. This
implies that only multiplets formed by n > 3 quasiparticles
give rise to nonzero TMI, as it was already shown in Ref. [42]
in a specific setting. For generic multiplets the TMI can be
both positive and negative. For instance, we prove that for
the “classical” multiplets considered in Ref. [11] the TMI
is positive at all times. Oppositely, for quantum-correlated
multiplets (as in Ref. [12]) the TMI attains negative values
during the dynamics, although it vanishes at asymptotic long
times. Thus a negative TMI is associated with the breaking
of the relationship between entanglement and GGE. It is also
intriguing to observe that the negative TMI at intermediate
times reflects that correlations are nontrivially “scrambled” in
the degrees of freedom of the multiplets.

The manuscript is organized as follows. In Sec. II, we
introduce the XX chain and the Ising chain with staggered
magnetic field. In Sec. III, we discuss the general strategy to
construct the quasiparticle picture for the TMI in the presence
of generic multiplets. In particular, in Sec. III A, we focus on
the states of Ref. [11]. In Sec. III B, we show how the results
of Ref. [11] fit into the framework of Sec. III. In Sec. IV, we
prove that the “classically” entangled multiplets discussed in
Ref. [11] yield positive TMI at all times. In Secs. V and VI,
we provide examples of quenches that give negative TMI in
the XX chain and in the Ising chain, respectively. In Sec. VII,
we benchmark our results against numerical data for the XX
chain and the Ising chain (in Secs. VII A and VII B). We
present our conclusions in Sec. VIII. In Appendix A we pro-
vide an ab initio derivation of the quasiparticle picture for
the single-interval von Neumann entropy for the same quench
discussed in Sec. V.

II. MODELS AND OUT-OF-EQUILIBRIUM PROTOCOLS

Here we consider the so-called XX chain defined as

H = −J
L∑

i=1

(
σ x

i σ x
j+1 + σ

y
j σ

y
j+1

)+ h
L∑

i=1

σ z
i . (3)
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Here σα
j , with α = x, y, z, are the Pauli matrices. We employ

periodic boundary conditions setting σα
L+1 = σα

1 , and we fix
J = 1 and h = 0.

The XX chain after a Jordan-Wigner transformation is
transformed in a tight-binding fermionic chain as

H = −
L∑

i=1

(c†
i ci+1 + c†

i+1ci ), (4)

where c†
i , ci are standard fermionic operators acting at site i

of the chain, and obeying the standard fermionic anticommu-
tation relations {c j, c†

l } = δ jl . The Hamiltonian can be easily
diagonalized through a Fourier transform

ck = 1√
L

L∑
j=1

eik jc j, k = 2πr

L
, r ∈ [1, L]. (5)

We can rewrite (3) as

H =
∑

k

ε(k)c†
kck, with ε(k) = −2 cos(k), (6)

where ε(k) gives the single-particle dispersion of the
fermions.

We also consider the inhomogeneous transverse field Ising
chain, defined as

H = J
L∑

i=1

σ x
i σ x

i+1 +
L∑

i=1

hiσ
z
i . (7)

Here the magnetic field hi is site-dependent. In particular, here
we consider the case in which h j has a periodicity n, i.e.,
h j = h j+n. Again, we consider periodic boundary conditions
for the spins. The inhomogeneous Ising Hamiltonian (7) after
the Jordan-Wigner transformation becomes

H =
L∑

j=1

[
− 1

2
(c†

j c
†
j+1 + c†

j c j+1 + H.c.) + h jc
†
j c j

]
, (8)

where c j, c†
j are fermionic annihilation and creation opera-

tors and again we assume J = 1. We should remark that for
the Ising chain the Jordan-Wigner transformation introduces
some ambiguity in the boundary conditions for the fermions
(see Refs. [44,45] for a discussion). For a generic global
quantum quench these boundary conditions have no effect on
the entanglement dynamics. Here we neglect them, choosing
periodic boundary conditions also for the fermions.

For the following, it is crucial to observe that both the tight
binding (4) and the fermionic Ising chain (8) can be reduced
to the form

H =
∫
B

dk

2π

n∑
j=1

ε j (k)η†
j (k)η j (k), (9)

The sum over j is a sum over different species of quasipar-
ticles, ε j (k) is the dispersion of the individual species, and
B is a reduced Brillouin zone for the different species. In
(9), η j (k) is a fermionic operator with quasimomentum k and
of species j. Crucially, the choice of the different species of
quasiparticles depends on the symmetry of the initial state, as
we now discuss.

Let us first consider the XX chain, with the prequench
initial states |	ν

{a1,...,aν }〉 considered in Bertini et al. [11]. In the
protocol of Ref. [11] the system is prepared in a state obtained
from a unit cell of ν sites repeated L/ν times. Importantly, in
each cell there is a single fermion that can be in a generic pure
quantum state. Thus the initial state |	ν

{a1,...,aν }〉 is of the form

∣∣	ν
{a1,...,aν }

〉 = L/ν−1∏
j=0

( ν∑
m=1

amc†
ν j+m

)
|0〉, (10)

where the coefficients am are arbitrary, and are normalized as∑ν
m=1 |am|2 = 1. The states in (10) are Gaussian, as proved in

Ref. [11]. In the following, we refer to states of the form (10)
as “classically” entangled states (see Sec. IV).

Let us now observe that states of the form (10) have a
nonvanishing overlap (cf. [46]) only with eigenstates of the
XX chain of the form [11]∣∣�k1,...,kN

〉 = c†
k1
...c†

kN
|0〉, (11)

with the conditions

N = L

ν
, ki − k j �= 0 mod

2π

ν
, i, j = 1, . . . ,

L

ν
. (12)

Here the first constraint in (12) takes into account that the
number of fermions in the state (10) is L/ν. The second con-
dition ensures that only one quasimomentum (defined modulo
2π ) in the set Bν (k),

Bν (k) =
{

k, k + 2π

ν
, . . . , k + (ν − 1)

2π

ν

}
, (13)

can appear in |�k1,k2,...,kN 〉. Violation of (13) gives zero
overlap.

To enforce the constraint (12), we can restrict the Brillouin
zone choosing k ∈ (π − 2π

ν
, π ]. We can define new fermionic

operators η
†
j (k) as

η
†
j (k) = c†

k−( j−1)2π/ν
, ε j (k) = ε

(
k − ( j − 1)

2π

ν

)
, (14)

where ε(k) is the dispersion (6), and j = 1, . . . , ν runs over
the quasiparticles species. It is clear that by employing (14)
the Hamiltonian (6) becomes of the form (9), with n = ν and
the Brillouin zone B = (π − 2π/ν, π ]. Finally, we should re-
mark that although Eq. (9) is only a rewriting of (6), it has the
advantage that it is compatible with the translation invariance
of the initial state. Moreover, as we will discuss in Sec. III,
the correlations, and hence entanglement, generated by the
out-of-equilibrium dynamics can be conveniently encoded in
the correlation between the species operators η j .

For the free fermion chain (4), we also consider the initial
state |	0〉 defined as

|	0〉 =
L/4−1∏

j=0

(c†
4 j+1c†

4 j+2)|0〉. (15)

This initial state does not fall into the class of initial states
considered in Ref. [11]. Indeed, although the state (15) is
constructed from the repetition of a four-site unit cell |1100〉,
the unit cell contains more than one particle. Still, the state
(15) is Gaussian, as Wick’s theorem applies. The quench from
the state (15) was also studied in Ref. [47]. The state has
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nonzero overlap with the XX chain eigenstates |�k1,k2,...,kN 〉
satisfying the constraint that at most three quasimomenta (de-
fined modulo 2π ) of B4(k) (cf. (13)) appear. We anticipate
that, in contrast with the states (10), the state (15) gives rise to
a negative TMI.

Let us now discuss the case of the inhomogeneous Ising
chain. In our out-of-equilibrium protocol, the system is ini-
tially prepared in the initial state |�0〉, which is the ground
state of the Hamiltonian (7) with initial magnetic field h0

j =
(h0

1, h0
2, . . . , h0

n ). The magnetic field is then instantly changed
to (cf. (7)) h j = (h1, h2, . . . , hn) [12].

First, let us diagonalize the postquench Hamiltonian
(7) defining the quasiparticle excitations η j (k). Following
Ref. [12], we restrict the Brillouin zone to [0, π/n). In the
limit L → ∞, we can rewrite the Ising Hamiltonian (7) as

H =
∫ π/n

0

dk

2π
C†(k)HkC(k), (16)

where C† is the 2n-dimensional vector of the Fourier trans-
form of the original fermions c j [cf. Eq. (8)] defined as

C†(k) = (c†
k , . . . , c†

k+(n−1)π/n, c−k, . . . , c−k−(n−1)π/n). (17)

In (16), Hk is a 2n × 2n matrix encoding the Hamiltonian (8).
To proceed, we can diagonalize hk by defining new fermions
Dh(k) as

D†
h = (d†

1 (k), . . . , d†
n (k), d1(−k), . . . , dn(−k)). (18)

The fermions d (k) are defined via the relationship

C(k) = Uh(k)Dh(k), (19)

with C(k) as in (17). In (19), Uh is a 2n × 2n unitary matrix,
which is determined by requiring that in terms of dj (k) and
d j (−k) the free-fermion Hamiltonian (8) becomes diagonal.
For generic n, Uh has to be determined numerically. For n =
1, one recovers the standard Bogoliubov transformation [44].
Now Eq. (8) becomes

H =
∫ π/n

0

dk

2π

n∑
j=1

εh
j (k)(d†

j (k)d j (k) − d j (−k)d†
j (−k)).

(20)
In (20), ±εh

j (k), with εh
j (k) � 0 are the eigenvalues of hk [cf.

Eq. (16)] and form the single-particle dispersion. The ground
state of (20) is annihilated by all the operators d (±k). A
similar procedure allows to diagonalize the prequench Hamil-
tonian, with different sets of operators Dh0 (k). The latter are
obtained from the original fermions ck via a different unitary
transformations Uh0 (k).

Crucially, since the fermionic operators ck [cf. Eq. (17)] are
the same before and after the quench, the operators diagonal-
izing the pre-quench and postquench Hamiltonians are linked
by a unitary transformation as

Dh(k) = W (k)Dh0 (k), W = U −1
h Uh0 . (21)

Let us now identify

η j (k) =
{

d j (k) j ∈ [1, n]

d†
j−n(−k) j ∈ [n + 1, 2n]

. (22)

After employing the definitions in (22) the inhomogeneous
Ising chain becomes of the form (9). Again, unlike the ho-
mogeneous Ising chain [44,45], for the inhomogeneous one
it is not possible in general to obtain analytically the single-
particle dispersion εi(k) and the matrices W (k) (21) and Uh

(19). However, as they are 2n × 2n matrices, they can be
obtained numerically with modest computational cost.

To determine the dynamics of the TMI it is necessary to
compute the correlation functions (see Sec. III)

C(k) = 〈0|

⎛⎜⎜⎜⎜⎜⎜⎜⎝

η1
...

η2n

η
†
1
...

η
†
2n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(η†

1 · · · η
†
2n η1 · · · η2n)|0〉, (23)

where |0〉 is the ground state of the Ising chain with magnetic
field h0, and η j are the operators that diagonalize the Ising
chain with magnetic field h. It is straightforward to compute
the correlator (23) by first using Eq. (21), and then by using
that the operators η(0)

j of the initial Ising chain annihilate the
ground state. Hence we obtain

C(k) =
(

W (k) 0
0 W ∗(k)

)
C (0)

(
W †(k) 0

0 W T (k)

)
, (24)

where W (k) is defined in (21), and C (0) is a 4n × 4n diagonal
matrix C (0)

i j = δi j for i ∈ [1, n] ∪ [3n + 1, 4n], and zero oth-
erwise. The matrix C (0) is the correlation of the pre-quench
operators η(0)

j calculated over the initial state.

III. QUASIPARTICLE PICTURE IN THE PRESENCE
OF ENTANGLED MULTIPLETS

Here we show how to determine the quasiparticle picture
for the TMI in the presence of entangled multiparticle exci-
tations. We start from the framework developed in Ref. [12]
(see also Ref. [48]).

Let us also assume that the Hamiltonian governing the
postquench dynamics can be diagonalized by a set of oper-
ators η

†
1(k), η†

2(k), . . . , η†
n(k) as in (9). Let us also assume that

the two-point correlation function of the fermionic operators
η j (k) calculated on the initial state is block-diagonal as

C(k, p) := 〈�0|�(k)�†(p)|�0〉 ∝ δk,p, (25)

where

�†(k) := (η†
1(k), . . . , η†

n(k), η1(k), . . . , ηn(k)). (26)

It is straightforward to check that all the protocols we in-
troduced in II satisfy this requirement. We now consider the
correlation matrix C(k) at fixed quasimomentum k but in the
space of species. Specifically, we can write

C(k) := 〈�0|�(k)�†(k)|�0〉 =
(

1 − GT (k) F (k)
F †(k) G(k)

)
, (27)
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where the correlators Gi j (k) and Fi j (k) are n × n matrices
defined as

Gi j (k) := 〈�0|η†
i (k)η j (k)|�0〉, (28)

Fi j (k) := 〈�0|ηi(k)η j (k)|�0〉. (29)

Notice that since Gi j and Fi j are not diagonal, they en-
code nontrivial correlations between the different species of
quasiparticles. The von Neumann entropy of a subregion A
and generic entanglement-related quantities are obtained from
(27) (see Ref. [49]). Indeed, by taking the inverse Fourier
transform of C(k), one obtains the fermionic correlation func-
tion C̃nm in real space. From that, the von Neumann entropy is
written as [49]

SA = −Tr C̃A ln(C̃A), (30)

where CA is the correlation matrix restricted to A, i.e., with
n, m ∈ A.

Before proceeding, let us observe that for any fixed k, the
correlation matrix C(k) [cf. Eq. (27)] is the covariance matrix
of a Gaussian pure state. This stems from the fact that the C
of the full system can have only the eigenvalues 0,1 because
the system is in a pure state and C has a block structure in
quasimomentum space, implying that each block with fixed k
can only have eigenvalues 0,1.

The correlation matrix (27) is the main ingredient to build a
quasiparticle picture in the presence of entangled multiparticle
excitations [12]. In the quasiparticle picture, at time t = 0,
at each point in space a multiplet is produced, with arbitrary
quasimomentum k. At later times the quasiparticles forming
the multiplet spread, each quasiparticle species propagating
with group velocity vi(k) = dεi(k)/dk, with εi(k) the single-
particle energies in (9). The growth of the von Neumann
entropy of a subsystem A is attributed to the quasiparticles
of the same multiplet that are shared between A and the rest.

We now determine the contribution at time t to the entan-
glement entropy SA of a region A (see Fig. 1) of an entangled
multiplet with quasimomentum k. Let us consider the situation
in which at time t only a subset m of the n quasiparticles
forming the multiplet is in A, the remaining ones being in the
complement of A. The quasiparticles in A correspond to some
operators ηi1 , ηi2 , . . . , ηim , where 1 � ip � n. We introduce
the matrix CA(k,QA), with QA = {ip}m

p=1 as the correlation
matrix C(k) [cf. Eq. (27)] in which we restrict the row and
column indices of Gi j and Fi j [cf. Eqs. (28) and (29)] to the
subset QA. Finally, the contribution of this configuration to the
entanglement entropy is

s(k,QA) = −Tr CA ln(CA), (31)

where the trace is over the 2m × 2m matrix CA(k). Again, in
(31) QA are the indices of the quasiparticles that are in A.
Notice that s(k,QA) = s(k,QĀ). This is due to the fact that
C(k) defines a Gaussian pure state. Finally, the entanglement
entropy SA is obtained as

SA =
∫
B

dk

2π

∑
QA

D(k,QA, �, t )s(k,QA). (32)

Here the sum is over all the possible ways of distributing the
quasiparticles forming the entangled multiplet between A and

its complement. In (32), D(k,QA, �, t ) is a kinematic factor
that counts the number of entangled multiplets with fixed k
created at t = 0 and that at time t give rise to the configuration
QA. The factor D(k,QA, �, t ) depends on time and on the
length � of A. Moreover, it depends on k through the velocities
ε′

j (k) of the quasiparticles.
Finally, we should stress that although the presence of

entangled multiplets does not invalidate the quasiparticle pic-
ture for entanglement spreading, the entanglement content
s(k,QA) of the quasiparticles is not directly related to the
thermodynamic entropy of the GGE that describes the steady
state, unlike the case in which only entangled pairs of quasi-
particles are produced after the quench [1–3]. In particular, the
entanglement content does not depend only on the diagonal
correlations in (28) that represent the root densities of the
excitations

ρ j (k) := 〈�0|η†
j (k)η j (k)|�0〉, (33)

while the GGE contains information only about these den-
sities [12]. Let us briefly discuss the relationship between
entanglement entropy and GGE thermodynamic entropy in
quenches in free-fermion systems [9]. First, in the limit t →
∞ after a quench from typical initial states, it is well estab-
lished that local observables reach a stationary value, which
is describable via a statistical ensemble. Since free-fermion
models are integrable, this is not the usual Gibbs ensemble
[7]. The correct ensemble is the so-called Generalized Gibbs
Ensemble (GGE), which can be fully determined by the oc-
cupations ρ j (k) in (33). Importantly, in the thermodynamic
limit L → ∞ there is an exponentially diverging number of
microscopic eigenstates of the model that give rise to the same
GGE, or, equivalently, to the same occupations ρ j (k). In the
thermodynamic limit, expectation values of local observables
over these eigenstates become the same. The logarithm of
the number of microscopic eigenstates that give rise to the
same thermodynamic macrostate is given by the so-called
Yang-Yang entropy [5] SYY defined as

SYY := L
∑

j

∫ π

−π

dk

2π
sYY

j ( j, k), (34)

where [5]

sYY
j = ρ j (k) ln(ρ j (k)) + (1 − ρ j (k)) ln(1 − ρ j (k)). (35)

Nevertheless, in all the cases we take into account, the
relationship between the entanglement content and the ther-
modynamic entropy of the GGE is recovered in the limit
t/� → ∞, because in this limit the particles of a multiplet are
too far from each other, and only one of them is in A. Having
Fi j = 0 in all the cases that we consider, (see below), the
von Neumann entropy density SA/� depends only on the root
densities (33) and, precisely, reduces to the thermodynamic
entropy density SYY /L [cf. Eq. (34)] of the GGE.

To conclude, let us illustrate the formalism for the case of
the quench from the Néel state. The Néel state |101010 · · · 〉
corresponds to n = ν = 2 in (10) and to a1 = 1 and a2 = 0.
Now, we have η

†
1 = c†

k [cf. Eqs. (9) and (14)] and η
†
2 = c†

k−π
,

with k ∈ (0, π ]. The pairing terms Fi j [cf. Eq. (29)] are iden-
tically zero for the Néel quench. Moreover, Gjl = 1/2 δ jl [cf.
Eq. (28)] is diagonal and independent of k. Now, it is clear
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that there are only two ways of distributing the members of
the pair between A and the complement. Precisely, one has
QA(k) = {1} or QA(k) = {2} [cf. Eq. (32)]. Notice that the
energy of the two species of quasiparticles is ε1(k) = ε(k)
and ε2(k) = ε(k − π ), with ε defined in (6). This implies that
v1 = ε′

1(k) = −v2. The kinematic function D(k,QA, �, t ) [cf.
Eq. (32)] counts the number of pairs that are in the config-
uration QA at time t . It is clear that for QA = {1}, one has
that D(k, {1}, �, t ) takes contribution from the pairs created
on the region near the left edge, which gives a contribution
min(2v1(k)t, �). The contribution of species 2 is the same. Fi-
nally, it is clear that s(k, {1}) = s(k, {2}) = ln(2). This implies
that

SA = 2
∫ π

0

dk

2π
min(2v1(k)t, �) ln(2), (36)

which is the well-known quasiparticle picture for the von
Neumann entropy after the quench from the Néel state in the
XX chain [9].

A. An example of “classically” entangled multiplets:
the states of Bertini et al.

In the last section, we showed that the presence of non-
trivially entangled multiplets of excitations implies that the
dynamics of the von Neumann entropy cannot be always
described in terms of the densities of excitations ρ j (k) [cf.
Eq. (33)]. Still, as it has been pointed out in Ref. [11] (see also
Ref. [12]) the out-of-equilibrium dynamics starting from the
states |	ν

{a1,...,aν }〉 [cf. Eq. (10)] in the XX chain gives rise to
“classically” entangled multiplets. As we will show in Sec. IV,
this implies that the TMI is positive at all times.

Let us now review the quasiparticle picture for the von
Neumann entropy for quenches starting from the states
|	ν

a1,a2,...,aν
〉 [cf. Eq. (10)]. Crucially, for this class of states

the contribution of the entangled multiplets to the entropies is
obtained in terms of the densities of the quasiparticles ρ j (k),
which are defined as

ρ j (k) = 〈	ν |η†
j (k)η j (k)|	ν〉, (37)

where η j (k) are defined in (14). A structure similar to the one
outlined in III emerges.

The initial state acts as a source of entangled multiplets of
one particle and ν − 1 holes. However, in contrast with the
general picture of Sec. III, the contribution of these multiplets
is entirely written in terms of ρ j (k). Again, at a generic time
t we can consider the situation in which only a subset of the
quasiparticles forming the multiplet is in A. Let us consider
the case with m quasiparticles η j with j ∈ QA in A. Let us
define ρin(k) as

ρin(k) =
∑
j∈QA

ρ j (k). (38)

The contribution of this configuration to the entanglement
between A and the rest is [11]

s(k,QA) = −ρin ln(ρin ) − (1 − ρin ) ln(1 − ρin ). (39)

Notice that since the state of the system is pure, if all the
quasiparticles are in A one has s(k,QA) = 0. This means

that
∑

j ρ j = 1. This constraint automatically implies that
s(k,Q)A = s(k,QĀ).

From (39), we obtain the entropy SA as

SA =
∫ π

π (1−2/ν)

dk

2π

∑
QA

D(k,QA, �, t )s(k,QA). (40)

Here s(k,QA) is the entanglement content due to the configu-
ration with the quasiparticles in QA being in A and it is given
in (39). In (40), the kinematic term D(k,QA, �, t ) counts the
number of multiplets with fixed k that are in QA.

B. Equivalence with the general method

Let us show that the approach of Ref. [11] outlined in
Sec. III A corresponds to a particular case of the framework
introduced in Sec. III. We first observe that for the states
|	ν

{a1,...,aν }〉 one has that Fi j = 0 [cf. Eq. (29)]. Moreover, we
have that

〈	ν |c†
kck′ |	ν〉 �= 0 only if ν(k − k′) = 0 [mod 2π ], (41)

which follows from the ν-site translation invariance. Now,
Eq. (27) is block diagonal as

C(k) =
(

1 − GT (k) 0
0 G(k)

)
. (42)

Following the strategy of Sec. III, we have to determine the
entanglement entropy associated to a partition QA of the ν

quasiparticles forming the entanglement multiplet. This is
given by (31). It is straightforward to show that (31) becomes
the same as (40) provided that G [cf. Eq. (42)] has rank one.
Indeed, if the rank of G is one, any submatrix GA(k) will have
rank at most one. This means that its nonzero eigenvalue is
Tr(GA(k)), with

Tr(GA) =
∑
j∈QA

〈	ν |η†
jη j |	ν〉 = ρin(k), (43)

where ρin is defined in (38). Finally, for a given set QA of
quasiparticles in A, one obtains that the contribution s(k,QA)
to the von Neumann entropy is s(k,QA) = −Tr CA ln(CA) (cf.
(42)), and by using (43), it coincides with (39).

To conclude, we have to show that G(k) for the generic
state |	ν〉 has rank one. By using the definition of η j (k) [cf.
Eq. (14)], we obtain

Gjl (k) = 〈	ν |η†
j (k)ηl (k)|	ν〉

= 1

L

L∑
m,n=1

e−i(k−( j−1)2π/ν)m+i(k−(l−1)2π/ν)n〈c†
mcn〉

= 1

ν

ν∑
m,n=1

e−i(k−( j−1)2π/ν)mei(k−(l−1)2π/ν)n〈c†
mcn〉

= 1

ν

ν∑
m,n=1

e−i(k−( j−1)2π/ν)ma∗
mei(k−(l−1)2π/ν)nan, (44)

where we defined 〈c†
mcn〉 := 〈	ν |c†

mcn|	ν〉. In the second row
in (44) we exploited translation invariance. The coefficients aj

are defined in (10). Now, it is clear that Gjl has rank one for
any a j because it is an outer product of two vectors.
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A1
A2

A3

FIG. 2. A typical entangled multiplet contributing to the dy-
namics of the tripartite mutual information (TMI). The entangled
multiplet is created at t = 0 in subsystem A2, and it consists of
n quasiparticles with labels Q = {1, 2, . . . , n}. Here we denote as
{ai} ⊆ Q the quasiparticles in A1. Similarly, we define {bi} and {ci}
as the quasiparticles in A2 and A3, respectively. The entanglement
entropy of the interval A1 is obtained from the restricted correlation
matrix CA1 (k) [cf. Eq. (27)] whose F and G blocks have row and
column indices in {ai}.

IV. CLASSICALLY ENTANGLED MULTIPLETS YIELD
NON-NEGATIVE TMI

We now show that for all the quenches from the “classi-
cally” entangled states (10), the tripartite mutual information
(TMI) between three generic intervals is always non-negative
in the hydrodynamic limit. Here for the sake of simplicity we
consider the case of three equal adjacent intervals of length �

(see Fig. 2). The hydrodynamic limit is defined as �, t → ∞
with their ratio t/� fixed.

Given a generic entangled multiplet formed by n quasipar-
ticles, to build the quasiparticle picture for the TMI, we have
to first identify the different ways of distributing the quasipar-
ticles among the three subsystems. Let us denote by {ai}, with
1 � ai � n the set of indices identifying the quasiparticles that
at a generic time t after the quench are within A1. Similarly, we
can introduce {bi} and {ci} as the indices of the quasiparticles
in A2 and A3, respectively (see Fig. 2). Notice that in general
{ai} ∪ {bi} ∪ {ci} is not the full multiplet. Indeed, as it will be
clear in the following, for the configuration to contribute to the
TMI the multiplet has to be shared also with the complement
of A = A1 ∪ A2 ∪ A3.

We can define the contribution τ3 of the quasiparticles to I3

as

τ3(k, {ai}, {bi}, {ci})

= s{ai}∪{bi}∪{ci}(k) − s{ai}∪{bi}(k) − s{ai}∪{ci}(k)

− s{bi}∪{ci}(k) + s{ai}(k) + s{bi}(k) + s{ci}(k). (45)

Precisely, the TMI is given as

I3(t ) =
∑

{ai},{bi},{ci}

∫ π

π− 2π
ν

dk

2π
τ3(k)D(k, �, t ), (46)

where the sum is over the ways of distributing the quasipar-
ticles forming the mutliplet among the three subsystems, and
D(k, �, t ) is a kinematic factor that describes the propagation
of the quasiparticles forming the multiplet. For the von Neu-
mann entropy and for the quenches that produce entangled
pairs one has that D(k, �, t ) = min(2v(k)t, �). In Eq. (45), sX

is the contribution to the von Neumann entropy due to the
quasiparticles X being within the subsystem, and the remain-
ing ones outside of it. In (45), sX is obtained as the entropy
of the reduced correlation matrix CX (k) [cf. Eq. (31)]. CX is
obtained from C(k) [cf. Eq. (27)] by selecting the rows and

columns in X . In (45), the first contribution is associated with
the last term in (1), i.e., with the entropy of A1 ∪ A2 ∪ A3.

Let us now discuss some constraints on {ai, bi, ci} to
ensure a nonzero contribution to τ3. First, configurations with-
out at least a quasiparticle in each of the three intervals
A1, A2, and A3 give τ3 = 0. Indeed, without loss of generality
we can assume that {ai} = ∅, i.e., there are no quasiparticles
in A1 (see Fig. 2). Then, from (45), and using that s∅(k) = 0,
we have τ3 = 0.

An important consequence is that one has nonzero τ3 only
for n � 3, i.e., when triplets or larger multiplets are produced
after the quench. However, as shown in Ref. [42], even for
n = 3, i.e., for entangled triplets, the tripartite information
is zero. Let us briefly recall the proof of this result. The
only quasiparticle configuration that has to be considered is
that with a quasiparticle in each interval Aj . Without loss of
generality, we can assume {ai} = {1}, {bi} = {2}, {ci} = {3}
because the result does not depend on the permutation of the
labels of the quasiparticles. Now, since for any system in a
pure state we have that SA = SĀ, we obtain that (see Sec. III)
s{1,2,3} = s∅ = 0, s{1,2} = s{3}, s{2,3} = s{1} and s{1,3} = s{2}. It
is straightforward to check that this implies that τ3(k) = 0 [cf.
Eq. (45)].

Thus the simplest case in which there can be nonzero
tripartite information is that of the entangled quadruplets
(n = 4). Again, the entanglement content remains the same
under exchange of the quasiparticles inside and outside of
the subsystem of interest. This implies that if all the four
quasiparticles are in A = A1 ∪ A2 ∪ A3, τ3 vanishes. Clearly,
the only nontrivial configuration that contributes to τ3 is that
with one quasiparticle in each interval A1, A2, and A3, and
one quasiparticle outside of A. In the following, we are going
to show that for the “classically” entangled states introduced
in Sec. IV, one has τ3 > 0 for any k, which implies that the
tripartite information is positive at any time. Specifically, for
n = 4, Eq. (45) (see Fig. 2) becomes

τ3(k) = s{1,2,3}(k) − s{1,2}(k) − s{2,3}(k) − s{1,3}(k)

+ s{1}(k) + s{2}(k) + s{3}(k). (47)

Following [11], Eq. (47) can be rewritten [cf. Eq. (38) and
(39)) as

τ3(k) = f (a + b + c) − f (a + b) − f (a + c) − f (b + c)

+ f (a) + f (b) + f (c), (48)

where [cf. Eq. (39)]

f (x) = −x ln(x) − (1 − x) ln(1 − x), (49)

with

a = ρ1(k), b = ρ2(k), c = ρ3(k). (50)

The total density is constrained as
∑n

j=1 ρ j (k) = 1, and the
variables a, b, c satisfy a � 0, b � 0, c � 0 and a + b + c �
1. The expression in (48) is always non-negative under the
given constraints on the densities a, b and c. Indeed, one can
easily check that τ3 [cf. Eq. (48)] is smooth as a function
of a, b, c, and it vanishes at the boundaries of the allowed
region for a, b, c. Moreover, Eq. (48) has a unique stationary
point at a = b = c = 1/4, where it is positive. This allows us
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to conclude that τ3 > 0 for any a, b, c, except at the bound-
aries where τ3 = 0. Notice that the boundaries (a = 0, b = 0,
c = 0) correspond to the cases with at least one of the intervals
A1, A2, and A3 not containing a quasiparticle, that do not
contribute to the TMI.

Let us now consider the general case with arbitrary n-
plets with n > 4. Specifically, let us consider the situation in
which quasiparticles with indices {aj}p

j=1 are in A1, those with
{b j}q

j=1 in A2, and with {c j}r
j=1 in A3. We have p + q + r � n.

Crucially, Eq. (45) has the same form as (48) with different a,
b and c, that are defined as

a =
p∑

j=1

ρa j (k), b =
p∑

j=1

ρb j (k), c =
r∑

j=1

ρc j (k). (51)

Moreover, the a, b, c in (51) satisfy the same constraint, i.e.,
a � 0, b � 0, c � 0, a + b + c � 1, as in the case of quadru-
plets [cf. Eq. (50)]. This implies that τ3(k) � 0 for any k,
which allows us to conclude that the TMI cannot be negative
for the “classically” entangled states of Ref. [11].

V. NEGATIVE TMI AFTER A QUENCH IN THE XX CHAIN

Having established in the previous section that quenches
starting from states of the form (10) in the free fermion chain
studied in Ref. [11] give rise to a non-negative tripartite mu-
tual information, we now provide a setup in which I3(t ) is
negative at intermediate times in the hydrodynamic limit.

Precisely, let us now consider the quench in the XX chain
starting from the state |	0〉 [cf. Eq. (15)]. The state exhibits
a four-site translation invariance. The dynamics from |	0〉
produces entangled quadruplets, and in contrast with the states
considered in Ref. [11], contains two fermions per unit cell.
This implies that the correlation matrix Gi j (k) [cf. Eq. (28)]
has rank larger than one [the last step in (44) does not hold].
Crucially, this means that the von Neumann entropy is not
straightforwardly obtained from the fermionic occupations
ρ j (k) [cf. Eq. (33)], i.e., from the GGE that describes the
steady state.

Before proceeding, let us observe that since the initial state
has a well defined fermion number, one has that Fi j (k) = 0
[cf. Eq. (29)] at any time after the quench. Now, we restrict
the Brillouin zone to B = (π/2, π ], and define the four quasi-
particles η j (k), j ∈ [1, 4] according to (14). The associated
group velocities are

v j (k) = d

dk
ε j (k) = 2 sin

(
k − ( j − 1)

π

2

)
, (52)

where ε j (k) are the dispersions of the different species [cf.
Eq. (14)]. As it is clear from (52), v1 and v2 are positive in the
reduced Brillouin zone, while v3 = −v1 and v4 = −v2.

Furthermore, a straightforward calculation gives the
fermionic correlation matrix G(k) [cf. Eq. (28)] as

G(k) = 1

4

⎛⎜⎜⎝
2 −1 − i 0 −1 + i

−1 + i 2 −1 − i 0
0 −1 + i 2 −1 − i

−1 − i 0 −1 + i 2

⎞⎟⎟⎠. (53)

Notice that G(k) does not depend on k, similarly to the quench
from the fermionic Néel state [46].

FIG. 3. A typical entangled multiplet with ν = 4 contributing
to the dynamics of the tripartite mutual information TMI in the
XX chain after the quench from the state |	0〉 = | ↑↑↓↓〉⊗L/4. We
consider the TMI I3 between three equal intervals Ai of length �.
We show the contribution of an entangled quadruplet produced at
a generic position x. Here we consider the case with the group ve-
locities of the quasiparticles being v1(k), v2(k) � 0, v3(k) = −v1(k),
and v4(k) = −v2(k). The different colors show the two types of
quadruplets that contribute to I3. They correspond to the situation in
which A is entangled with Ā via the left and right boundary, respec-
tively. For the first case, the total number of multiplets contributing
to I3 is proportional to the width �x.

We are now ready to discuss the quasiparticle picture for
the dynamics of the TMI. The direct calculation of the tripar-
tite information within the quasiparticle picture is somewhat
easier than the calculation of the entropies. Specifically, the
reason is that the only quasiparticle configurations yielding
nonzero TMI are those with exactly one particle inside each
of the three intervals and one outside of A. From the velocities
(52) it is straightforward to realize that there are only four
ways to satisfy this condition, which depend on the ordering
of the velocities. Specifically, we have to consider the two
cases.

(i) For π/2 � k � 3/4π , one has v1(k) � v2(k) � 0 and
v3(k) � v4(k) � 0. Now, there are only two possibilities to
have nonzero I3. The first one is that the quasiparticle of
species 1 is in A3, that of species 2 is in A2, and that of species
4 in A1, with the quasiparticle of species 3 outside of A on the
left. The other possibility is that the quasiparticle of species
1 is outside of A on the right, that of species 2 is in A3, that
of species 4 in A2, and that of species 3 is in A3. These two
configurations are depicted in Fig. 3 with different colors.

(ii) For 3/4π � k � π , one has v2(k) � v1(k) > 0 and
v4(k) � v3(k) � 0. The configurations that contribute to the
TMI are the same as in (i) after the exchanges 1 ↔ 2 and
3 ↔ 4.

It is straightforward to obtain the total number of config-
urations contributing to I3. Let us focus on the first type (i).
Let us consider an entangled multiplet produced at a generic
point x at t = 0. We only consider the situation in which the
leftmost quasiparticle is outside of A on the left (see Fig. 3).
The conditions that give nonzero I3 are

x � v2t, x � � − v2t, x � 2� − v1t, (54)

together with

x � v1t, x � � + v2t, x � 2� − v2t, x � 3� − v1t .

(55)

As it is clear from Fig. 3, the constraints above identify the
region of width �x in which the quadruplets that contribute to
I3 are produced at t = 0. After integrating over all the possible
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positions x, one obtains

D1(k, �, t ) = max{min{v1t, � + v2t, 2� − v2t, 3� − v1t}
− max{v2t, � − v2t, 2� − v1t}, 0}. (56)

The entangled quadruplets of type (i) in which the rightmost
particle is outside of A give

D2(k, �, t ) = max{min{� + v1t, 2� + v2t, 3� − v2t}
− max{v1t, � + v2t, 2� − v2t, 3� − v1t}, 0}.

(57)

Together with (56) and (57), there are two contributions D3

and D4, which are obtained by exchanging v1 ↔ v2 and
v3 ↔ v4.

To proceed, we now determine the contribution of the
entangled multiplets to the TMI. This is straightforward us-
ing the strategy discussed in Sec. III. Specifically, by using
(31) and (53) one can verify that the contribution τ3(k) [cf.
Eq. (45)] does not depend on k and on the different ways QA

of distributing the quasiparticles in the subsystems. We obtain
τ3 as

τ3 = 2 f

(
1

2

)
− 4 f

(
2 + √

2

4

)
< 0, (58)

where f (x) is given in (49). Crucially, τ3 is negative for any k.
Putting together (56), (57) and (58), we obtain

I3(t ) =
[

2 f

(
1

2

)
− 4 f

(
2 + √

2

4

)]
×
(∫ 3π/4

π/2

dk

2π
[D1(k, �, t ) + D2(k, �, t )]

+
∫ π

3π/4

dk

2π
[D3(k, t, �) + D4(k, t, �)]

)
. (59)

Finally, the two terms in (59) give the same result. Thus we
can rewrite (59) as

I3(t ) =
[

4 f

(
1

2

)
− 8 f

(
2 + √

2

4

)]
×
∫ 3π/4

π/2

dk

2π
[D1(k, �, t ) + D2(k, �, t )]. (60)

We should mention that the terms in τ3(k) in (58) appear
naturally in the quasiparticle picture for the von Neumann
entropy of a single interval (see Appendix A for an ab initio
derivation). Let us discuss the dynamics of I3 as obtained from
(60). In the following, we refer to times such that t, � → ∞
with t/� � 1 as short times, whereas by asymptotically long
times we mean the situation with t, � → ∞ with t/� → ∞.
At short times, I3 = 0, and it remains zero up to time t =
�/(max(v1(k), v2(k))), when the quasiparticles forming the
quadruplets start being shared between all the subsystems. At
later times, I3 decreases, reaching a minimum. Finally, it van-
ishes at asymptotically long times, when the particles of each
multiplet are too far from each other to be shared between
all the subsystems. It is interesting to investigate the behavior
of the integrand in (60) as a function of time. As it is clear
from the derivation of (56) and (57), the integrand is the width

FIG. 4. Tripartite mutual information (TMI) in the XX chain
after the quench from the state |	0〉 [cf. Eq. (15)]. We show �x/�,
with �x = D1 + D2 [cf. Eq. (60)]. We plot �x/� for fixed quasi-
momentum k versus t/�. Notice that apart for a constant, �x is the
contribution of the quasiparticles to I3. The different panels corre-
spond to different k. The cusplike features are due to the presence of
quasiparticles with different velocities.

of the spatial region where the entangled multiplets that at a
given time give nonzero I3 are produced. In Fig. 4, we report
�x/�, with �x = D1 + D2. As anticipated, I3 is zero at short
times. This corresponds to the fact that at short times there
are no entangled quadruplets that are shared among the three
subsystems Aj and the rest. Moreover, one should observe
that at intermediate times the behavior of I3 is quite involved
and it depends dramatically on the quasimomentum k. Specif-
ically, �x/� exhibits several cusplike features. These reflect
the fact that different quasiparticles in the same multiplet have
different velocities. Notice that these cusplike features could
be detected in numerical studies by monitoring the behavior
of dI3/dt , similar to what observed for the von Neumann
entropy [2].

VI. ISING CHAIN WITH STAGGERED TRANSVERSE
MAGNETIC FIELD

Here we derive the quasiparticle picture for I3 after a
quench in the transverse field Ising chain with staggered mag-
netic field [cf. Eqs. (7) and (8)]. We restrict ourselves to the
situation in which the magnetic field has periodicity two, with
values h = (ho, he), where ho and he is the magnetic field on
the odd and even sites of the chain, respectively. We consider
the following quench protocol. At t = 0, the chain is prepared
in the ground state of the model with h0 = (h0

o, h0
e ). At t > 0,

the magnetic field is suddenly changed to h = (ho, he), and the
system evolves with the new Hamiltonian. In the following,
we show that, similarly to the XX quench discussed in Sec. V,
this will give rise to a negative TMI.

To find an explicit form for the two-body correlation
function C(k) in (27) for generic magnetic fields h, we
have to diagonalize the 4 × 4 matrix Hk in (16) for both
h and h0, thus determining (27) via equation (21). Al-
though it is, in principle, possible to analytically perform the
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FIG. 5. Group velocities v j (k) of the quasiparticles forming en-
tangled quadruplets in the Ising chain with h = (10, 1.2). We plot
v j (k) versus the quasimomentum 0 � k � π/2. Notice that v1(k) >

v2(k) > v4(k) > v3(k) for any k except at k = 0, π/2, where they all
vanish.

diagonalization in our specific case of a two-site periodic field,
the expressions for the eigenvalues εi(k) and the eigenvec-
tors as functions of h, h0, and k are very cumbersome and
not particularly enlightening. Thus we prefer to perform the
diagonalization numerically. From the eigenvalues εi(k), one
obtains the group velocities of the quasiparticles as vi(k) =
dεi(k)/dk. For the following, it is useful to observe that
vi(k) = −vi+n(k), because the eigenvalues of Hk are orga-
nized in pairs with opposite signs [see Eq. (20)]. In Fig. 5,
we report the group velocities v j (k) for the Ising chain with
n = 2 and h = (10, 1.2). The quasimomentum k of the species
is in [0, π/2]. Notice that the order of the velocities associated
to the various quasiparticle species is the same for all the
quasimomenta. The same holds for all the values of h we take
into account in the following. This means that the kinematics
of the quasiparticles is qualitatively the same as in the XX
chain after the quench discussed in Sec. V, and we have the
same scenario as in Fig. 3. In the hydrodynamic limit, I3 is
thus described by the formula

I3(t ) =
∫ π/2

0

dk

2π
τ3(k)(D1(k, �, t ) + D2(k, �, t )), (61)

where the functions D1 and D2 are the same as in (60) if we
label the quasiparticle species so that v1 > v2. Here the entan-
glement content τ3(k) is the same as in (45), where s{x}(k) is
the entropy obtained numerically from C(k) [cf. Eq. (27)] as
explained in Sec. III. Clearly, now τ3 depends on k, in contrast
with the case of the XX chain (see Sec. V).

In Fig. 6, we show the quasiparticle prediction for I3 in the
Ising chain after several quenches h(0) → h (different panels
in the figure). The results are for three adjacent intervals
of equal length �. Again, the quasiparticle picture holds in
the hydrodynamic limit �, t → ∞ with the ratio t/� fixed.
Interestingly, for all the quenches that we analyzed the TMI
attains quite “small” values � 10−2. The TMI is zero at short
times. Precisely, one has I3/� = 0 for t/� � 1/vmax. As it is

FIG. 6. Tripartite mutual information (TMI) between three adja-
cent intervals of length � after a quench in the transverse field Ising
chain. We plot the density I3/� for TMI versus the rescaled time t/�.
The different panels correspond to different quenches (h0

o, h0
e ) →

(ho, he). Notice that the y axis is rescaled, the rescaling factor being
reported at the top of each panel.

clear from Fig. 5 one has vmax ≈ 0.2 for the quench with
h = (10, 1.2), which implies that I3 = 0 for t/� � 5. At t/� =
1/vmax, the TMI starts decreasing. This happens because an
entangled quadruplet created at the boundary between A1 and
A2 (or A2 and A3) starts to be shared, and hence it contributes
to I3. Quite generically, at later times I3 is negative, and
becomes smaller and smaller upon increasing times. Thus I3

reaches a minimum, and then starts growing. At asymptoti-
cally long times I3 vanishes. The vanishing of the TMI signals
that, although the multiplets exhibit nontrivial correlations,
the dynamics of the quantum information shared between the
different intervals happens in a “localized” manner via the
propagation of the quasiparticles. The vanishing of I3 reflects
that at infinite times there are no entangled quadruplets that
are shared between A1, A2, and A3 and the complement of A.

VII. NUMERICAL BENCHMARKS

In this section, we benchmark our predictions (60) and
(61) against numerical simulations. Again, we focus on the
hydrodynamic limit. In Sec. VII A we discuss the case of the
XX chain, whereas in Sec. VII B, we consider the Ising chain.
In both sections, we consider the situation with three adjacent
intervals A1, A2, and A3 of equal length �. We discuss data
for � � 400. Our numerical results for the TMI in the XX
chain are obtained by using (27) where Fi j = 0 and Gi j is
given in (53). The starting point is the real space correlator
C for the full chain, which satisfies a system of L2 linear dif-
ferential equations. These equations can be efficiently solved,
for instance by Fourier transform, allowing one to obtain the
dynamics of the correlator. From that, one can obtain the von
Neumann entropy of any subsystem at any time by using
the method of Ref. [49]. The calculation of the TMI is then
straightforward by using (1). A similar, although slightly more
involved, procedure can be employed for the Ising chain.
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FIG. 7. Dynamics of the tripartite mutual information I3 in the
XX chain after the quench from the state |	0〉 [cf. Eq. (15)]. We
show results in the hydrodynamic limit. The different lines are for
different lengths � of the intervals. The continuous line (red line) is
the prediction of the quasiparticle picture (60).

A. XX chain

Our numerical results for the XX chain are reported in
Fig. 7. The figure shows numerical data for I3/� plotted as
a function of t/�. The initial state of the quench is |	0〉 [cf.
Eq. (15)]. Fig. 7 shows that even for finite � the TMI is
negative at all times. However, deviations from the quasipar-
ticle picture [cf. Eq. (60) and continuous red line in Fig. 7]
are visible. Upon increasing � the numerical data approach
the analytic result. A more systematic analysis is reported in
Fig. 8 where we show data for (I (th)

3 − I3)/� at fixed t/� = 0.7
and t/� = 1.1 plotted versus 1/�. We show data for � � 400.

FIG. 8. Dynamics of I3 after the quench from the state |	0〉 in
XX chain. Finite-size corrections to the hydrodynamic limit. The
figure shows the difference (I3 − I (th)

3 )/�, with I (th)
3 being the quasi-

particle prediction for I3 in the hydrodynamic limit. The x axis shows
1/�, with � being the length of the intervals. The symbols in the
figure are the results at fixed t/�. The full lines are fits to a/� + b/�2,
with a, b fitting parameters. For both values of t/� the rightmost point
is excluded from the fit.

FIG. 9. Dynamics of I3 after a quench in the Ising chain with
staggered transverse field. Here we consider the quench h(0) =
(0.5, 0.7) → h = (10, 1.2). The figure shows I3/� for the geome-
try with three adjacent intervals of equal size � (see Fig. 1). The
continuous red line is the prediction in the hydrodynamic limit, equa-
tion (61). Notice that at finite � the data exhibits strong oscillating
corrections.

Here I (3)

3 is (60). The continuous lines in Fig. 8 are fits to
a/� + b/�2, with a, b fitting parameters. The functional form
of the fitting function is motivated by the fact that similar
corrections are observed for the von Neumann entropy [2].
Moreover, such corrections appear naturally in the stationary
phase approximation [50] that is used to derive (60).

B. Ising chain

Let us now discuss the behavior of I3 after a quench in the
Ising chain with staggered magnetic field (see Sec. II). Here
we consider the case with h(0) and h taking different values on
the odd and even sites of the lattice. The quench protocol is
as follows. The chain is initially prepared in the ground state
of the Ising chain with h(0). At t = 0 the magnetic field is
suddenly quenched to the final value h, and the system evolves
with the new Hamiltonian.

In Fig. 9, we show numerical results for I3 for the quench
(0.5, 0.7) → (10, 1.2). Now, the finite-size data exhibit siz-
able deviations from the analytic result in the hydrodynamic
limit (reported as continuous red curve in Fig. 9). Moreover,
the data show a clear oscillating behavior as a function of
time. Still, upon increasing � the numerical results approach
the analytic curve. In Fig. 10, we perform a finite-size scaling
analysis plotting I (th)

3 − I3, where I (th)

3 is the hydrodynamic for-
mula (61). As for the XX chain (see Fig. 8), the continuous
lines are fits to a/� + b/�2. The quality of the fits is satisfac-
tory, confirming the validity of (61).

VIII. CONCLUSIONS

We derived a quasiparticle picture description for the dy-
namics of the tripartite information after quantum quenches
in the XX chain and the Ising chain with staggered mag-
netic field. Precisely, we focused on the situation in which
entangled multiplets are produced after the quench. In the
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FIG. 10. Dynamics of I3 after a magnetic field quench in the
transverse field Ising chain. The setup is the same as in Fig. 9. We
show the finite-size corrections to I3 plotting I (th)

3 − I3, with I (th)
3

given by (61), versus 1/� at fixed t/� = 10, 15. The continuous lines
are fits to q/� + b/�2, with a, b fitting parameters. For both values of
t/� the rightmost point is excluded from the fit.

presence of entangled pairs (or triplets) of quasiparticles, the
TMI vanishes in the hydrodynamic limit of long times and
large subsystems, with their ratio fixed. Instead, if entangled
multiplets with more than three particles are present, the TMI
is nonzero. Moreover, for the entangled multiplets investi-
gated in Ref. [11] the TMI is positive at intermediate times.
This reflects that the quasiparticles forming the entangled
multiplets are only “classically” correlated, and the dynamics
of the von Neumann entropy and of the TMI are describable in
terms of GGE thermodynamic information [11]. In contrast,
we showed that if the quasiparticles forming the entangled
multiplets are nontrivially correlated, the TMI is negative at
intermediate times. In the latter case, a hydrodynamic de-
scription of the TMI is still possible. However, the correlation
content of the multiplets is not given in terms of the GGE,
although it can be determined with modest computational
cost for systems that are mappable to free fermions. The
relationship between the entanglement content and the GGE
is recovered only in the limit of long times, t/� → ∞, when
the distance between the quasiparticles forming a multiplet is
large, and only one quasiparticle can be in the subsystem.

Our work opens several interesting research avenues. First,
it is important to further investigate the relationship between
the sign of the TMI and the structure of the entangled multi-
plets. Specifically, it would be interesting to understand under
which conditions on the fermionic correlation matrix (27) the
TMI is negative. While we showed that genuine quantum
correlation between the quasiparticles forming the multiplets
is necessary to have negative TMI, it is not clear whether the
converse is true. It would be interesting to understand whether
it is possible to have nontrivially entangled multiplets giving
a positive TMI. Also, it would be interesting to investigate
the behavior of the TMI in free-boson systems [9]. An impor-
tant direction would be to extend our results to free-fermion
and free-boson systems in the presence of dissipation. It has
been shown [51–55] that for quadratic Markovian dissipative

dynamics it is possible to employ the quasiparticle picture
to describe the dynamics of entanglement-related quantities.
Unfortunately, so far only quenches giving rise to entangled
pairs were explored. It would be interesting to understand
whether the dissipative quasiparticle picture can be general-
ized to the case of entangled multiplets. A crucial question is
how dissipative processes affect the TMI. Furthermore, it is of
paramount importance to understand the effect of interactions,
although this is a formidable task. A possibility is to study
the dynamics from (15) in the XXZ spin chain, which is
interacting. However, it is not clear that the dynamics ensuing
from (15) can be described in terms of multiplets. Moreover,
to build a quasiparticle picture for the TMI, or even for the
entanglement entropy, one has to determine the correlations
between the quasiparticles forming the multiplet, which is a
nontrivial task. Finally, it would be interesting to understand
to which extent it is possible to recover the quasiparticle pic-
ture from the ballistic fluctuation theory [56] in the presence
of entangled multiplets.
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APPENDIX A: SINGLE-INTERVAL ENTROPY
IN THE PRESENCE OF QUADRUPLETS:

AN AB INITIO DERIVATION

In the following, we provide an ab initio derivation of
the quasiparticle picture for the von Neumann entropy of an
interval A embedded in an infinite system after the quench
from |	0〉 [cf. Eq. (15)] in the XX chain.

Specifically, we consider the von Neumann entropy of an
interval of size � at a time t after the quench. We consider the
hydrodynamic limit.

The computation of the entropy of a subsystem A for a
Gaussian fermionic state with well-defined particle number
relies on the well-known formula

SA = −Tr[GA ln(GA) + (1 − GA) ln(1 − GA)], (A1)

where the matrix G is the two-point fermionic correlation
function in the real space

Gx,y(t ) = Tr[c†
xcyρ(t )] = 〈	0|eiHt c†

xcye−iHt |	0〉, (A2)

and the subscript A is to stress that we restrict to subsystem
A. To obtain the hydrodynamic limit of (A1), we start from
the moments Tr[Gn

A]. By knowing the analytic dependence on
n of the moments, it is possible to obtain the hydrodynamic
limit of (A1).

First, the matrix elements (A2) are obtained by using the
Fourier transform (5) as

Gx,y(t ) = 1

L

∑
k,p

〈	0|c†
kcp|	0〉ei(kx−py)ei(ε(k)−ε(p))t

= 1

L

∑
k, j

〈	0|c†
kcpj (k)|	0〉

× ei[kx−(k− π
2 j)y]ei[ε(k)−ε(k− π

2 j)]t , (A3)
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where k is the quasimomentum, ε(k) is the dispersion of the
XX chain [cf. Eq. (6)], and j = 0, 1, 2, and 3. In (A3), we
exploited the f our-site translation invariance of |	0〉, which
implies that 〈	0|c†

kcp|	0〉 �= 0 only when 4(k − p) is an in-
teger multiple of 2π . Indeed, in (A3), we defined p j (k) as
the quasimomentum in (−π, π ] such that k − p j (k) = j π

2
mod 2π .

The expectation value in (A3) 〈	0|c†
kcpj (k)|	0〉 is given

in (53). Thus, in the thermodynamic limit L → ∞, we can
rewrite (A3) as

Gx,y =
∫ π

−π

dk

2π
eik(x−y)

[
1

2
− iy 1 + i

4
eit (ε(k)−ε(k− π

2 ))

− (−i)y 1 − i

4
eit (ε(k)−ε(k− 3π

2 ))

]
. (A4)

It is convenient to exploit explicitly the four-site periodicity of
(A4), defining the block matrix �x,y as

�x,y(t ) := G4x+i,4y+ j = 1

2

∫ π

−π

dk

2π
e4ik(x−y)�k, (A5)

where �k is defined as

�k := 14 + �
(1)
k eit (ε(k)−ε(k− π

2 )) + �
(2)
k eit (ε(k)−ε(k− 3π

2 )), (A6)

and 14 is the 4 × 4 identity matrix, and we defined �
(1)
k and

�
(2)
k as

�
(1)
k = 1

2

(
1 − i (1 + i)e−ik

(1 − i)eik 1 + i

)
⊗
(

1 −e−2ik

e2ik −1

)
= 1

2

(
12 + σ (k)

x − σ (k)
y − iσ (k)

z

)⊗ (σ (2k)
z − iσ (2k)

y

)
.

(A7)

We also defined

�
(2)
k = 1

2

(
1 + i (1 − i)e−ik

(1 + i)eik 1 − i

)
⊗
(

1 −e−2ik

e2ik −1

)
= 1

2

(
12 + σ (k)

x + σ (k)
y + iσ (k)

z

)⊗ (σ (2k)
z − iσ (2k)

y

)
.

(A8)

In (A7) and (A8), we introduced the rotated Pauli matrices
σ (k)

α as

σ (k)
α = e−i k

2 σz σα ei k
2 σz . (A9)

Let us define the functions f1(k), f2(k), and g(k) as

f1(k) := 12 + σ (k)
x − σ (k)

y − iσ (k)
z , (A10)

f2(k) := 12 + σ (k)
x + σ (k)

y + iσ (k)
z , (A11)

g(k) := σ (2k)
z − iσ (2k)

y . (A12)

Now, to evaluate Tr[Gn
A], one has to trace over the indices x, y

of the �x,y and also over products of the 4 × 4 blocks intro-
duced in (A5). The first trace can be performed by exploiting
the identity

�/4∑
z=1

e4izk = �

8

∫ 1

−1
dξ w([k]π/2)ei(�ξ+�+4)[k]π/2/2, (A13)

where

w(k) := 2k

sin(2k)
. (A14)

The notation [k]π/2 in (A13) means that the quasimomentum
k is considered modulo π/2. Thus we can rewrite Tr[Gn

A] as

Tr
[
Gn

A

] =
(

�

8

)n ∫ π

−π

dnk

(2π )n

∫ 1

−1
dnξ Tr

n∏
j=1

�k j

×
n∏

j=1

w([k j − k j−1]π/2)ei(�ξ j+�+4)[k j−k j−1]π/2/2,

(A15)

where �k is the 4 × 4 block matrix introduced in (A5), and
we identified k0 ≡ kn. We are interested in finding the leading
term in the hydrodynamic limit. The strategy is to use the
stationary phase approximation of the integral in (A15). The
stationary phase approximation states that [50]

lim
�→∞

∫
�

dN x B(x)ei�A(x)

=
(

2π

�

)N/2∑
j

B(xj)| det H (xj)|− 1
2 ei�A(xj )+iπσ (xj )/4,

(A16)

Here A(x) and B(x) are functions, and xj are the stationary
points of A(x) that are in the integration domain �. In (A16)
H is the Hessian matrix of A and σ is its signature, i.e.,
the difference between the number of positive and negative
eigenvalues. We now apply (A16) to the integral on the 2n − 2
variables k2, . . . , kn, ξ2, . . . , ξn in (A15). The stationarity con-
ditions ∂ξ j A = 0 imply that the stationary points must satisfy
the equation

[k j − k1]π/2 = 0 ∀ j. (A17)

This implies that w([k j − k j−1]π/2) = 1 for all the stationary
points.

Let us now discuss the consequences of the stationarity
condition with respect to the k j , i.e., ∂k j A = 0. Now, the anal-
ysis is more complicated because one has to take the trace of
arbitrary powers of �k [cf. Eq. (A15)]. Since �k is the sum
of three terms, this means that for fixed n there are 3n terms.
Moreover, �k contains phase factors which have to be treated
carefully in the stationary phase approximation.

To proceed, we observe that both �
(1)
k and �

(2)
k contain a

term g(k) [cf. Eq. (A12)]. Moreover, due to the tensor product
in (A7) and (A8), we can perform the trace operation on the
terms with g(k) separately. In the following, we discuss the
conditions on k j to have a nonzero trace. We observe the
following.

(i) The terms g(k)2 are identically zero. Since g(k) =
g(k ± π ), the terms g(k)g(k ± π ) are also zero.

(ii) g(k)g(k ± π
2 ) = 2(12 + σ (2k)

x ).
(iii) The trace of the product of an odd number of g(ki )

with [ki − k j]π/2 = 0 is zero. Indeed, one possibility is that
the product is identically zero, if two of the factors satisfy the
condition in (i). The only other possibility is that the product
is of the form aσ (2k)

y + bσ (2k)
z , with a and b constants. This is

obtained by repeatedly using (ii). Again, the trace of the result
is zero.
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(iv) The trace of the product of an even number 2m of
blocks g(k ji ), provided that k ji − k ji−1 = ±π/2 mod 2π , is
22m. This is a straightforward consequence of (ii).

In summary, the observations (i) − (iv) imply that in the
product

∏n
j=1 �k j in (A15) only terms with an even number

2m of factors �
(1)
k or �

(2)
k [cf. Eqs. (A7) and (A8)] are not zero.

The quasimomenta k j1 , . . . , k j2m ∈ (−π, π ] associated to each
�(1) or �(2) factor are such that k ji − k ji−1 = ±π

2 mod 2π . As
discussed above, the trace over the factors g(k) gives a factor
22m. Let us now determine the contributions of the trace over
the matrices f1 and f2 [cf. Eqs. (A10) and (A11)]. To proceed,
it is straightforward to check the following properties of f1

and f2:
(1) f1(k) f1(k + π

2 ) = f1(k) f2(k + π
2 ) = 0,

(2) f2(k) f1(k − π
2 ) = f2(k) f2(k − π

2 ) = 0,
(3) f1(k) f2(k − π

2 ) = f2(k) f1(k + π
2 ) = 4(12 + σ (k)

x ),
(4) f1(k) f1(k − π

2 ) = −4(σ (k)
y + iσ (k)

z ),
(5) f2(k) f2(k + π

2 ) = 4(σ (k)
y + iσ (k)

z ),
(6) f1(k ± π ) f2(k ± π − π

2 ) = f2(k ± π ) f1(k ± π +
π
2 ) = 4(12 − σ (k)

x ),
(7) f1(k ± π ) f1(k ± π − π

2 ) = 4(σ (k)
y − iσ (k)

z ),
(8) f2(k ± π ) f2(k ± π + π

2 ) = 4(−σ (k)
y + iσ (k)

z ).
The first two relations show that, to have a nonzero product,

if we have a matrix f1 with an associated quasimomentum
k ji , the next matrix must have an associated quasimomentum
k ji+1 = k ji − π

2 mod 2π , while a matrix f2 with associated
quasimomentum k ji must be followed by a matrix with asso-
ciated quasimomentum k ji+1 = k ji + π

2 mod 2π . Thus f1 can
be seen as a “lowering operator” for the quasimomentum and
represented as ↘. Similarly, f2 can be seen as a “raising
operator” and represented as ↗.

We can represent any product of f1 and f2 not yielding
0 as a sequence of these operators, which raise or lower the
starting ki1 = k by π

2 . Again, we remind that we are interested
only in even sequences. Relations 3 and 6 are associated to
the subsequences ↘↗ and ↗↘. Similarly, rules 4 and 7 are
associated to the subsequence ↘↘ and rules 5 and 8 to the
subsequence ↗↗.

Moreover, from the rules 3–8 it follows that only sequences
with final quasimomentum equal to k modulo 2π give a
nonzero contribution, as an odd number of ↗↗ or ↘↘
(corresponding to a change of ±π in the quasimomentum)
yield a product of the form (aσ (k)

y + bσ (k)
z ), whose trace is

zero.
Finally, we have to compute the contribution of the se-

quences of f1, f2 that give a nonzero result. To this purpose,
let us observe the following.

(a) A subsequence ↗↘ · · · ↗↘ or ↘↗ · · · ↘↗ yields
a factor 23p/2−1(12 + σ (k)

x ), where p is the number of operators
(rule 3). The same subsequence but with starting point k ± π

gives 23p/2−1(12 − σ (k)
x ) (see rule 6).

(b) Subsequences of four consecutive operators of the
same kind, i.e., ↗↗↗↗ (rules 5 and 8) or ↘↘↘↘ (rules
4 and 7), yield a factor −25(12 ± σ (k)

x ). The sign depends on
whether the first operator is associated with a quasimomentum
k (giving the + sign) or k ± π (giving the − sign).

(c) Any subsequence that can be decomposed in sub-
blocks as those described in (a) and (b) yields a factor

(−1)w 23p/2−1(12 ± σ (k)
x ), where p is the number of operators,

w is the number of “windings” around the Brillouin zone
of the sequence, and the sign depends on whether the first
operator is associated with a quasimomentum k or k ± π , as
in (b).

(d) A generic sequence cannot always be decomposed
only in terms of subsequences of the type in (c). Let us
consider a “maximal” subsequence of type (c) that can be
identified in the main sequence (i.e., has not adjacent blocks
of the form ↗↘, ↘↗,↗↗↗↗ or ↘↘↘↘), and that
starts from k ± π . We represent such sequence with a �. It
is clear that the � must be connected to the remaining parts of
the sequence as ↗↗ � ↘↘, ↘↘ � ↗↗, ↗↗ � ↗↗, or
↘↘ � ↘↘. This subsequence corresponds to a factor (see
rules 4–8) (−1)w23p/2−1(12 + σ (k)

x ), where p is the number of
operators, w is the number of “windings” around the Brillouin
zone of the subsequence. Notice that in the cases ↗↗ � ↗↗
and ↘↘ � ↘↘ the number of windings of � is raised by 1.

(e) By using rules (a)–(d), we are left with sequences of
the form ∝ (12 + σ (k)

x ). Then, it is straightforward to realize
that the contribution of any sequence that does not give zero
(that is, those with an integer number of “windings” around
the Brillouin zone) is (−1)w 23p/2, where p = 2m is the (even)
number of operators and w the number of windings.

The result in (e) allows us to write an expression that
generates the contributions of all the sequences. Indeed, if
we associate f1 ↔↘↔ 2

√
2e−i π

4 and f2 ↔↗↔ 2
√

2ei π
4 , we

obtain that the total contribution of the sequences with p = 2m
factors is given by

Tr( f1 + f2)p = 2
3p
2 Re[(e−i π

4 + ei π
4 )p]. (A18)

In (A18) we used that at any stationary point that gives a
nonzero contribution the oscillating factors that are present in
the rotated Pauli matrices [cf. Eq. (A9)] cancel out.

Let us now proceed to determine the consequences of the
stationarity conditions with respect to k j . The generic term
originating from the product

∏n
j=1 �k j [cf. Eq. (A5)] contains

f1(k j ), f2(k j ), or the identity. In the last case, the quasimo-
mentum k j does not appear. Stationarity with respect to the
missing quasimomenta k j imply that

�(ξ j − ξ j+1) = 0 ⇒ ξ j = ξ j+1. (A19)

Instead, for the quasimomenta k j1 , . . . , k jm that appear in the
block, the stationarity condition yields

�(ξ ji − ξ ji+1) + t
[
v(k ji ) − v

(
k ji ± π

2

)]
= 0 ⇒ �ξ ji + v(k ji )t = �ξ ji+1 + v(k ji+1 )t ∀i. (A20)

In (A20), we used that ξ ji+1 = ξ ji+1 , which follows from (A19)
applied to the ξl with ji < l < ji+1. Moreover, the condition
to have a nonzero trace implies that k ji ± π

2 = k ji+1 . The con-
ditions (A19) and (A20) give some nontrivial constraints on
the stationary value of ξ1 = ξ jm . The constraint is determined
by the condition that all the ξ j ∈ [−1, 1]. Let us define k :=
k jn . The result depends on the remaining quasimomenta in the
string of operators �k j .

We can distinguish three families of quasimomenta k ji .
(α) The quasimomenta in the string take only the values

k, k + π
2 or k, k − π

2 .
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(β) The quasimomenta k ji take only three of the four val-
ues k, k + π

2 , k − π
2 , k ± π .

(γ ) The quasimomenta k ji take all the four values k, k +
π
2 , k − π

2 , k ± π .
Now, one can verify that for case (α), Eq. (A20) implies

the condition

ξ ji = ξ1 +
[
v(k) − v

(
k ± π

2

)]
t

�
∈ [−1, 1]. (A21)

Thus the integration over ξ1 gives the function M1(k)

M1(k) = max
{

0, 2 −
∣∣∣v(k) − v

(
k ± π

2

)∣∣∣ t
�

}
, (A22)

where v(k) = 2 sin(k). For the second case (β ), without loss
of generality we can choose k to be the smaller of the three
quasimomenta present. The constraints from (A20) now read

ξ ji = ξ1 +
[
v(k) − v

(
k + π

2

)] t

�
∈ [−1, 1], (A23)

ξ j j = ξ1 + [v(k) − v(k + π )] t
�

∈ [−1, 1]. (A24)

By integrating over ξ1, a straightforward but tedious calcula-
tion yields

M2(k) = max
{

0, 2 − max
{∣∣∣v(k) − v

(
k + π

2

)∣∣∣,
|v(k) − v(k + π )|,

∣∣∣v(k) + v
(

k + π

2

)∣∣∣} t

�

}
. (A25)

Finally, in the third case (γ ), we have three constraints like
those in Eqs. (A22) and (A23). Specifically, we obtain

M3(k) = max{0, 2 − max{|v(k) − v(k + π )|,∣∣∣v(k − π

2

)
+ v
(

k + π

2

)∣∣∣} t

�

}
. (A26)

Before putting everything together, we notice that for the
stationary points that give a nonzero contribution we have
| det H (xj)| = ( 1

2 )2n−2 and σ (xj) = 0 [cf. Eq. (A16)]. Finally,
we obtain

Tr
[
Gn

A

] = �

16n

∫ π

−π

dk

2π
2n−1

{
2 · 4n+

� n
2 �∑

m=1

(
n

2m

)
4n−2m

(1

2

)2m
22m · 23m

[
2M1(k) + 4

� m
2 �∑

j=1

(
m

2 j

)
M2(k)

+
((

ei π
4 + e−i π

4
)2m − 2 − 4

� m
2 �∑

j=1

(
m

2 j

))
M3(k)

]}
, (A27)

where M1, M2, and M3 are the kinematic terms (A22), (A25), and (A26). Let us explain the various combinatorial factors in
(A27). The powers of 4 account for the four choices k ± π/2, k ± π that one has for the quasimomenta that are missing in the
string �k j1

�k j2
· · · �k jn

. The missing quasimomenta are obtained by selecting 14 in (A5). For instance, the term 2 × 4n in (A27)
is the contribution in which all the �k j are replaced by 14. Notice that the factor 2 in 2 · 4n comes from the integral over ξ1.
The binomial

( n
2m

)
in the second term in (A27) counts the possible ways to choose an even subsequence of �k j1

�k j2
· · ·�k j2m

.
Each of them gives a factor 1

2 [cf. Eq. (A5)]. Moreover, there is a factor 22m and 23m from the trace in rule (iv) and from (A18),
respectively. Let us now discuss the term within the square brackets in (A27). The three terms in the square brackets corresponds
to the three cases (α, β, γ ). The first term corresponds to case (α), in which the quasimomenta in the string can have only the
values k ± π/2. Now, there are only the two cases (↗↘ · · · ↗↘ and ↘↗ · · · ↘↗) to consider, each of them giving 1, and
the factor M1(k). The second term in the square brackets corresponds to case (β ), in which we have configurations with an
even number 2 j of (alternated) pairs ↘↘ and ↗↗, univocally connected by subsequences of the type (a). Each configuration

contributes with 1, and we have 4
∑� m

2 �
j=1

(m
2 j

)
of such configurations. The summation accounts for the ways where to place the

pairs ↘↘ and ↗↗ after the string of 2m operators has been divided in m slots of two. Moreover, the partition of the string of
operators can be done by starting from even or odd sites of the string, which gives a factor 2. Besides that, there is another factor
2, coming from the fact that one can put either ↘↘ or ↗↗ in the first chosen slot, the others being filled accordingly. Finally,
the remaining contributions are obtained by subtracting the cases described above from the total (ei π

4 + e−i π
4 )2m [see Eq. (A18)].

It is now straightforward to simplify equation (A27) to obtain

Tr
[
Gn

A

] = �

2
+ �

∫ π

−π

dk

2π

{[
2

(
1

2

)n

−
(

2 + √
2

4

)n

−
(

2 − √
2

4

)n]
m1(k, t )

+
[

2

(
2 + √

2

4

)n

+ 2

(
2 − √

2

4

)n

− 2

(
1

2

)n

− 1

]
m2(k, t )

+
[

1

2
+
(

1

2

)n

−
(

2 + √
2

4

)n

−
(

2 − √
2

4

)n]
m3(k, t )

}
, (A28)

where we have defined

m1(k, t ) = min

{
1,

t

�

∣∣∣∣v(k) − v

(
k + π

2

)∣∣∣∣}, (A29)
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m2(k, t ) = min

{
1,

t

�
max

{∣∣∣∣v(k) − v

(
k + π

2

)∣∣∣∣, |v(k) − v(k + π )|,
∣∣∣∣v(k) − v

(
k − π

2

)∣∣∣∣}}, (A30)

m3(k, t ) = min

{
1,

t

�
max

{
|v(k) − v(k + π )|, |v

(
k − π

2

)
− v

(
k + π

2

)
|
}}

. (A31)

Having the hydrodynamic prediction for Tr[Gn
A] for any n allows us to obtain the prediction for the von Neumann entropy SA. The

strategy is to write SA = Tr f (GA), with f (x) as defined in (49). After expanding f (x) around x = 0, and using (A28) together
with f (0) = f (1) = 0 and f (x) = f (1 − x)), we obtain

SA(t ) = �

∫ π

−π

dk

2π

[(
2 f

(
1

2

)
− 2 f

(
2 + √

2

4

))
m1(k, t ) +

(
4 f

(
2 + √

2

4

)
− 2 f

(
1

2

))
m2(k, t )

+
(

f

(
1

2

)
− 2 f

(
2 + √

2

4

))
m3(k, t )

]
. (A32)

Let us now show that the ab initio result (A32) coincides with the result obtained from the method introduced in Sec. III. The
latter approach yields

SA(t ) =
∫ 3π/4

π/2

dk

2π
{(s{1} + s{3})[(v1 − v2)t �(� − (v1 − v2)t ) + ��((v1 − v2)t − �) + (v4 − v3)t �(� − (v1 − v3)t )

+ (� − (v1 − v4)t )χ (�/(v1t − v3t ), �/(v1t − v4t ))] + (s{2} + s{4})[((v1 − v4)t − �)χ
(
�/(v1t − v4t ),

× min{�/(v1t − v2t ), �/(v2t − v4t )})(v1 − v2)tχ (�/(v2t − v4t ), �/(v1t − v2t ))

+ (v2 − v4)tχ (�/(v1t − v2t ), �/(v2t − v4t )) + ��(t − max{�/(v1t − v2t ), �/(v2t − v4t )})]

+ (s{1,2} + s{3,4})[(v2 − v4)t�(� − (v1 − v4)t ) + (� − (v1 − v2)t ) + χ (�/(v1t − v4t ), �/(v1t − v2t ))]

+ s{1,3}[((v1 − v3)t − �)χ (�/(v1t − v3t ), �/(v1t − v3t )) + (� − (v2 − v4)t )χ (�/(v1t − v4t ), �/(v2t − v4t ))]

+
∫ π

3π/4

dk

2π
{1 ↔ 2, 3 ↔ 4}. (A33)

Here �(x) is the Heaviside theta function, and χ (a, b) is the
characteristic function of the interval [a, b], with the caveat
that if b < a, it is zero. In (A33), we dropped the dependence
of the velocities on k for the sake of clarity. The first term in
(A33) corresponds to the situation with quasiparticle 1 or 3
in subsystem A or A. The second term describes the case with
quasiparticles 2 or 4 in A or A. The third and fourth terms
take into account the situations with two quasiparticles in A

and two in A. The last term in (A33) is obtained from the
previous ones by exchanging 1 ↔ 2 and 3 ↔ 4. To proceed,
we determine the contributions s{x} in (A33). These are
obtained from (53) by using the strategy described in Sec. III.
A straightforward calculation gives s{1} = s{2} = s{3} = s{4} =
f (1/2), s{1,2} = s{3,4} = 2 f ((2 + √

2)/4), s{1,3} = 2 f (1/2).
Now, it is straightforward, although tedious, to check that
(A33) is exactly the same as (A32).
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