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We theoretically study spin pumping from a ferromagnetic insulator (FI) into a carbon nanotube (CNT). By
employing the bosonization method, we formulate the Gilbert damping induced by the FI/CNT junction, which
can be measured by ferromagnetic resonance. We show that the increase in the Gilbert damping has a temperature
dependence characteristic of a Luttinger liquid and is highly sensitive to the Luttinger parameter of the spin sector
for a clean interface. We also discuss the experimental relevance of our findings based on numerical estimates,
using realistic parameters.
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I. INTRODUCTION

Spin pumping induced by ferromagnetic resonance (FMR)
[1,2] is a fundamental technique in spintronics for generating
spin current from a ferromagnet to an adjacent material [3,4].
While spin pumping has been used for injecting spin into
various materials, it can also be utilized for detecting spin
excitations in various systems [5–17]. Compared with bulk
measurement techniques, such as nuclear magnetic resonance
(NMR) and neutron scattering experiments, spin pumping has
an advantage in sensitivity for nanostructured systems such as
surfaces, thin films, and atomic-layer compounds [5].

The study of exotic spin excitations which emerge in
specific materials is one of the forefront topics of con-
densed matter physics. A typical example is spin excitation
in quasi-one-dimensional interacting electron systems, whose
low-energy excitation can be described by the Tomonaga-
Luttinger liquid [18–20]. Spin excitations inherent to the
Tomonaga-Luttinger liquid have been studied in carbon nan-
otubes (CNTs) by using NMR [21–23]. While NMR can
detect the local spin susceptibility in CNTs, the use of spin
pumping to detect spin excitations is expected to provide use-
ful information reflecting the exotic character of the Luttinger
liquid, which cannot be captured by NMR. It is thus important
to clarify what kind of information about the Luttinger liquid
can be obtained from a spin pumping experiment.

In this work, we theoretically formulate the increase in the
Gilbert damping due to spin pumping in a setup in which
spin is injected into CNTs. We consider a magnetic junction
composed of a ferromagnetic insulator (FI) and a single-wall
CNT (see Fig. 1) and take interfacial randomness into account
with a simple model. We derive an analytic expression for the
increase in the Gilbert damping by utilizing the bosonization
method and second-order perturbation with respect to the
interfacial exchange coupling.

We will focus on the two limiting cases, i.e., a clean in-
terface and a dirty interface. We show that for both cases the

temperature dependence of the increase of the Gilbert damp-
ing shows a power-law behavior, with an exponent reflecting
the Luttinger parameters. For a clean interface, the exponent
includes information on the Luttinger parameters in the spin
sector and is shown to be sensitive to small deviations from
unity [which is the value of the SU(2) symmetric model in the
spin sector]. For a dirty interface, the exponent depends on
the Luttinger parameters of both the spin and charge sectors
as in an NMR measurement. We estimate the increase of the
Gilbert damping using realistic parameters and discuss the
experimental feasibility.

Our paper is organized as follows. We introduce the micro-
scopic model of the FI/CNT magnetic junction in Sec. II. We
analytically calculate the increase in the Gilbert damping in
Sec. III and subsequently estimate it with realistic parameters
in Sec. IV. Finally, we briefly discuss the experimental rele-
vance of our findings in Sec. V and summarize our results in
Sec. VI. A detailed derivation of the analytic expressions is
given in the two Appendixes.

II. MODEL

Let us consider a junction composed of a CNT and FI,
whose Hamiltonian is given by H = HCNT + HFI + Hint.
Here, HCNT and HFI describe electrons in the CNT and FI,
respectively, and Hint represents the interfacial exchange in-
teraction between the CNT and FI. We will give their explicit
forms in the subsections that follow.

A. Carbon nanotube

The low-energy Hamiltonian of electrons in CNTs is given
by

HCNT = HK + HC, (1)

where HK and HC represent the kinetic energy and the
forward scattering potential due to the screened Coulomb
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FIG. 1. Magnetic junction composed of a ferromagnetic insula-
tor (FI) and a single-wall carbon nanotube (CNT). The dimension of
the FI is W × W ′ × d ′.

interaction, respectively. Using standard conventions [24], the
Hamiltonians describing these energies of electrons in CNTs
are given by

HK = −ivF

∫
dx

∑
rασ

rψ+
rασ (x)∂xψrασ (x), (2)

HC = 1

2

∫
dx dy ρ(x)V (x − y)ρ(y), (3)

where ψrασ (x) is the slowly varying part of the field operator
of electrons, vF is the Fermi velocity, V (x) is the screened
Coulomb potential, and ρ(x) = ∑

rασ ψ†
rασ (x)ψrασ (x) is the

electron density operator. The subscripts, r (=±), α (=±),
and σ (= ±), represent the direction of propagation, the
nanotube branch (the valley), and the spin orientation,
respectively. Using the bosonization method [19,24], the an-
nihilation operator describing fermions in the CNT can be
expressed in terms of bosonic fields, θασ (x) and φασ (x), as

ψrασ (x) = ηrασ√
2πa

ei[−rθασ (x)+φασ (x)], (4)

where ηrασ is the Klein factor and a is a short-length cutoff
which can be identified with the lattice constant of the CNT.
To diagonalize the Hamiltonian, we introduce new bosonic
fields for the charge and spin sectors, θ jδ (x) and φ jδ (x), as

θασ (x) = 1

2

∑
jδ

h jδ (α, σ )θ jδ (x), (5)

φασ (x) = 1

2

∑
jδ

h jδ (α, σ )φ jδ (x), (6)

where δ (= ±) represents symmetric/antisymmetric modes,
j (= c, s) indicates the charge/spin mode, hc+ = 1, hc− = α,
hs+ = σ , and hs− = ασ . The Hamiltonian of the CNTs can be
written as

HCNT =
∑

j,δ

v jδ

2π

∫
dx

[
K−1

jδ (∂xθ jδ )2 + Kjδ (∂xφ jδ )2
]
, (7)

where Kjδ is the Luttinger parameter and v jδ = vF /Kjδ .

B. Ferromagnetic insulator

We consider a bulk FI described by the quantum Heisen-
berg model and employ the spin-wave approximation assum-
ing that the temperature is much lower than the magnetic

transition temperature and the magnitude of the localized
spin, S0, is much larger than one [8,9,11,15–17,25]. In this
situation, the Hamiltonian for the FI is approximately written
as a superposition of magnon modes:

HFI =
∑

k

h̄ωkb†
kbk, (8)

where bk is the annihilation operator of magnons, h̄ωk =
Dk2 + h̄γghdc is the magnon dispersion, D is spin stiffness, γg

is the gyromagnetic ratio, and hdc is the static magnetic field.
We will only focus on uniform spin precession induced by ex-
ternal microwaves. For this purpose, it is sufficient to consider
the magnon mode of k = 0 with the simplified Hamiltonian

HFI = h̄ω0b†
0b0. (9)

Microwave absorption in FMR can be related to the imaginary
part of the retarded spin correlation function, which is defined
as

GR(ω) = − i

h̄

∫ ∞

0
dt ei(ω+iδ)t 〈[S+

0 (t ), S−
0 ]〉, (10)

where S+
0 = √

2S0b0 and S−
0 = √

2S0b†
0 are spin ladder oper-

ators of the FI for k = 0 and S+
0 (t ) = eiHt/h̄S+

0 e−iHt/h̄. For an
isolated bulk FI, the spin susceptibility is calculated as

GR
0 (ω) = 2S0/h̄

ω − ω0 + iδ
. (11)

In real experiments, the FMR linewidth is finite due to the
Gilbert damping. To represent this finite spin relaxation in
the bulk FI, we introduce a phenomenological dimensionless
parameter αG and express the spin correlation function as

GR
0 (ω) = 2S0/h̄

ω − ω0 + iαGω
. (12)

C. Interfacial exchange interaction

Now let us consider the interfacial exchange interaction
between the FI and the CNT with the Hamiltonian,

Hint = S+
0 s− + S−

0 s+, (13)

where s± is the spin ladder operator of the CNT, defined as

s− =
√

1

NFI

∑
r,r′

∑
α,α′

∫ W

0
dx J (x)

× e−i(α−α′ )kFx−i(r−r′ )qFxψ
†
rα−(x)ψr′α′+(x) (14)

and s+ = (s−)†. Here, W is the length of the interface, J (x)
is the interfacial exchange coupling, NFI is the number of
unit cells in the FI, kF is the Fermi wave number, and qF

(� kF) is the momentum mismatch associated with the two
modes. Because the interfacial exchange coupling J (x), which
is induced by quantum mechanical mixing between CNT and
FI, is sensitive to distances of atoms across the junction, we
assumed that it depends on the position x due to random
atomic configuration near the interface. A simplified model
for randomness in J (x) will be accounted for in the next
section.
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III. FORMULATION

A. Gilbert damping

Using second-order perturbation with respect to the inter-
facial exchange coupling, the spin susceptibility is calculated
as

G(iωn) = 1

G0(iωn)−1 − �(iωn)
, (15)

�(iωn) = −1

h̄

∫ h̄β

0
dτ eiωnτ 〈Tτ s+(τ )s−(0)〉, (16)

where s±(τ ) = eHCNTτ/h̄s±e−HCNTτ/h̄. The retarded spin cor-
relation function is obtained by analytic continuation iωn →
ω + iδ as

GR(ω) = 2S0/h̄

ω − (ω0 + δω0) + i(αG + δαG)ω0
, (17)

δω0

ω0
	 2S0

h̄ω0
Re �R(ω0), (18)

δαG 	 − 2S0

h̄ω0
Im �R(ω0), (19)

where �R(ω) is the retarded self-energy defined by

�R(ω) =
∫

dt eiωt�R(t ), (20)

�R(t ) = − iθ (t )

h̄
〈[s+(t ), s−(0)]〉, (21)

θ (t ) is the step function, and αG + δαG � 1 has been as-
sumed. In our work, we focus on the increase in the Gilbert
damping due to the junction, δαG, which is written in terms of
the dynamic spin susceptibility of CNTs.

B. Self-energy of electrons in CNTs

By substituting Eq. (14) into Eq. (21), we obtain

�R(t ) = − i

h̄
θ (t )

2S0

NFI

∑
r,r′

∑
α,α′

∫ W

0
dx

∫ W

0
dy〈J (x)J (y)〉imp

× e−i[kF (α−α′ )+qF (r−r′ )](x−y)Crαr′α′ (x, y, t ), (22)

Crαr′α′ (x, y, t ) = 〈[ψ†
rα,+(x, t )ψr′α′,−(x, t ),

ψ
†
r′α′,−(y, 0)ψrα,+(y, 0)]〉0. (23)

Here, 〈· · · 〉imp indicates a random average for the interfa-
cial exchange coupling. For simplicity, we assume that the
exchange coupling follows a Gaussian distribution whose av-
erage and variance are given by

〈J (x)〉imp = J1, (24)

〈δJ (x)δJ (y)〉imp = J2
2 aδ(x − y), (25)

where δJ (x) = J (x) − 〈J (x)〉imp. Here, J1 and J2 represent
respectively the average and the standard deviation of the
distribution. The ratio J2/J1 reflects the randomness of the in-
terfacial exchange coupling. In particular, the case of J2/J1 =
0 corresponds to a clean interface without randomness.

Accordingly, the self-energy is calculated as

�R(t ) = �R
1 (t ) + �R

2 (t ), (26)

�R
1 (t ) = −iθ (t )

2S0J2
1

h̄NFI

∑
r,r′,α,α′

∫ W

0
dx

∫ W

0
dy

× e−i[kF (α−α′ )+qF (r−r′ )](x−y)Crαr′α′ (x, y, t ), (27)

�R
2 (t ) = −iθ (t )

2S0J2
2 a

h̄NFI

∑
r,r′,α,α′

∫ W

0
dx Crαr′α′ (x, x, t ). (28)

Since the integrand of �R
1 (t ) includes a rapidly oscillating part

as a function of (x − y), the integral is negligibly small except
for the case of α = α′ and r = r′. There, we obtain

�R
1 (t ) = −iθ (t )

2S0J2
1

h̄NFI

∑
r,α

∫ W

0
dx

∫ W

0
dy Crαrα (x, y, t ).

(29)

We should note that �R
1 (t ) corresponds to the process of

electron creation and annihilation in the same branch and
represents momentum-conserving spin relaxation for a clean
junction. In contrast, �R

2 (t ) represents spin relaxation for
a “dirty” junction that is independent of the electron mo-
mentum. Here, the word “dirty” means that during the spin
exchange process the momentum of electrons in the CNT
is not conserved and transitions between different branches
of valleys and propagation directions are allowed. The fol-
lowing discussion will consider two limiting cases for the
interface. For the clean interface limit (J1 
 J2), the magnon
self-energy is represented with �R

1 (t ), while in the dirty inter-
face limit (J1 � J2), it is represented with �R

2 (t ).

C. Clean interface

Since the correlation function Crαr′α′ (x, y, t ) can be calcu-
lated using the bosonization method (see Appendix A), the
self-energy �R

1 (t ) can be obtained analytically. Therefore, the
corresponding increase in the Gilbert damping is obtained as

δαG,1 = − 2S0

h̄ω0
Im �R

1 (ω0)

= − 4S0J2
1

h̄2ω0(2πa)2NFI

∫ W

0
dx

∫ W

0
dy

∫ ∞

0
dt sin ω0t

× Im

[(
sinh(iπa/β h̄vF)

sinh{π [ia − (x − y) − vFt]/β h̄vF}
)γ−1

×
(

sinh(iπa/β h̄vF)

sinh{π [ia + (x − y) − vFt]/β h̄vF}
)γ+1

]
,

(30)

γ ≡ Ks+
4

+ Ks−
4

+ 1

4Ks+
+ 1

4Ks−
. (31)

After analytic integration with respect to t (see Appendix B
for details), we obtain

δαG,1 = 2

π

�(γ )2

�(2γ )

S0J2
1Wa

h̄2v2
FNFI

(
2πa

β h̄vF

)2γ−3

I (πW/β h̄vF, γ ),

(32)
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I (w, γ ) = 1

w

∫ w

0
dz′

∫ z′

0
dz e−2(γ−1)z

× F (γ − 1, γ , 2γ ; 1 − e−4z ), (33)

where F (a, b, c; x) is the hypergeometric function.

D. Dirty interface

The self-energy �R
2 (t ) can be obtained in a similar way as

above. The corresponding increase in the Gilbert damping is
given by

δαG,2 = − 2S0

h̄ω0
Im �R

2 (ω0)

= − S0J2
2 aW

h̄2ω0(πa)2NFI

∑
r,r′,α,α′

∫ ∞

0
dt sin ω0t

× Im

[(
sinh(iπa/β h̄vF)

sinh[π (ia − vFt )/β h̄vF]

)2γrαr′α′
]
, (34)

γrαr′α′ = γ1δr,r′δα,α′ + γ2δr,−r′δα,α′

+ γ3δr,r′δα,−α′ + γ4δr,−r′δα,−α′ , (35)

γ1 = (Ks+ + Ks− + 1/Ks+ + 1/Ks−)/4, (36)

γ2 = (Kc+ + Kc− + 1/Ks+ + 1/Ks−)/4, (37)

γ3 = (Ks+ + Kc− + 1/Kc+ + 1/Ks−)/4, (38)

γ4 = (Kc+ + Ks− + 1/Ks+ + 1/Kc−)/4. (39)

We should note that δαG,2 is proportional to W , since the
spin relaxation rate is determined through spatially local spin
exchange in the dirty interface and is proportional to the
number of spin-exchange channels. After analytic integration
with respect to t (see Appendix B for details), we obtain

δαG,2 = 1

2π

S0J2
2 aW

h̄2v2
FNFI

∑
r,r′,α,α′

�(γrαr′α′ )2

�(2γrαr′α′ )

(
2πa

β h̄vF

)2γrαr′α′−2

.

(40)

IV. NUMERICAL ESTIMATE

Next, we evaluate numerically the increase in the Gilbert
damping by using realistic experimental parameters. While
the increase was formulated for a single CNT in the previous
section, to increase the signal, it would be more useful if
we considered a junction with a bundle of CNTs. Thus, in
the following, we will consider a junction composed of a FI
and a bundle of CNTs with an area of W × W ′ (see Fig. 1)
and multiply δαG,1 and δαG,2 by the number of CNTs in the
junction, NCNT = W ′/d (d: the diameter of CNTs).

The parameters are given in Table I. The Fermi velocity vF,
lattice constant a, diameter d , Luttinger parameters of CNTs,
Kc+, Kc−, and Ks− are taken from Refs. [20,24,26]. The value
of Ks+ is an experiment result [22] under a magnetic field of
3.6 T [27]. The spin amplitude S0 and the lattice constant a′
are determined by assuming that the FI is made from yttrium
iron garnet (YIG). The interfacial exchange coupling (J1 or J2)
is roughly estimated to be 2 K [28]. The number of unit cells

TABLE I. Parameters used for the numerical estimate.

Microwave frequency ω0 1 GHz
Fermi velocity of CNT vF 106 m/s
Lattice constant of CNT a 2.46 Å
Diameter of CNT d 1.5 nm
Amplitude of spins of FI S0 10
Lattice constant of FI a′ 12.376 Å
Thickness of FI d ′ 10 nm
Interfacial exchange couplings J1, J2

Clean interface J1 = 2 K, J2 = 0
Dirty interface J1 = 0 K, J2 = 1, 2, 3 K
Luttinger parameters Kc+ 0.20

Ks+ 1.07
Kc−, Ks− 1

is estimated as NFI = WW ′d ′/a′3, where d ′ is the thickness of
the FI.

A. Clean interface

The estimated increase in the Gilbert damping for a clean
interface (J1 = 2 K 
 J2) is shown in Fig. 2 as a function
of temperature. While δαG,1 is proportional to 1/T at high
temperatures, it is almost constant at low temperatures. The
crossover temperature for a fixed length W is given by T ∗ =
g(γ )h̄vF/(kBW ) (kB: Boltzmann constant), which is propor-
tional to 1/W . The factor g(γ ), which depends only on γ , is
explicitly shown later. The increase in the Gilbert damping is
shown as a function of the junction length W in Fig. 3. While
δαG,1 is proportional to W for a short junction, it is almost
constant for a long junction. The crossover length for a fixed
temperature T is given by W ∗ = g(γ )h̄vF/(kBT ).

In the present estimate, the condition Lth � vF/ω0 always
holds, where Lth = h̄vF/kBT is a thermal length. Under this
condition, the increase in the Gilbert damping becomes inde-
pendent of ω0 and is approximately given by

δαG,1 = �(γ )2

�(2γ )

S0J2
1 a′3a

(h̄vF)2dd ′

(
2πa

Lth

)2γ−3

f (γ , πW/Lth ), (41)

f (γ ,w) =
{

w/π [w/π � g(γ )],

g(γ ) [w/π 
 g(γ )],
(42)

10010

10-2

10-3

10-4

3 300

FIG. 2. Temperature dependence of the increase in the Gilbert
damping, δαG,1, for a clean interface (J1 
 J2).

134429-4



SPIN PUMPING INTO CARBON NANOTUBES PHYSICAL REVIEW B 108, 134429 (2023)

3K
10K
30K

100K
300K

10-310-410-510-6

10-2

10-5

10-3

10-4

FIG. 3. Junction-length dependence of the increase in the Gilbert
damping, δαG,1, for a clean interface (J1 
 J2).

g(γ ) = 2

π

∫ ∞

0
dz e−2(γ−1)zF (γ − 1, γ , 2γ ; 1 − e−4z ). (43)

From this analytic expression, we obtain

δαG,1 ∝
{

T 2γ−2W [W � g(γ )Lth],

T 2γ−3g(γ ) [W 
 g(γ )Lth].
(44)

The exponent γ = (Ks+ + Ks− + K−1
s+ + K−1

s− )/4 corresponds
to unity when Ks+ = Ks− = 1. Even in the present estimate
employing Ks+ = 1.07, the exponent is almost unity (γ =
1.00114). By setting γ = 1, we can reproduce the power in the
temperature and junction-length dependence of δαG,1 shown
in Figs. 2 and 3.

Finally, let us discuss the factor g(γ ). If γ is slightly larger
than 1 as in the present estimate, the geometric function is ap-
proximated as F (γ − 1, γ , 2γ ; x) 	 1. Then, the factor g(γ )
is approximately given as

g(γ ) = 1

π (γ − 1)
. (45)

This expression indicates that the increase in the Gilbert
damping in the high-temperature limit (T 
 T ∗) or the long-
junction limit (W 
 W ∗) is highly sensitive to the deviation of
γ from unity. The crossover temperature T ∗ and the crossover
length W ∗ also include the factor g(γ ) ∝ (γ − 1)−1. Thus the
increase in the Gilbert damping can be used to investigate
small deviations of γ from unity. Then, the Luttinger parame-
ter Ks,+ in the spin sector can also be determined from Eq. (31)
if we know whether it is greater or less than unity. We note that
in the NMR measurement [22] Ks,+ decreases as the magnetic
field increases. Using this experimental tendency, we expect
that Ks,+ can be determined uniquely.

B. Dirty interface

Next, we consider a dirty interface (J2 
 J1). Figure 4
shows the increase of the Gilbert damping, δαG,2, as a func-
tion of the temperature for J2 = 1, 2, and 3 K. In this case,
δαG,2 is proportional to T −0.43 in the whole temperature range
and shows a nontrivial exponent inherent to the Tomonaga-
Luttinger liquid.

10010

10-5

10-8

10-6

10-7

3 300

FIG. 4. Temperature dependence of the increase in the Gilbert
damping, δαG,2, for a dirty interface (J2 
 J1). The three lines corre-
spond to J2 = 1, 2, and 3 K, respectively.

The condition Lth � vF/ω0 also holds for a dirty interface.
Therefore, δαG,2 can be approximated as

δαG,2 = 1

2π

S0J2
2 aa′3

(h̄vF)2dd ′
∑

r,r′,α,α′

�(γrαr′α′ )2

�(2γrαr′α′ )

(
2πa

Lth

)2γrαr′α′−2

.

(46)

Noting that a � Lth, the factor (2πa/Lth )2γrαr′α′ in Eq. (46) is
largely reduced as γrαr′α′ increases. Therefore, in the sum of
Eq. (46), it is sufficient to keep the terms in which γrαr′α′ takes
a minimum value. In the present estimate, γrαr′α′ is given by
Eq. (35) with

(γ1, γ2, γ3, γ4) = (1.001, 0.784, 1.001.0.784). (47)

Upon setting the minimum exponent to be γmin = 0.784, we
obtain δαG,2 ∝ T 2γmin−2 = T −0.432, which is consistent with
the numerical results shown in Fig. 4. Therefore, the non-
trivial exponent inherent to the Tomonaga-Luttinger liquid
appears in spin pumping through a dirty junction. Note that
the approximate expression is independent of the junction
length W for a fixed thickness, since the W -linear factor in
NFI = WW ′d/a′3 cancels out the factor of W in Eq. (34).

The equation for the increase in the Gilbert damping for
the dirty interface has almost the same form as that for 1/T1T
in NMR experiments where T1 is the longitudinal relaxation
time of nuclear spins [21–23]. Therefore, the power law of the
temperature dependence for the dirty interface is the same as
in NMR experiments. This is because the spin transfer occurs
at a spatially localized point due to the impurity average at
the dirty interface, leading to the same situation as the NMR
experiment in which 1/T1T is related to the local dynamic
spin susceptibility.

V. EXPERIMENTAL RELEVANCE

We estimated the increase in the Gilbert damping δαG

in two limiting situations, i.e., clean and dirty interfaces. If
we choose YIG as the ferromagnet, δαG should be roughly
in the range 10−5-10−2, because it should be comparable to
the Gilbert damping of bulk YIG, αG, which is of the order
of 10−5-10−3. For a clean interface, δαG is large enough to
be measured in FMR experiments (see Figs. 2 and 3). Note
that δαG can be reduced by increasing the thickness of YIG

134429-5
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(denoted by d ′). On the other hand, for a dirty interface, δαG is
too small for it to be observable by spin pumping (see Fig. 4).
However, we will moderate judgment on the possibility of
observing δαG for a dirty interface, because detailed informa-
tion on the interfacial exchange coupling is still lacking. We
should note that, in the present modeling of randomness, the
increase in the Gilbert damping is given by a sum of these
two contributions, i.e., δαG = δαG,1 + δαG,2, for an arbitrary
strength of interfacial randomness.

Our calculation can be applied straightforwardly to
other one-dimensional electron systems such as quasi-one-
dimensional magnets, whose low-energy states are also
described by the Tomonaga-Luttinger liquid model. In par-
ticular, the low-energy states of spin systems with in-plane
anisotropy are characterized by a Luttinger parameter Ks

smaller than 1. If Ks is sufficiently smaller than 1, δαG should
show nontrivial power-law behavior with respect to the tem-
perature even for a clean interface.

VI. SUMMARY

We theoretically studied spin pumping from a ferromag-
netic insulator into carbon nanotubes. First, we formulated the
increase in the Gilbert damping in terms of the spin suscepti-
bility and described the interfacial exchange coupling with a
simple model, in which two types of spin-flip processes, i.e.,
momentum-conserving and momentum-nonconserving pro-
cesses, coexist. Then, we analytically calculated the increase
in the Gilbert damping by treating electrons in carbon nan-
otubes in the framework of the Luttinger liquid. For a clean
interface, the increase in damping is proportional to the in-
verse of the temperature at high temperatures, while it is
almost constant at low temperatures. The crossover temper-
ature includes information on the Fermi velocity in carbon
nanotubes. We also found that the increase in damping is
highly sensitive to the deviation of the Luttinger parameter in
the spin sector from unity. For a dirty interface, the increase
in damping shows a power-law dependence on the temper-
ature with a nontrivial exponent reflecting the nature of the
Tomonaga-Luttinger liquid. We also estimated the increase of
the Gilbert damping using realistic parameters. Our results
indicate a possible application of spin pumping for detect-
ing power-law behavior of spin excitation in low-dimensional
systems. Detection of other types of spin excitation in exotic
many-body states will be left as a future study.
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APPENDIX A: CORRELATION FUNCTIONS

Here, we briefly summarize the calculation of the corre-
lation function Crαr′α′ (x, y, t ) defined in Eq. (23). Using the
bosonic fields, the correlation function is written as

Crαr′α′ (x, y, t ) = 1

(2πa)2
[〈eAeBeCeD〉0 − 〈eCeDeAeB〉0], (A1)

A = −i[−rθα+(x, t ) + φα+(x, t )], (A2)

B = i[−r′θα′−(x, t ) + φα′−(x, t )], (A3)

C = −i[−r′θα′−(y, 0) + φα′−(y, 0)], (A4)

D = i[−rθα+(y, 0) + φα+(y, 0)], (A5)

where we set r = +1 (r = −1) for the left-going (right-going)
branch. Using the formula,

〈eA1 eA2 · · · eAN 〉 = exp

⎡
⎣1

2

∑
i

〈A2
i 〉 +

∑
i< j

〈AiAj〉
⎤
⎦, (A6)

which holds when [Ai, Aj] is a c number, we obtain

〈eAeBeCeD〉0 ≡ eFrαr′α′ (x−y,t )

= exp
[

1
2 〈(A2 + B2 + C2+D2)〉 + 〈AB〉 + 〈CD〉

+ 〈AC〉 + 〈AD〉 + 〈BC〉 + 〈BD〉], (A7)

〈eCeDeAeB〉0 = eFr′α′rα (y−x,−t ). (A8)

The correlation functions of the bosonic fields, which are
defined as GXY

jδ = 〈X (x, t )Y (y, 0)〉, are calculated as [19]

Gθθ
jδ (x, t ) = Kjδ

4
[I (x, t ) + I (−x, t )], (A9)

Gφφ

jδ (x, t ) = 1

4Kjδ
[I (x, t ) + I (−x, t )], (A10)

Gθφ

jδ (x, t ) = Gφθ

jδ (x, t ) = 1

4
[I (x, t ) − I (−x, t )], (A11)

I (x, t ) = −ln

[
2iβ h̄vF

L
sinh

(
π (ia − x − vFt )

β h̄vF

)]
. (A12)

Using these correlation functions, we obtain

Frαr′α′ (x, t ) = F1δr,r′δα,α′ + F2δr,−r′δα,α′

+ F3δr,r′δα,−α′ + F4δr,−r′δα,−α′ , (A13)

F1(x, t ) = G̃θθ
s+ + G̃θθ

s− + G̃φφ
s+ + G̃φφ

s−

− r
(
G̃θφ

s+ + G̃θφ
s− + G̃φθ

s+ + G̃φθ
s−

)
, (A14)

F2(x, t ) = G̃θθ
c+ + G̃θθ

c− + G̃φφ
s+ + G̃φφ

s− , (A15)

F3(x, t ) = G̃θθ
s+ + G̃θθ

c− + G̃φφ
s+ + G̃φφ

c−

− r
(
G̃θφ

s+ + G̃θφ
c− + G̃φθ

s+ + G̃φθ
c−

)
, (A16)

F4(x, t ) = G̃θθ
c+ + G̃θθ

s− + G̃φφ
s+ + G̃φφ

c−, (A17)

134429-6



SPIN PUMPING INTO CARBON NANOTUBES PHYSICAL REVIEW B 108, 134429 (2023)

where G̃XY
jδ (x, t ) ≡ GXY

jδ (x, t ) − GXY
jδ (0, 0). Combining these

results enables the correlation function Crαr′α′ (x, y, t ) to be
obtained analytically.

APPENDIX B: ANALYTIC EXPRESSIONS
OF INTEGRALS

For a clean interface, the increase in damping is given as

δαG,1 = − 4S0J2
1

h̄2ω0(2πa)2NFI
Iγ , (B1)

Iγ = v2
F

(
β h̄

π

)3 ∫ w

0
dx′

∫ w

0
dy′

∫ ∞

0
du sin(ω̃0u)Im

{[
sinh(iα)

sinh(iα + x − y − u)

]γ+1[ sinh(iα)

sinh(iα − x + y − u)

]γ−1
}

, (B2)

where ω̃0 = β h̄ω0/π , u = πt/β h̄, w = πW/β h̄vF, x′ = πx/β h̄vF, y′ = πy/β h̄vF, and α = πa/β h̄vF. Changing variables from
x′ and y′ with Z = (x + y)/2 and z = x − y, the integral is modified as

Iγ = v2
F

(
β h̄

π

)3 ∫ ∞

0
du sin(ω̃0u)

[∫ w/2

0
dZ

∫ 2Z

−2Z
dz +

∫ w

w/2
dZ

∫ 2(w−Z )

−2(w−Z )
dz

]

× Im

{[
sinh(iα)

sinh(iα + z − u)

]γ+1[ sinh(iα)

sinh(iα − z − u)

]γ−1
}

= −v2
F

4

(
β h̄

π

)3 ∫ w/2

0
dZ

∫ −2z

2z
dz

∫ ∞

−∞
du(eiω̃0u − e−iω̃0u)

[
sinh(iα)

sinh(iα + z − u)

]γ+1[ sinh(iα)

sinh(iα − z − u)

]γ−1

. (B3)

In the last equation, we have used the relation(
sinh(iα)

sinh(iα ± z − u)

)∗
= sinh(iα)

sinh(iα ∓ z + u)
(B4)

and the symmetry of the integrand with respect to Z ↔ w − Z and z ↔ −z. At this stage, it is useful to introduce

Bγ (ζ , z) =
∫ ∞

−∞
du eiζu

[
sinh(iα)

sinh(iα + z − u)

]γ+1[ sinh(iα)

sinh(iα − z − u)

]γ−1

, (B5)

so that

Iγ = −v2
F

2

(
β h̄

π

)3 ∫ w/2

0
dZ

∫ 2Z

−2Z
dz[Bγ (ω̃0, z) − Bγ (−ω̃0, z)]. (B6)

Setting v = 2u and rearranging the hyperbolic sine function, we obtain

Bγ (ζ , z) = 1

2
(1 − e−2iα )2γ e−2z

∫ ∞

−∞
dv

e−v(γ−iζ/2)

[e−v + e−2z+i(π−2α)]γ+1[e−v + e−2z+i(π−2α)]γ−1
, (B7)

which can be computed analytically, invoking the formula 3.315.1 in Ref. [29] as

Bγ (ζ , z) = 1

2
(1 − e−2iα )2γ e−i(π−2α)(γ+iζ/2)e−2z(γ−1−iζ/2) |�(γ + iζ/2)|2

�(2γ )
F (γ − 1, γ , 2γ ; 1 − e−4z ), (B8)

where F (a, b, c; x) is the Gauss hypergeometric function. To leading order in the small parameter α (� 1), this reduces to

Bγ (ζ , z) = 1

2
(2α)2γ eπζ/2+iζ ze−2z(γ−1) |�(γ + iζ/2)|2

�(2γ )
F (γ − 1, γ , 2γ ; 1 − e−4z ). (B9)

In practice, we are mostly interested in the regime where ω̃0 = β h̄ω0 � 1 so we can focus on values of ζ such that |ζ | � 1.
This allows us to expand Bγ (ζ , z) for small values of ζ , which yields, after substituting back into the expression for Iγ ,

Iγ = −π

2
v2

Fω0

(
β h̄

π

)4

(2α)2γ �(γ )2

�(2γ )

∫ w/2

0
dZ

∫ 2Z

0
dz e−2z(γ−1)F (γ − 1, γ , 2γ ; 1 − e−4z ), (B10)

where we have used the symmetry of the integrand with respect to z ↔ −z. Combining this result with Eq. (B1), Eqs. (32) and
(33) can be derived, after rewriting the integral variable as z′ = 2Z .
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In the limiting case, the integral I (w, γ ) given in Eq. (33)
can be approximated into a simple form. For the short-
junction limit [w/π = W/β h̄vF = W/Lth � g(γ )], we obtain

I (w, γ ) 	 1

w

∫ w

0
dz′

∫ z′

0
dz′e−2z(γ−1) = w

2
. (B11)

For the long-junction limit [w/π 
 g(γ )],

I (w, γ ) 	 1

w

∫ w

0
dz′

∫ ∞

0
dz′e−2z(γ−1)

× F (γ − 1, γ , 2γ ; 1 − e−4z )

= π

2
g(γ ), (B12)

where g(γ ) is defined by Eq. (43). These analytical expres-
sions lead to Eqs. (41) and (42) in the main text.

For a dirty interface, the increase in damping is expressed
as

δαG,2 = − S0J2
2 aW

h̄2ω0(πa)2NFI

∑
r,r′,α,α′

I ′
γrαr′α′ , (B13)

I ′
γ = β h̄

π

∫ ∞

0
du sin(ω̃0u)Im

{[
sinh(iα)

sinh(iα − u)

]2γ
}

, (B14)

with the same dimensionless variables as for a clean interface.
By a similar way as the clean case, the integral I ′

γ is modified
as

I ′
γ = −β h̄

4π
[Aγ (−ω̃0) − Aγ (−ω̃0)], (B15)

Aγ (ζ ) =
∫ ∞

−∞
du e−iζu

[
sinh(iα)

sinh(iα − u)

]2γ

. (B16)

Setting v = 2u and rearranging the hyperbolic sine function,
we obtain

Aγ (ζ ) = 1

2
(1 − e−2iα )2γ

∫ ∞

−∞
dv

e−(γ+iζ/2)v

(e−v + ei(π−2α) )2γ
. (B17)

Invoking the formula 3.314 in Ref. [29], this can be computed
as

Aγ (ζ ) = 1

2
(2 sin α)2γ eαζ e−πζ/2 |�(γ + iζ/2)|2

�(2γ )
, (B18)

which then yields, to leading order in α (� 1),

I ′
γ = −β h̄

4π
(2α)2γ |�(γ + iζ/2)|2

�(2γ )
sinh(πω̃0/2). (B19)

Assuming ω̃0 = β h̄ω0/π � 1, this is further simplified as

I ′
γ = −β2 h̄2

8π
ω0

(
2πa

β h̄vF

)2γ
�(γ )2

�(2γ )
, (B20)

which finally leads to Eq. (46) in the main text.
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