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Electrical control of Dzyaloshinskii-Moriya interactions in magnetic Weyl semimetals
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The Dzyaloshinskii-Moriya interaction (DMI) is known to be responsible for multiple phenomena in magnetic
materials. In the conventional description as a perturbation of the superexchange interaction by the spin-orbit
coupling, the strength of the DMI is only weakly sensitive to the external fields, making its control difficult
in spintronic applications. In this work, we show that an electrical modulation of the DMI may actually be
possible in magnetic Weyl semimetals (WSMs). Specifically, it is theoretically illustrated that an antisymmetric
indirect spin-spin interaction identified recently as an alternative mechanism for the DMI can result in the
desired sensitivity to the external electric and magnetic fields via a redistribution of Weyl fermions among
nodes of opposite chirality. This chiral anomaly enabled approach becomes particularly prominent in WSMs
with inversion symmetry, in which the conventional DMI is not allowed. Numerical estimations suggest that
moderate electric and magnetic fields of ∼103–104 V/cm and ∼1 T can induce a sufficiently strong change in
the DMI. The impact of this externally modulated DMI on the manipulation of magnetic textures, including
skyrmions in WSMs, is also discussed.
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I. INTRODUCTION

Over the past few decades, a range of exotic phenom-
ena originating from the spin-orbit interaction was found
and led to a second wind in relativistic physics in solids.
An antisymmetric superexchange interaction in the form of
Dzyaloshinskii-Moriya interaction (DMI) is one such exam-
ple of the nontrivial manifestation of this interaction [1,2].
It explains the appearance of a weak magnetization caused
by a tilt in the sublattice magnetizations of antiferromagnets
without the intervention of an external magnetic field. The
more prominent effects of the DMI, on the other hand, are
related to the formation of inhomogeneous magnetic struc-
tures such as helical magnetic textures and spin glass [3,4]. Of
particular interest among them are localized structures (e.g.,
domain walls, solitons, and skyrmions), in which the strength
of the DMI tends to exceed some critical values [5,6]. Ac-
cordingly, the problem of how to control and manipulate the
DMI has become especially critical for emerging spintronic
device applications. While strain can be used to induce and
control the DMI [7,8], it is generally more desirable if this
control can be achieved through the application of fields (par-
ticularly, the electric field) without causing structural changes.
However, the influence of an external electric field is gener-
ally much smaller than the intra-atomic counterparts in the
conventional description of the DMI as a perturbation of the
superexchange interaction by spin-orbit coupling. This gen-
eral statement remains the case even in instances showing a
comparatively more robust dependence such as modulation
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via the field-induced structural distortion in a two-dimensional
ferromagnet [9], structural inversion asymmetry at the inter-
face [10,11], and defect migration [12], as well as modulation
via an electric current [13,14]. Accordingly, it may be nec-
essary to look for an alternative mechanism of asymmetrical
spin-spin coupling and a material system that can provide the
desired sensitivity to the fields.

One promising possibility is Weyl semimetals (WSMs), in
which the indirect spin-spin interaction via Weyl fermions
supports the skew-symmetric spin-spin interaction (thus, a
potential origin of the DMI) along with the conventional
Ruderman-Kittel-Kasuya-Yosida (RKKY) isotropic exchange
interaction [15–18]. Normally, the interference of indirect
spin-spin interactions caused by the reciprocal electron
scattering between nodes of opposite chirality does not
survive (i.e., full cancellation). Similarly, the intranode spin-
dependent fermion relaxation in the WSM cannot induce the
net DMI through the compensation by Weyl nodes of opposite
chirality. An interesting point to note is that this symmetry
can be readily broken in WSMs by the external electric and
magnetic fields (i.e., E and B, respectively) as long as these
fields are not normal to each other. In the present study, we
show that the resulting imbalance in the Weyl node population
(i.e., a direct manifestation of the chiral anomaly) can become
a mediator of the DMI between the remote spin pairs in
WSMs. More precisely, the strength of the induced DMI is
found to be proportional to a vector relation dD(E · B), where
the WSM material parameters determine the constant vector
dD. Subsequent calculations show that a moderate electric
field of around 103–104 V/cm along with a magnetic field
of ∼ 1 T can produce a DMI sufficiently strong to modulate
local magnetic textures such as magnetic skyrmions. This
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remote RKKY-mediated mechanism is expected to provide
the dominant contribution to the DMI in magnetic WSMs with
centrosymmetry.

II. THEORETICAL MODEL

A. Basic formulation

As a comprehensive analysis of the RKKY interaction
in the WSMs is already available in the literature [18], we
can start by applying this approach to a ferromagnetic (FM)
WSM with a pair of Weyl nodes (chirality χ = ±1) separated
in momentum space. In contrast to the case of conventional
massive electronic dispersion, the sum over the virtual Weyl
fermions diverges as long as the massless linear dispersion law
persists with a constant Fermi velocity vF . This “ultraviolet”
divergence is naturally resolved in actual crystals, in which the
electronic structure mimics the WSM only in the vicinity of
momentum space around the Weyl points. As the contribution
to the indirect spin-spin interaction is thought to be small
outside the linear region, a cutoff in energy Ec and, corre-
spondingly, in momentum � (= Ec/h̄vF ) can be introduced
to limit the consideration to only the relevant range near each
Weyl node. This approximation based on the sharp cutoff � in
momentum or energy is considered adequate when describing
the spin-spin interaction in intrinsic WSM magnets, in which
local moments are rather densely populated (thus, on a rela-
tively short length scale) [18]. An alternative treatment based
on a full tight-binding band like what was done for magnetic
impurities in graphene [19] could make the calculation more
accurate but is outside the scope of the current work.

The RKKY-type model provides an adequate description
of the asymmetrical interaction for the spin pair S j and S j′

located at lattice sites r j and r j′ in the following form:

Hj, j′ = D j, j′ · (S j × S j′ ), (1)

where the vector contribution of each Weyl node χ can be
written as [18]

D(χ )
j, j′ = χ

2(a�)6J2

(4π )4Ec
f

(
2μ

Ec
,�r j, j′

)̂
r j, j′ . (2)

Here, a, J , and μ denote the lattice constant, carrier-ion
exchange interaction, and chemical potential, respectively;
r j, j′ = |r j − r j′ |, and r̂ j, j′ is a unit vector directed along r j −
r j′ . The full expression for f (x, y) is rather complicated but
can be well approximated by an analytical function for x � 1:

f (x, y) ≈ x3ϕ(y), (3)

where

ϕ(y) = −π
sin[0.04y + y3/(40 + y2)]

1 + 0.22y3
. (4)

The oscillatory behavior predicted in the indirect DMI
[Eq. (4)] differs substantially from that associated with the
RKKY interaction in the conventional crystals. For one, the
oscillations start with f (x, y) → 0 at y ∼ r j, j′ → 0 and then
become aperiodic, reaching the maximum at y ≡ �r j, j′ ∼
2.5. By contrast, the maximum of the indirect RKKY inter-
action in conventional magnets corresponds to the shortest
interion distance. In addition, the chemical potential μ in
Eq. (2) controls the amplitude of Dj, j′ but not the period of

oscillations, whereas both are affected in the latter. Note that
the simple analytical approximation given in Eq. (4) repre-
sents the best fit to the actual dependence of ϕ(y) in the
range y � 15 relevant to the numerical calculation (consistent
with the truncation discussed in Sec. III B). For larger y (e.g.,
r j, j′ → ∞), ϕ(y) reveals a slower decay of y−2 [18], which
may be important in other applications of the remote DMI.

As expected, Eqs. (2) and (3) clearly illustrate the ab-
sence of the DMI in a centrosymmetric WSM with an equal
chemical potential for the Weyl cones. Namely, the + and
− signs of chirality χ would cancel exactly the contributions
from each node for the given Weyl pair. However, this is not
the case if the external fields support an imbalance in the
node populations. As is well known, such a possibility can
be realized in a WSM with broken time reversal symmetry
via the application of nonorthogonal electric and magnetic
fields. These fields induce a chiral current of spin-polarized
Weyl fermions carrying a charge qe between the Weyl cones
of χ = ±1 and can establish an imbalance in the chemical
potential between two nodes with opposite chirality (i.e., μ+
vs μ−). While the internode fermion scattering may diminish
the net spin polarization, it is unlikely to cancel out the ef-
fect (i.e., the chiral anomaly) completely. The resulting axial
chemical potential μ5 = (μ+ − μ−)/2 becomes proportional
to the strengths of both fields.

In the case of a weak magnetic field (e.g., h̄vF qeB � μ2
5)

and a non-negligible temperature T0 (in units of energy), the
effect of a thermal population in the Landau levels needs to be
accounted for as [20,21]

μ5 = 3h̄v3
F q2

eτ

2(πT0)2 + 6μ2
0

E · B
c

, (5)

where μ0 = (μ+ + μ−)/2, c is the speed of light, and τ is
the characteristic relaxation time of the internode scattering.
Then, the net nonzero contribution of both nodes to the DMI,
provided μ5 � μ0, becomes

D j, j′ = r̂ j, j′
2(a�)6J2

(4π )4Ec

6μ2
0μ5

E3
c

ϕ(�r j, j′ ). (6)

Combining this expression with Eq. (5) defines the vector

D j, j′ = r̂ j, j′ ϕ(�r j, j′ )�DM, (7)

where

�DM = 18(a�)6J2μ2
0

(4π )4E4
c

h̄v3
F q2

eτ

(πT0)2 + 3μ2
0

E · B
c

. (8)

As can be seen, an increase in the chemical potential can
enhance the DMI when μ0 < T0, beyond which point the
dependence weakens and saturates as μ0 	 T0. More im-
portantly, the sign of �DM shows an explicit dependence on
the polarity of the applied field. This property selects the
favorable twisting direction of the DMI effect (i.e., clockwise
or counterclockwise), which is described in greater detail in
Sec. III. The notation adopted above supposes the Gaussian
system of units; the SI system would impose c = 1 instead.

B. Application to micromagnetic simulations

The effect of the long-range RKKY-mediated DMI on
the formation of inhomogeneous magnetic texture can be
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efficiently studied via micromagnetic simulations. Since the
properties in each discretized cell (located at n) are assumed
to be homogeneous in the numerical modeling while the actual
DMI is between two discrete atoms (i.e., located at lattice sites
r j and r j′ ), an approach that effectively averages these inter-
actions is necessary. To that end, let us consider a spin S j in
a cell n (i.e., j ∈ n). With the contributions from all other S j′

(for which 〈S j′ 〉 denotes the mean value), the DMI-mediated
energy of this spin S j can be expressed as

E j = gμBB j · 〈S j〉 =
⎛
⎝∑

j′
[〈S j′ 〉 × D j, j′ ]

⎞
⎠ · 〈S j〉. (9)

If the size of the magnetic texture sufficiently exceeds the cell
dimension d (with volume Vs), a slowly varying magnetization
M(r) can be described approximately as a sum of magneti-
zations Mn homogeneous in each cell n. With a volume of
Vs, the latter contains a finite number Ns of localized spins S j

contributing to the magnetization Mn = −V −1
s

∑Ns
j gμB〈S j〉,

where g and μB denote the g factor of magnetic ions and the
Bohr magneton, respectively. In addition, it can be further
assumed that the mean values 〈S j〉 of localized spins in a given
cell n are approximately the same, i.e., 〈S j〉 ≈ −Mn/νgμB ≡
〈Sn〉, where ν = Ns/Vs. Then, the DMI among the spins be-
longing to the same cell becomes inactive according to Eq. (9).
As such, evaluation of the effective Dzyaloshinskii-Moriya
(DM) field B j in the above equation simply requires consider-
ation of the contributions from the spin ensemble outside the
given cell. This, in turn, allows the following expression for
the DM field in terms of magnetizations Mn and Mn′ :

B j = − Ms

ν(gμB)2

∑
n′

⎛
⎝mn′ ×

∑
j′∈n′

D j, j′

⎞
⎠, (10)

where mn = Mn/Ms is the unit vector directed along Mn. It is
implicitly assumed that the magnitude of the magnetization is
fixed at the saturation value Ms (= |Mn| = |Mn′ |) and only its
angle or direction varies.

Note that despite the homogeneous magnetization in each
cell, the DMI may vary visibly in the length scale d [see
Eq. (4)]. When this intracell variation is negligible, the sum
over j′ ∈ n′ in Eq. (10) can be reduced to the expression
NsD(rn − rn′ ), where D(rn − rn′ ) ≡ Dn,n′ is taken for any
spin pair located at rn and rn′ in cells n and n′, respectively.
In this picture, the DM field Bn in cell n comes from Ns

equally contributing spins, each of which interacts with the
surrounding cells n′, i.e.,

Bn = − MsVs

(gμB)2

∑
n′

(mn′ × Dn,n′ ), (11)

where the explicit dependence on the mutual distance of loca-
tions n and n′ [see also Eq. (7)] determines the equation

Dn,n′ = rn − rn′

|rn − rn′ | ϕ(�|rn − rn′ |)�DM. (12)

In comparison, the explicit dependence of D j, j′ =
D j, j′ (r j, j′ ) on the interion distance needs to be accounted for
in Eq. (10) if the period of DMI oscillations [Eq. (4)] is com-
parable to d . When a continuum-type distribution is assumed

FIG. 1. Schematic illustration of a FM WSM subject to external
electric and magnetic fields. The electric field necessary for the
chiral anomaly can come from a bias applied to the gate electrode
(separated from the WSM by a thin dielectric; not shown), while the
stray field B from a nearby permanent magnet may be used to supply
a magnetic field stronger than the intrinsic WSM field.

for the magnetic ions, the effect of the DMI between a pair of
spins associated with the n′ and n cells can be approximated
by a mean value Dn,n′ over the cell volumes Vn = Vn′ = Vs,
i.e.,

Dn,n′ = 1

V 2
s

∫
Vn

drn

∫
Vn′

drn′Dn,n′ . (13)

This enables a simple substitution of Dn,n′ with the average
for the DM field in Eq. (11). In the case of small cell volumes
Vs = d3 at d � �−1, the result reproduces accurately the
interion dependence: Dn,n′ = Dn,n′ in Eq. (12). Short periods
of DMI oscillations or larger dimensions of the cells lead to
the deviation of Dn,n′ from Dn,n′ according to Eq. (13). The
approach described above can provide good accuracy while
reducing the computational complexity simultaneously.

III. RESULTS AND DISCUSSION

While the long-range asymmetrical spin-spin coupling de-
scribed above differs qualitatively from the conventional DMI
mechanism based on the perturbation of superexchange inter-
action, its macroscopic effect on magnetic WSMs can lead to
spin textures similar to those observed in their nontopological
counterparts. A key feature, as stated, is the ability for electri-
cal control. In a bilayer structure with a magnet such as that
shown in Fig. 1, the electric field can be provided by a gate,
whereas the magnetic field can originate from the stray field
of the magnet. Two examples are discussed below.

A. Helical textures

A number of relatively simple DMI effects can be ex-
amined without resorting to micromagnetic simulations. A
well-known example among them, as discussed earlier, is the
magnetization vector canting from the easy axis or easy plane.
If the direction of this deviation is not fixed by crystalline
anisotropy, the magnetic equilibrium state may form a spi-
ral texture. Thus, it is evident that the present RKKY-type
mechanism can be applied to modulate the spiral texture in
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WSMs with proper magnetic properties. The analysis requires
consideration of the total free energy of the system and its de-
pendence on the characteristic DMI parameter. For simplicity,
we consider a magnetic WSM sample subjected to constant
electric and magnetic fields applied uniformly along the z axis
(i.e., no variation on the x-y plane). Assuming a homogeneous
distribution of localized spin moments and a smooth variation
of the RKKY-type DMI relative to the atomic scale a (= 	

1/3
0 ,

where 	0 denotes the volume of a crystalline primitive unit
cell), the density of the WSM magnetic energy associated with
the DMI can be approximated by space integrals over a sample
volume V0 instead of sums over the spin moments, i.e.,

εDM = V −1
0

∑
j

∑
j′

D j, j′ · m j × m j′

= 1

2
nscs�DM

∫
V0/	0

dρϕ(αρ)
ρ

|ρ| · m(aρ0) × m(aρ),

(14)

where ρ = r/a, α = �a, and ns and cs are the number of spins
per primitive cell and its density, respectively. This expression
also takes into account that εDM is invariant to the location
r0 = aρ0 of the specific spin used as the reference.

Since finding the total energy minimum is quite compli-
cated in a general case (with additional terms such as the
exchange and anisotropy energies), we restrict the consider-
ation to an analysis of the energy change with an intuitive
trial function m(r) mimicking the spiral texture. In the case
of axial symmetry around the z axis (which could be easy or
hard depending on the sign of the uniaxial anisotropy energy),
the simplest trial function depends only on two parameters,
i.e., the amplitude β and period L (= 2π/kc) of the spatial
variation,

m(r) = (sin θ cos φ, sin θ sin φ, cos θ ), (15)

where sin θ = β and φ = 2πz/L (= kcz), while the location
z = 0 is fixed at the reference magnetization. Substituting
Eq. (15) into Eq. (14) yields

εDM = β2FDM(κ ), (16)

where the function FDM(κ ) on κ = kca = 2πa/L is indepen-
dent of β and is given as

FDM(κ ) = πnscs�DM

∫ ∞

0
ρ⊥dρ⊥

∫ ∞

−∞
dρz

ϕ
(
α

√
ρ2

⊥ + ρ2
z

)
√

ρ2
⊥ + ρ2

z

× ρz sin κρz. (17)

To reach an energetically favorable configuration, Eq. (17)
must take a negative value. This is achieved by choosing an
appropriate sign for the parameter κ , which can be positive
(clockwise) or negative (counterclockwise configuration) de-
pending on the polarity of �DM. In turn, the latter depends on
the directions of the applied electric and magnetic fields.

The exchange interaction, anisotropy, and Zeeman energy
in an external magnetic field are the main factors tending to
keep m(r) along the easy direction. Their interplay with the
DMI establishes the actual parameters β and kc of the spiral
texture. The density of the exchange energy with exchange

stiffness A is evaluated by

εex = Aa

V0

∫∫∫
V0

[(
∂m
∂ρx

)2

+
(

∂m
∂ρy

)2

+
(

∂m
∂ρz

)2]
dρxdρydρz,

(18)

which reduces, after a straightforward calculation, to

εex = (βkc)2 Aa

	0
. (19)

The effect of the uniaxial anisotropy energy − 1
2 Kzm2

z depends
only on the amplitude of spiral waves,

εan = − 1
2 Kz(1 − β2). (20)

As written, the anisotropy constant Kz > 0 (<0) corresponds
to the case of the easy (hard) z axis. Similarly, the Zeeman
energy −M · B associated with a relatively weak static mag-
netic field |B| � |Kz|/|M| directed along the z axis provides
a contribution to the total energy,

εzm = −MsB
√

1 − β2 ≈ −MsB
(
1 − 1

2β2). (21)

Interestingly, the total energy minimum in the case of an easy
z axis (i.e., Kz > 0) occurs at β = 0 (i.e., θ = 0). Hence, the
magnetization in a FM WSM is expected to line up along the
z direction uniformly (i.e., no spatial variation and thus no
helical waves). Note that our observation does not preclude
the formation of any and all textures in the easy-axis WSMs,
even those that cannot be described by the ansatz given in
Eq. (15). A related example is discussed in Sec. III B.

By comparison, the hard z axis with K < 0 leads to an easy
x-y plane that is normal to the direction of the magnetic field
B. Thus, a chiral magnetic texture may develop on this plane
under a DMI, as was shown in an easy-plane antiferromagnet
[22]. The stable state of magnetization shows only a small
angle deviation δ (� MsB/|Kz| � 1) from the plane with
θ = π

2 − δ in a relatively weak external magnetic field; thus,
m(r) � (cos φ, sin φ, sin δ). This approximation (i.e., β ≈ 1)
simplifies εDM and εex to FDM(κ ) and κ2 Aa

	0
, respectively,

while εan and εzm are no longer dependent on the parameters
of the textures. Subsequently, the minimization of the total
energy for a � L (thus, |κ| � 1) results in the following
simple relation:

κ = − F ′
DM(0)

2A	
−2/3
0

, (22)

where F ′
DM(0) = d

dκ
FDM(κ )|κ=0. Considering that the

azimuthal angle φ can be written as κ
a z, it is evident

that the helicity can be realized in the easy-plane FM
WSMs even with the DMI of small strength. Figure 2
schematically illustrates the resulting magnetic textures,
whose period L is typically in the hundreds of nanometers.
For instance, the numerator of Eq. (22) can be estimated
from the relation F ′

DM(0) = 29 πnscs�DM simplified
by the choice of α = 0.8 (more precisely, a = 0.8 nm,
Ec = 200 meV, vF = 3 × 107 cm/s). Then, �DM evaluated
with J = 1 eV, μ0 = 100 meV, and τ = 5 ps gives 5 μeV
at |E · B| = 12.5 kV T/cm and T0 = 300 K. Finally, the use
of typical values for ns (= 2), cs (= 4 × 1021 cm−3), and
A (= 1.2 × 10−6 erg/cm) yields the characteristic texture
period L (or wavelength) of ≈320 nm, as stated. Note that this
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FIG. 2. Magnetic textures generated in the form of a helical wave
propagating along the hard z axis.

value for |E · B| (i.e., 12.5 kV T/cm) can be achieved with
a moderate electric field of tens of kilovolts per centimeter
if the (stray) magnetic field can reach a fraction of 1 T or
more. For instance, a magnetic field of this magnitude can be
readily realized with the neodymium magnet family [23].

B. Magnetic skyrmions

Another well-known phenomenon in which the DMI plays
a crucial role is magnetic skyrmions. The analysis of skyrmion
stability is far more complex than that for the helical struc-
tures described by the analytical expression given in Eq. (15).
The problem can be made simpler by the application of mi-
cromagnetic simulations described earlier. An easy-axis (z)
ferromagnet is considered here since this is a more common
condition for skyrmions. To evaluate Dn,n′ in Eq. (13), the
prefactor �n,n′ needs to be calculated first as

�n,n′ = 1

V 2
s

∫
Vn

drn

∫
Vn′

drn′
rn − rn′

|rn − rn′ |ϕ(�|rn − rn′ |). (23)

Assuming cell discretization of d3 (= Vs) as defined earlier,
Eq. (23) takes the form

�n,n′ =
∫ 1/2

−1/2
d�x

∫ 1/2

−1/2
d�y

∫ 1/2

−1/2
d�z

∫ 1/2+lx

−1/2+lx

d�′
x

∫ 1/2+ly

−1/2+ly

× d�′
y

∫ 1/2+lz

−1/2+lz

d�′
z

� − �′

|� − �′|ϕ(λ|� − �′|). (24)

Here, λ = �d , � = rn/d , and �′ = rn′/d , while l = (lx, ly,lz )
with integer values of lx, ly, lz denotes the vector connect-
ing the centers of cells n = (0, 0, 0) and n′ = d (lx, ly, lz ) in
units of cell size d . When λ is sufficiently larger than 1, the
RKKY-type interaction (i.e., �n,n′) decays quickly, and only

a small number of neighboring cells needs to be considered in
the subsequent sum [e.g., see Eq. (11)]. This point is clearly
illustrated in Table I, where the cases of λ = 4 and λ = 1.2
are compared.

To proceed further, let us apply the parameters used in
the evaluation of spiral textures. The DM field affecting a
particular cell n consists of the additive contributions of all
other cells n′, each of which, in turn, contains Ns spins.
Assuming a cell size d of 5a = 4 nm for the micromagnetic
simulation, the parameter λ becomes 4 (with the cutoff wave
vector � = Ec/h̄vF set to 1 × 107 cm−1 earlier in this paper),
and Ns [= ns × (d/a)3] amounts to 250 spins (i.e., in each
discretized cell). The choice of d appears to be sufficiently
small compared to the typical dimension of skyrmions in
the tens of nanometers [24]. In addition, the corresponding
λ (= 4) enables us to truncate the numerical sum to |l| � 2
with good accuracy (see Table I), i.e., 6 nearest-neighbor cells
(1,0,0), 12 facial diagonal nearest-neighbor cells (1,1,0), 8
spatial diagonal nearest-neighbor cells (1,1,1), and 6 along the
axes with twice the distance of the nearest neighbor (2,0,0).
The FM WSM layer is chosen to be sufficiently large (e.g.,
200 × 200 × 16 nm3) compared to the anticipated size of the
skyrmions. In the initial calculation, this layer is assumed to
be covered completely by the gate such that the entire WSM is
subject to the applied electric field (see Fig. 1). The saturation
magnetization Ms = 580 emu/cm3 and the easy out-of-plane
magnetic anisotropy Kz = 2.4 × 106 erg/cm3 are also used
for the WSM.

As stated, the magnetization dynamics is analyzed by
numerically solving the Landau-Lifshitz-Gilbert equation in
each cell n based on Object Oriented MicroMagnetic Frame-
work (OOMMF) [25], i.e.,

∂mn

∂t
= −γ mn × Heff

n + αgmn × ∂mn

∂t
, (25)

where γ is the gyromagnetic ratio and αg (= 0.01) denotes
the Gilbert damping constant. The macroscopic effective field
Heff

n can be obtained from the free energy density F of the sys-
tem as Heff

n = −(∂F/∂mn), which accounts for the exchange
interaction, RKKY-type DMI, anisotropy energy, and Zeeman
energy terms:

F = Aa

2V0

∑
n,n′ �=n

mn · mn′ + 1

2

∑
n,n′ �=n

Dn,n′ · (mn × mn′ )

− 1

2
Kz

∑
n

m2
n,z − Ms

∑
n

mn · B. (26)

TABLE I. Numerically evaluated x, y, and z components of the factor �n,n′ [Eq. (24)] reflecting the DMI variation for cells separated by
(lx, ly, lz ) at different values of λ.

(lx, ly, lz )

Component (1,0,0) (1,1,0) (1,1,1) (2,0,0) (2,1,0) (2,1,1) (2,2,0) (2,2,1) (3,0,0)

λ = 4 �x 0.164 0.0498 0.099 −0.045 −0.039 0.007 0.009 0.004 0.0011
�y 0 0.0498 0.099 0 −0.019 0.004 0.009 0.004 0
�z 0 0 0.099 0 0 0.004 0 0.002 0

λ = 1.2 �x 0.193 0.180 0.162 0.289 0.255 0.226 0.176 0.155 0.233
�y 0 0.180 0.162 0 0.128 0.113 0.176 0.155 0
�z 0 0 0.162 0 0 0.113 0 0 0

134428-5



SEMENOV, XU, BOULTON, AND KIM PHYSICAL REVIEW B 108, 134428 (2023)

(c)(b)

(a)

1

2

D (erg/cm2)

A 
(1

0-6
er

g/
cm

)

E (kV/cm)

1.7 1.9 2.31.51.3

8 10 121.5

1.2

0.9

1

2 

D (erg/cm2)

K z
(1

06 
er

g/
cm

3 )

E (kV/cm)

1.7 1.8 1.9 2.0 2.1 2.2

10 1211

1

3

2

150

50

100

15010050
x (nm)

y 
(n

m
)

150

50

100

15010050
x (nm)

y 
(n

m
)

200

200

0
0

+Z

-Z

in-plane

3141

2.1

FIG. 3. (a) Snapshot of the simulated magnetic textures in a
FM WSM film with Ms = 580 emu/cm3, A = 1.2 × 10−6 erg/cm,
Kz = 2.4 × 106 erg/cm3, and D = 2.06 erg/cm2. The entire film
(200 × 200 × 16 nm3) is subject to the gate electric field (thus,
nonzero DMI). The color code indicates the z component of the
magnetization. The inset provides a view of the magnetization di-
rections near the center region. The formation of a stable Bloch
skyrmion is observed. (b) and (c) Phase diagrams in the A-D and
Kz-D parameter spaces, respectively. The parameter range supported
different magnetic textures. In (b), the easy z-axis anisotropy is fixed
at Kz = 2.4 × 106 erg/cm3, whereas in (c) a constant value is used
for the exchange stiffness, A = 1.2 × 10−6 erg/cm. Region 1 repre-
sents the conditions where the system ground state is the FM phase,
while the formation of magnetic textures is energetically favorable in
region 2 (i.e., the skyrmion or multidomain phase). The value of the
electric field given on the upper horizontal axis is obtained with an
assumption of a 1 T magnetic field in the parallel direction.

Here, the summation for the exchange interaction is limited
to the nearest neighbors, while the range of nonzero Dn,n′

considered is as discussed above (i.e., |l| � 2). The DMI does
not exist outside the gated region since E = 0. The Zeeman
energy term may be dropped from consideration since its
effect is expected to be minor, as discussed in Sec. III A.

The simulation results clearly illustrate that the system
can support the formation of stable skyrmions when the con-
ditions are properly adjusted. Figure 3(a) shows a snapshot
of magnetic textures, in which a single skyrmion approxi-
mately 30 nm in diameter is distinctively visible. Due to the
unique property of the RKKY-like DMI, the spins rotate in
the tangential planes, resulting in a Bloch-type formation,
which is in contrast to the Néel-type textures more commonly
found in conventional magnetic thin films. For convenience of
the discussion, we introduce a parameter D = |Dn,n′ |d , with
n = (0, 0, 0) and n′ = (1, 0, 0), as a quantity that effectively

signifies the DMI strength. From Eqs. (9), (12), and (13), it is
apparent that this parameter D has an explicit dependence on
the external fields E and B. The stable skyrmion formation
observed in Fig. 3(a) occurs with the choice of |E · B| =
12.5 kV T/cm, which corresponds to D ∼ 2.06 erg/cm2.

For a systematic understanding of the conditions necessary
for a stable skyrmion state, the dependence on three cru-
cial parameters, i.e., the effective DMI strength D, exchange
stiffness A, and magnetic anisotropy Kz, is examined. As
discussed, D can be controlled electrically (e.g., via the gate
bias; see Fig. 1). In comparison, both A and Kz tend to be more
material specific even though the latter may also be modulated
externally (e.g., via strain). A parametric analysis is conducted
in the A-D and Kz-D spaces, as plotted in Figs. 3(b) and 3(c),
respectively. Region 1 represents the conditions where the
ground state is the FM phase, while the formation of magnetic
textures is energetically stable in region 2. The “boundary”
between these two regions can be found as a function of A
and Kz, much like that obtained in nontopological ferromag-
nets with the conventional DMI mechanism [26]. The system
in region 2 is driven away from the global FM equilibrium
by rotating the magnetization locally toward a lower-energy
configuration in either a skyrmion or a multidomain pattern.
While the energy minimum actually depends on more than
these three parameters, it appears that the values near the
boundary tend to give a compact single skyrmion which de-
generates into an extended skyrmion or a multidomain state
as the conditions move farther away from it. The possibility of
individual metastable skyrmions (instead of stable ones) also
exists near the critical threshold in region 1. The skyrmion
formation shown in Fig. 3(a) corresponds to a location in
region 2 close to this demarcation line, as expected. These
results strongly indicate that the magnetic textures in the FM
WSM can be manipulated actively, for instance, by changing
the electric field applied by the gate. One can readily dissolve
the skyrmion observed in Fig. 3(a) by simply turning off the
gate bias (thus setting D = 0). The converse scenario (i.e., cre-
ation of skyrmions via electrical control) may also be possible
with properly designed excitation conditions overcoming the
magnetic anisotropy barrier. The analysis of such dynamical
processes is outside the scope of the current study.

Note that the range of modulation in the DMI strength
considered here [e.g., from 0 to around 2 erg/cm2 with a
moderate electric field of ∼12 kV/cm at B = 1 T; see the
E -D correspondence in Figs. 3(b) and 3(c)] is far more
challenging to attain in conventional ferromagnets. For in-
stance, an electric field as high as 6 MV/cm produced
only up to a 10% change in multilayer systems such as
Pt/Co/Pd and MgO/Fe/Pt, as detailed in the literature
[10,11]. The field needed in the two-dimensional ferromagnet
(i.e., CrI3 monolayer) for a comparable DMI (e.g., 2 erg/cm2

or ∼0.8 meV/atom) was even higher in the 20 MV/cm range
[9]. Likewise, the current-induced DMI in the nontopolog-
ical structures was found to be rather modest, for which
maximum modulations of about 0.05 and 0.2 erg/cm2 were
reported in recent studies [13,14] with lateral driving cur-
rent densities of 4 × 107 and ∼7 × 107 A/cm2, respectively.
Evidently, the RKKY-type mechanism enabled by the chiral
anomaly can offer a more efficient alternative in magnetic
WSMs.
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FIG. 4. Phase diagram of gate size vs D in a 200 × 200 × 16 nm3

FM WSM film with Kz = 1.8 × 106 erg/cm3; the rest of the pa-
rameters are the same as in Fig. 3. In the first column, the gray
shaded area indicates the gated region subject to the applied electric
field (thus nonzero D). Region 3 denotes the conditions in which a
multidomain state is the energy minimum. Snapshots are taken once
the magnetization reaches a stable state.

The issue of a single skyrmion vs a multidomain and its
dependence on D (i.e., the effective DMI strength) is further
investigated along with the impact of finite sizes in the gate
electrode (i.e., the region in which the electric field is applied).
The interaction between the nonzero and zero DMI regions of
the WSM (i.e., inside and outside the gated area) introduces
a boundary condition that can affect the stability of the tex-
tures, particularly when the two dimensions are comparable
to each other. Figure 4 shows snapshots of the spin textures
obtained for different gate sizes and DMI strengths. Note
that a Kz of 1.8 × 106 erg/cm3 is used in this calculation [vs
2.4 × 106 erg/cm3 in Figs. 3(a) and 3(b)], while the rest of the
material properties remain unchanged. The choice of a smaller
Kz leads to generally larger magnetic textures, enabling us to
better illustrate the significance of these two parameters under
consideration.

Our simulation results confirm that for a given gate size,
a stronger DMI (i.e., D) leads to larger skyrmions and, even-
tually, to a multidomain state (denoted as region 3, a subset
of region 2 in Fig. 3), which is consistent with the phase dia-
gram shown earlier. This trend continues as the gated region
shrinks, albeit with the transition occurring at a progressively
larger D. Incidentally, a smaller gate also results in a more
compact skyrmion despite the identical material properties.

In fact, stable single skyrmions can be observed even when
the size of the gate is smaller than that of a “free” skyrmion
unconstrained by the gate boundary (e.g., see the cases with
50 × 50 and 100 × 100 nm2 vs that with 200 × 200 nm2).
Apparently, the true impact of D is determined not only by
its strength but also by its spatial extent. As such, a smaller
gate would require a stronger D for the onset of skyrmion
formation and keep it compact over an extended range before
its degeneration into multidomain textures. Compared to its
counterparts in nontopological materials [24], this influence
of the gate size clearly reveals another means to control
skyrmions in magnetic WSMs along with the common de-
pendence on such parameters as the DMI strength, magnetic
stiffness, and magnetic anisotropy (see also Fig. 3). The chi-
ral anomaly enabled long-range DMI mechanism provides a
unique opportunity for electrical control of spin textures in
magnetic WSMs.

IV. SUMMARY

Among their numerous fascinating traits, WSMs possess
an unusual DM-like remote spin-spin interaction mediated
by Weyl fermions. As the symmetry dictates, this interaction
disappears in a crystal with centrosymmetry. However, the
invariance to inversion can be lifted in the presence of external
electric and magnetic fields. While these fields have only a
minor effect on the crystalline structure itself, the node po-
larization stemming from the chiral anomaly can break the
symmetry and dramatically enhance this RKKY-type DMI
in magnetic WSMs. Our quantitative analysis clearly showed
that even a moderate strength of the external fields can induce
a DMI sufficiently strong to curl the local magnetic moments
into incommensurate magnetic textures such as helical waves
and skyrmions. The explicit dependence of this DMI mech-
anism on external fields clearly illustrates the possibility of
active modulation in the resulting magnetic textures for ef-
ficient WSM-based spintronic applications. The influence of
other key parameters, such as magnetic stiffness and magnetic
anisotropy, on stable texture formation was examined compre-
hensively as well.
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