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The identification of microscopic systems describing the low-energy properties of correlated materials has
been a central goal of spectroscopic measurements. We demonstrate how two-dimensional (2D) nonlinear
spectroscopy can be used to distinguish effective spin systems whose linear responses show similar behavior.
Motivated by recent experiments on the quasi-1D Ising magnet CoNb2O6, we focus on two proposed systems—
the ferromagnetic twisted Kitaev spin chain with bond dependent interactions and the transverse field Ising chain.
The dynamical spin structure factor probed in linear response displays similar broad spectra for both systems
from their fermionic domain wall excitations. In sharp contrast, the 2D nonlinear spectra of the two systems
show clear qualitative differences: those of the twisted Kitaev spin chain contain off-diagonal peaks originating
from the bond dependent interactions and transitions between different fermion bands absent in the transverse
field Ising chain. We discuss the different signatures of spin fractionalization in integrable and nonintegrable
regimes of the systems and their connection to experiments.
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I. INTRODUCTION

The possibility to understand the microscopics of corre-
lated quantum materials is closely connected to advances
in spectroscopic techniques [1]. In addition to the tradi-
tional use of linear response probes, two-dimensional coherent
spectroscopy (2DCS) [2,3] promises to provide additional in-
formation because of its ability to access multitime correlation
functions sensitive to interactions between excitations. Prob-
ing the nonlinear optical response of the target system, 2DCS
has been used to study vibrational and electronic excitations in
molecules [4] and exciton resonances in quantum wells [5,6].
Additionally, recent advances with terahertz sources put the
technique in the proper energy ranges for studying optical ex-
citations of magnetic materials [7]. Unlike conventional one-
dimensional (1D) spectroscopy and standard inelastic neutron
scattering, 2DCS reveals not only the linear response of spin
flips but has more direct access to the interplay of intrinsic
excitations of magnets. Along this line, it was theoretically
proposed that such interplay can be used to identify the
presence of fractionalized particles [8–12], their self-energies
[13], and the effect of interactions between them [14,15].

In this paper, we show that 2DCS can be a powerful tool for
quantifying the microscopic parameters of quantum magnets.
Concretely, we consider 2DCS as a means for distinguishing
between two alternative descriptions of Ising chain magnets—
the ferromagnetic twisted Kitaev spin chain (TKSC) with
bond dependent spin exchange terms and the transverse field
Ising chain (TFIC). In both cases, spin flip excitations frac-
tionalize into domain wall excitations leading to similar linear
response spectra but distinct qualitative differences in 2DCS.

Our study is motivated by previous works [16,17], which
proposed that the field dependent behavior of CoNb2O6, long
believed the best example of an Ising chain magnet [18–25],
is in fact well captured by the TKSC. We first confirm that

the linear response of the TKSC and TFIC is indeed simi-
lar, which complicates the identification of the microscopic
description. Second, as our main result, we establish that
there are significant differences between the 2D spectra of the
TKSC and TFIC: (i) the magnetic second order susceptibility
χ (2)

xxx vanishes for the TKSC due to the presence of a ẑ-glide
symmetry [16] while it is finite for the TFIC; (ii) the third
order susceptibility χ (3)

xxxx contains off-diagonal peaks from
interband fermion transitions for the TKSC which are absent
for the TFIC. Taking into account the experimentally relevant
canting angle [26] between the crystal axis â and local axis
x̂ in CoNb2O6, we also compute the easier accessible 2D
spectrum, χ (2)

yyy, of the TKSC. We find that χ (2)
yyy becomes finite

and contains off-diagonal signals with an external transverse
field along ŷ, which breaks the ẑ-glide symmetry and the
integrability of the system, using infinite matrix-product state
(MPS) techniques [27–29]. We also confirm that such peaks
persist in the presence of additional XX -type interactions,
which can be relevant in CoNb2O6 [16,30,31].

Our paper is structured as follows. We first briefly review
the TKSC and TFIC in Sec. II and confirm the similarity of
their linear response spectra in Sec. III. We then discuss their
nonlinear response and compare the differences of the 2DCS
spectra in Sec. IV. In Sec. V, we investigate the effect of
glide symmetry breaking on the 2DCS spectra of the TKSC
and discuss the relevance of our findings for CoNb2O6. We
conclude with a discussion and outlook in Sec. VI.

II. TWO ISING MAGNETS

We first introduce the TKSC [17] described by the follow-
ing Hamiltonian:

HTKSC = −J
L′∑

i=1

[σ̃2i−1(θ )σ̃2i(θ ) + σ̃2i(−θ )σ̃2i+1(−θ )]. (1)
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Here, J > 0 is the ferromagnetic exchange parameter, L′ =
L/2 is the number of unit cells, each containing two sites,
and σ̃i(θ )≡cos(θ ) σ z

i + sin(θ ) σ
y
i . Such linear combinations

imply that the interaction on each odd (even) bond is char-
acterized by the Ising easy axis with an angle ±θ [32].
The TKSC respects two different glide symmetries, Gy ≡
Tce(iπ/2)

∑L
i σ

y
i and Gz ≡ Tce(iπ/2)

∑L
i σ z

i , where Tc is a transla-
tion operator by half a unit cell [16]. When 0 � θ < π/4,
the TKSC admits a doubly degenerate ferromagnetic ground
state, polarized along the easy axis ẑ. In this regime, the
ground state spontaneously breaks Gy, but still preserves one
global symmetry Gz. Below we fix θ =π/12 for the TKSC
which is close to the value used in Ref. [17] to describe
CoNb2O6. In this case, the elementary excitations of the
TKSC are domain walls between the two degenerate ground
states, similar to the ferromagnetic TFIC with interactions
given by

HTFIC =−J
L∑

i=1

σ z
i σ z

i+1−hx

L∑
i=1

σ x
i . (2)

Below, we fix hx/J =1/2 at which the system also stabilizes a
doubly degenerate ferromagnetic ground state.

Performing the Jordan-Wigner transformation, which maps
the Pauli operators to fermion operators, and Bogoliubov
transformation, we can rewrite both the TKSC and TFIC as
noninteracting fermionic systems. The TKSC then reads

HTKSC =
∑
k>0

lk (α†
k αk − α−kα

†
−k ) + λk (β†

k βk − β−kβ
†
−k ).

(3)

Here, αk and βk represent the two different bands with dis-
persion relations 2lk and 2λk respectively for the TKSC in
momentum space representation (see Appendix A for details).
The Hamiltonian in Eq. (3) can be interpreted as a four level
system with a momentum pair ±k, where energies of states
are −λk , −lk , lk , and λk . In the following, we denote such
states by |0〉, |1〉, |2〉, and |3〉. Thus the TKSC corresponds
to an ensemble of decoupled four level systems. The TFIC in
fermionic formulation reads

HTFIC =
∑
k>0

εk (γ †
k γk − γ−kγ

†
−k ), (4)

where γk represents a single band with dispersion 2εk . The
TFIC corresponds to an ensemble of decoupled two level
systems with the energy gap 2εk and is clearly distinct from
the TKSC.

III. LINEAR RESPONSE STRUCTURE FACTOR

We first briefly compare the linear response, i.e., the dy-
namical structure factor

Sxx(k, ω) = 1

4

∫
dt

∑
j

eiωt−ik(r j−rL/2 )
〈
σ x

j (t )σ x
j (0)

〉
(5)

of the TKSC and TFIC [33,34]. In both systems, a spin flip
excites a pair of domain walls (fermions) with net momentum

FIG. 1. (a), (b) Dynamical spin structure factor Sxx (k, ω) of the
ferromagnetic TKSC and TFIC. k and ω represent the momentum
and frequency, respectively. The MPS simulations are done for an
open chain using the time evolving block decimation method [37,38],
which provides an efficient way to perform a real time evolution in
1D spin systems.

k. Such fractionalization of the excitations only yields a broad
continuous spectrum. In Fig. 1, we plot Sxx(k, ω) computed
using MPS simulations with open boundary conditions (see
Appendix B for details) [35]. The two systems show a qual-
itatively similar spectrum, indicating the difficulty of using a
conventional probe like inelastic neutron scattering for distin-
guishing between the two system descriptions.1

IV. NONLINEAR RESPONSE

Next, we introduce the two-pulse experiment and show
how it can detect the nonlinear magnetic susceptibilities of
target systems. We closely follow Ref. [7] and Ref. [8].

In this setup, two magnetic pulses B0 and Bτ both polarized
along α̂ direction,

B(T ) = B0δ(T )α̂ + Bτ δ(T − τ )α̂, (6)

arrive at the target system at times T = 0 and T =τ . Here,
the magnetic field is assumed to be spatially homogeneous.
The two pulses induce a magnetization Mα

0,τ (T ) of the system
measured at time T =τ + t . To remove the induced magneti-
zation from the linear response, two additional experiments
each with a single pulse B0 or Bτ are performed which
measure Mα

0 (T ) or Mα
τ (T ), respectively. The nonlinear mag-

netization Mα
NL(T ) ≡ Mα

0,τ (T ) − Mα
0 (T ) − Mα

τ (T ) can then
be expanded as

Mα
NL(T ) = B0Bτ χ

(2)
ααα (t, τ + t )

+(B0)2Bτ χ
(3,1)
αααα (t, τ + t, τ + t )

+B0(Bτ )2χ (3,2)
αααα (t, t, τ + t ) + O(B4), (7)

which directly gives the second and higher order magnetic
susceptibilities.

1We note that similarity can be understood by the fact that stag-
gered terms induce hopping of domain walls in TKSC similar to the
transverse field term in TFIC [36].
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FIG. 2. (a)–(c) From left to right: imaginary part of Fourier transformed χ (2)
xxx (t, τ + t ), χ (3,1)

xxxx (t, τ + t, τ + t ), and χ (3,2)
xxxx (t, t, τ + t ) of the

TKSC. (d)–(f) From left to right: Imχ (2)
xxx (ωt , ωτ ), Imχ (3,1)

xxxx (ωt , ωτ ), and Imχ (3,2)
xxxx (ωt , ωτ ) of the TFIC. The 2D spectra are obtained for a periodic

chain of size L=220 over the time range Jt, Jτ =40. Since Imχ (n)(ωt , ωτ )=−Imχ (n)(−ωt , −ωτ ), the results are only shown in the first and
fourth frequency quadrant. See Appendix C for the real part. All the data are rescaled such that the maximal absolute value is 1.

Due to its exact solubility, we can analytically calculate the
χ (2)

xxx and χ (3)
xxxx susceptibilities of the TKSC (see Appendix C

for details). A formulation for the TFIC is explicitly given in
Ref. [8].

A. Second order susceptibility

We start with the second order susceptibility, which is
given by

χ (2)
xxx(t, τ + t )= −�(t )�(τ )

L
〈[[Mx(τ + t ), Mx(τ )], Mx(0)]〉,

(8)

where Mx(T ) ≡ 1
2

∑
i eiHT σ x

i e−iHT represents the total mag-
netization along x̂ direction in the Heisenberg picture [8]. To
formulate χ (2)

xxx of the TKSC, one needs to calculate expecta-
tion values of the form

〈g|Mx(T1)Mx(T2)Mx(T3)|g〉. (9)

Here, |g〉 represents the ferromagnetic ground state of
the TKSC, which is invariant under the ẑ-glide op-
eration: Gz|g〉=|g〉. At the same time, the operator
Mx(T1)Mx(T2)Mx(T3) is odd under the same glide oper-
ation: GzMx(T1)Mx(T2)Mx(T3)G†

z =−Mx(T1)Mx(T2)Mx(T3).
The invariance of |g〉 and oddness of the operator
Mx(T1)Mx(T2)Mx(T3) under Gz makes Eq. (9) vanish and χ (2)

xxx
is zero [Fig. 2(a)] unless additional symmetry-breaking terms
are added to the system. Such a nonlinear spectrum of the
TKSC is clearly distinct from the one of the TFIC [Fig. 2(d)]
which contains a strong terahertz rectification signal in χ (2)

xxx
[8]. When the second order susceptibility vanishes, the third or
higher order susceptibilities dominate the nonlinear response
of the system.

B. Third order susceptibility

We now turn to the next leading order response, i.e., χ (3,1)
xxxx

and χ (3,2)
xxxx . Using the basis introduced in Eq. (3), we can

also express Mx(T ) in terms of fermion operators and obtain
the formula for the third order susceptibility of the TKSC
analytically:

χ (3,1)
xxxx (t, τ + t, τ + t )= �(t )�(τ )

L

∑
k>0

P(1)
k +P(2)

k +P(3)
k ,

with

P(1)
k =−8c4

k [sin(2lkt )+(lk ↔ λk )],

P(2)
k =8

(
c4

k −c2
k

)
[sin(2lkt +(lk + λk )τ )+(lk ↔ λk )],

P(3)
k =8

(
c2

k −c4
k

)
[sin((lk −λk )t + (lk +λk )τ )+(lk ↔ λk )],

where ck is the matrix element of the magnetization along x̂
direction in the basis introduced in Eq. (3) (see Appendix C
for definitions). In χ (3,1)

xxxx , P(1−3)
k represent different two-time

evolution paths of a fermion pair with momenta ±k excited by
the pulses. Employing the four level picture of the fermionic
Hamiltonian in momentum space, we can interpret P(1)

k as
follows. The second pulse in the two-pulse setup induces tran-
sitions between |1〉 and |2〉, resulting in an oscillatory signal
with frequency 2lk throughout the time interval t between the
second pulse and measurement. This signal is encoded in the
first term of P(1)

k . The term is not oscillatory in τ and gives
rise to a peak at (ωt , ωτ )= (2lk, 0) in the frequency domain
[Fig. 2(b)]. Interpreting ωt as the detecting frequency and ωτ

as the pumping frequency, the signal can be understood as a
pump probe signal. Such a signal is also contained in χ (3,1)

xxxx

of the TFIC [Fig. 2(e)]. P(2)
k contains terms which are oscilla-

tory both in t and τ . Such terms produce non-rephasing-like
signals at (ωt , ωτ )= (2lk, lk + λk ) and (ωt , ωτ )= (2λk, lk +
λk ), giving rise to off-diagonal peaks in the first frequency
quadrant as shown in Fig. 2(b). P(3)

k is distinct from P(1,2)
k in

that it contains a term where t and τ come with opposite signs:
the dephasing process during τ is followed by the rephasing
process during t . This process induces rephasing like signals
which appear as off-diagonal peaks in the fourth quadrant,
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mirroring the energy range of corresponding fermion pairs
[Fig. 2(b)].

Qualitatively different signals are encoded in χ (3,2)
xxxx , which

is given as

χ (3,2)
xxxx (t, t, τ + t )= �(t )�(τ )

L

∑
k>0

Q(1)
k +Q(2)

k +Q(3)
k +Q(4)

k ,

with

Q(1)
k =−4c2

k [sin(2lk (t + τ ))+(lk ↔ λk )],

Q(2)
k =−4c4

k [sin(2lk (t − τ ))+(lk ↔ λk )],

Q(3)
k =4

(
c4

k − c2
k

)
[sin(2λkt + 2lkτ )+(lk ↔ λk )],

Q(4)
k =8

(
c2

k − c4
k

)
[sin((λk − lk )t + 2łkτ )+(lk ↔ λk )].

The presence of Q(1)
k and Q(2)

k results in the appearance of
diagonal peaks in the frequency domain [Fig. 2(c)]. Q(1)

k is
oscillatory in t + τ and induces diffusive nonrephasing sig-
nals in the first quadrant. The signals are barely visible since
the amplitude is relatively small for θ = π/12. Q(2)

k is unique
in that t and τ come with opposite signs but with the same
oscillation frequency 2lk or 2λk . Unlike other terms, the phase
accumulated during τ is perfectly canceled out during t , re-
gardless of the oscillation frequency. This corresponds to the
“spinon echo,” which was discovered in Ref. [8] for the TFIC
[Fig. 2(f)] and results in a diagonal rephasing signal in the
fourth quadrant [Fig. 2(c)]. Q(3)

k produces non-rephasing-like
signals at (ωt , ωτ )= (2λk, 2lk ) and (ωt , ωτ )= (2lk, 2λk ), giv-
ing rise to off-diagonal peaks in the first quadrant [Fig. 2(c)].
Q(4)

k contains terms that induce strong off-diagonal peaks in
the frequency domain, reflecting the energy range of corre-
sponding states [Fig. 2(c)].

C. Discussion of second and third order susceptibilities

The 2D spectra of the TKSC and the TFIC show qualitative
differences. First, χ (2)

xxx of the TKSC vanishes due to ẑ-glide
symmetry, while it is finite for the TFIC. In such a situation,
χ (3)

xxxx dominates the nonlinear response of the system. χ (3)
xxxx

of the TKSC contains off-diagonal peaks coming from the
staggered interactions, in sharp contrast to χ (3)

xxxx of the TFIC.
The emergence of such off-diagonal peaks can be used to
distinguish the TKSC from the TFIC.

V. GLIDE SYMMETRY AND CoNb2O6

A. Integrable cases

We now add a transverse field term −hx
∑L

i σ x
i to the

TKSC in Eq. (1), which breaks the ẑ-glide symmetry and
makes the leading nonlinear susceptibility χ (2)

xxx finite. We then
investigate whether off-diagonal peaks arise in χ (2)

xxx(ωt , ωτ ),
revealing the staggered interactions. Note, we only focus on
the regime where the ground state remains ferromagnetic. The
transverse field term is also quadratic in fermionic operators,
allowing for an analytic calculation of nonlinear suscepti-
bilities (see Appendix D for details). In Fig. 3(a), we plot
Imχ (2)

xxx(ωt , ωτ ) at a low transverse field hx/J =1/20. First, it
contains a dominant vertical terahertz rectification signal sim-
ilar to the one of the TFIC [8]. At the same time, off-diagonal

FIG. 3. Imχ (2)
xxx (ωt , ωτ ) of the TKSC with (a) a small transverse

field hx/J = 1/20 and (b) a strong transverse field hx/J = 1/2. The
calculations are done for a periodic chain of L = 220 and over the
time range Jt, Jτ = 40.

peaks appear, reflecting the energy range of corresponding
fermion pairs. In the strong field regime hx/J =1/2, the am-
plitude of the off-diagonal peaks becomes relatively weak
as shown in Fig. 3(b). It can be understood by the fact that
the strength of the staggered terms in the TKSC, given by
±Y Z-type interactions in Eq. (1), becomes relatively small in
the strong field limit hx/J → 1 where the full system behaves
like the TFIC.

B. Nonintegrable cases and CoNb2O6

Our results can be compared to the quasi-1D Ising magnet
CoNb2O6, which was recently proposed as a close material re-
alization of the TKSC [16,17]. In CoNb2O6, cobalt atoms are
surrounded by distorted octahedra formed by oxygen atoms.
These edge-sharing octahedra form an isolated zigzag 1D
chain along the crystal axis ĉ, as shown in Fig. 4(a). In this
material, the local axis ŷ is exactly aligned to the crystal axis b̂,
unlike the local axis x̂, which makes an angle φ=±31◦ with
the crystal axis â [17,26]. In this case, χ (2)

yyy =χ
(2)
bbb would be

experimentally more pronounced than χ (2)
xxx, which is distinct

from χ (2)
aaa. On the other hand, the accurate description of

CoNb2O6 may comprise subdominant XX -type interactions,
which are allowed by the crystal symmetry, as revealed by
neutron scattering experiments [16,30,31]. In this regard, we
focus on the system given as

H = − J
L′∑

i=1

[σ̃2i−1(θ )σ̃2i(θ ) + σ̃2i(−θ )σ̃2i+1(−θ )]

− Jx

L∑
i

σ x
i σ x

i+1 − hy

L∑
i

σ
y
i , (10)
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FIG. 4. (a) Unit cell of CoNb2O6 where each zigzag chain is
aligned along the crystal axis ĉ. The black arrows indicate the two
different local ẑ axes, which lie in the â−ĉ plane with the tilting
angle φ=±31◦ [17,26]. (b) Imχ (2)

yyy (ωt , ωτ ) with θ =π/12, Jx/J =0,
and hy/J =1/20. (c) Imχ (2)

yyy (ωt , ωτ ) with θ =π/12, Jx/J =1/10, and
hy/J =1/20.

which contains the additional XX -type interaction and trans-
verse field term along the ŷ axis. Since the b̂ and ŷ axes
are aligned, the transverse term can be included by simply
applying an external field along the crystal axis b̂ to CoNb2O6.
The system is nonintegrable, except in two cases with θ = 0
or θ 	= 0, Jx = 0, and hy = 0.

We now calculate χ (2)
yyy of the system in the ferromag-

netic regime with fixed θ =π/12, which is close to the value
given in Ref. [17] for CoNb2O6, using infinite MPS tech-
niques [29]. The techniques provide a way to calculate the
numerically exact χ (2)

yyy for the nonintegrable cases and the
calculations are done with window size L=120 and over
the time range Jt, Jτ =20. We checked the dependence of
χ (2)

yyy on the bond dimension χ and the time step δt , settling
on χmax = 1000 and δt =0.01/J . We first notice that χ (2)

yyy

vanishes unless the ẑ-glide symmetry breaking term is finite,
hy 	=0. In Fig. 4(b), we plot Imχ (2)

yyy(ωt , ωτ ) of the system with
Jx/J =0 and hy/J =1/20. Analogous to Imχ (2)

xxx(ωt , ωτ ) of the
TKSC with the transverse field along the x̂ direction, it also
contains off-diagonal peaks which can signal the presence of
the staggered interactions. We also investigate the effect of
additional XX -type interactions on such off-diagonal peaks
regarding CoNb2O6. As shown in Fig. 4(c) for the system with
Jx/J =1/10 and hy/J =1/20, such peaks still appear though
the amplitude becomes relatively weak.

VI. CONCLUSIONS

In the present work, we propose a way to distinguish
two similar systems, i.e., the ferromagnetic TKSC and TFIC,
using 2DCS. In both systems, elementary spin flips fraction-
alize into domain wall excitations, resulting in a qualitatively
similar continuum in the linear response dynamical structure
factor. In contrast, we show that the 2D nonlinear spectrum
as a function of ωτ and ωt , associated with the time interval
between a probe and measurement pulse, offers a clear way
to discern the two systems. Unlike the TFIC, the second order
susceptibility χ (2)

xxx vanishes for the TKSC due to the presence
of a ẑ-glide symmetry. Moreover, the third order susceptibility
χ (3)

xxxx of the TKSC contains non-rephasing- and rephasing-like
signals which appear as off-diagonal peaks in the frequency
domain, originating from the presence of bond dependent
interactions.

Regarding the canted structure of CoNb2O6, a possible
material realization of the TKSC, we also investigate the sec-
ond order susceptibility χ (2)

yyy. For the nonintegrable regime we
have employed the infinite MPS method for calculating the
nonlinear response. First, we find that χ (2)

yyy of the TKSC van-
ishes unless additional ẑ-glide symmetry breaking terms are
included. Second, we observe the emergence of off-diagonal
peaks with an external transverse field along the ŷ axis. Such
peaks persist with additional XX -type interactions, which can
be subdominant in CoNb2O6. We expect our results will shed
light on the unambiguous identification of the correct micro-
scopic description of CoNb2O6.

Advances in spectroscopic methods, accessible frequency
ranges, and improved energy resolution allow for a more
precise understanding of correlated quantum systems. We
expect 2DCS to be an excellent tool for determining the mi-
croscopic parameters of quantum magnets, not only for the
one-dimensional example considered here but also for two-
and three-dimensional frustrated magnets.

Data analysis and simulation codes are available on Zen-
odo upon reasonable request [39].
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APPENDIX A: JORDAN-WIGNER FORMALISM

In this Appendix, we introduce the Jordan-Wigner formu-
lation of the TKSC. The TKSC is written as

HTKSC = −J
L′∑

i=1

(σ̃2i−1(θ )σ̃2i(θ ) + σ̃2i(−θ )σ̃2i+1(−θ )).

We now introduce the Jordan-Wigner transformation, which
maps the Pauli operators to fermionic operators through the
relations [32]

σ x
j = 1 − 2c†

j c j,

σ
y
j = −i(c†

j − c j )
∏
i< j

(1 − 2c†
i ci ),

σ z
j = (c†

j + c j )
∏
i< j

(1 − 2c†
i ci ). (A1)

Using Eq. (A1), we arrive at a bilinear form in terms of
spinless fermions:

HTKSC = −J
L′∑

i=1

[e−2iθ c†
2i−1c†

2i + c†
2i−1c2i

+ e+2iθ c†
2ic

†
2i+1 + c†

2ic2i+1 + H.c.]. (A2)

We then adopt the Fourier transformation c2 j−1 =
1√
L′

∑
k e−ik jak, c2 j = 1√

L′
∑

k e−ik jbk with the discrete
momenta k = nπ

L′ , n=−(L′− 1), . . . , (L′− 3), (L′− 1). The
TKSC now takes the form

HTKSC = −J
∑

k

[Bka†
kb†

−k + Aka†
kbk − A∗

kakb†
k − B∗

k akb−k],

(A3)

where Ak = 1 + eik and Bk = e−2iθ − ei(k+2θ ). To diagonalize
the Hamiltonian Eq. (A3), we write it in a matrix form as

HTKSC =
∑
k>0

(a†
k, a−k, b†

k, b−k )M̂k

⎛
⎜⎜⎜⎝

ak

a†
−k

bk

b†
−k

⎞
⎟⎟⎟⎠, (A4)

where

M̂k =

⎛
⎜⎜⎝

0 0 Sk Pk + Qk

0 0 Pk − Qk −Sk

S∗
k P∗

k − Q∗
k 0 0

P∗
k + Q∗

k −S∗
k 0 0

⎞
⎟⎟⎠,

with Pk = iJ (1 + eik ) sin 2θ, Qk = −J (1 − eik ) cos 2θ , and
Sk = −J (1 + eik ). The diagonalization of Eq. (A4) is

achieved by the Bogoliubov transformation

(α†
k , α−k, β

†
k , β−k ) Ûk = (a†

k, a−k, b†
k, b−k ). (A5)

The Hamiltonian is now diagonalized in the new basis as

HTKSC =
∑
k>0

[
lk (α†

k αk − α−kα
†
−k ) + λk (β†

k βk − β−kβ
†
−k )

]
,

(A6)

where lk =
√

ξk −
√

ξ 2
k − τ 2

k , λk =
√

ξk +
√

ξ 2
k − τ 2

k with

ξk = |Pk|2 + |Qk|2 + |Sk|2, and τk = |P2
k − Q2

k + S2
k |.

APPENDIX B: DETAILS OF MPS SIMULATION
FOR THE DYNAMICAL STRUCTURE FACTOR

In this Appendix, we provide details of the MPS simula-
tions for the dynamical structure factor [35]

Sxx(k, ω)

= 1

4

∫
dt

∑
j

eiωt−ik(r j−rL/2 )〈σ x
j (t )σ x

L/2(0)〉

= 1

4

∫
dt

∑
j

[
eiωt−ik(r j−rL/2 )eiEgt 〈g|σ x

j e−iHtσ x
L/2|g〉G(t )

]
.

(1) Find an MPS approximation of the ground state |g〉 with
an energy Eg using the density matrix renormalization group.

(2) Apply a local operator σ x
L/2 and obtain σ x

L/2|g〉.
(3) Perform a real time evolution following the local

quench σ x
L/2 using the time evolving block decimation method

[37,41] to get an MPS which represents e−iHtσ x
L/2|g〉.

(4) Evaluate an overlap of two MPS “bra” and “ket” to
obtain 〈g|σ x

j e−iHtσ x
L/2|g〉.

(5) Multiply eiEgt and 〈g|σ x
j e−iHtσ x

L/2|g〉.
(6) Apply a discrete Fourier transformation in space that

yields the momentum-resolved time-dependent data Sxx(k, t ).
(7) Perform a Fourier transformation of the time series

convoluted with a Gaussian window function G(t ) = e−t2/2σ 2

to prevent Gibbs oscillations [16,42,43].
For the result given in Fig. 1, we set the system size

L = 120, time step size δt = 0.02J , total simulation time
tmax = 60J , maximum bond dimension χmax = 500, and the
Gaussian envelope parameter σ = 0.05.

APPENDIX C: MAGNETIC SUSCEPTIBILITIES
OF THE TKSC

Here, we analytically formulate the linear and nonlinear
magnetic susceptibilities of the TKSC. Mx, the total magne-
tization of the target system along x̂ direction, in fermionic

134423-6
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formulation reads

Mx = 1

2

L′∑
i

(
σ x

2i−1 + σ x
2i

) =
∑
k>0

mx
k

=
∑
k>0

[−a†
kak + a−ka†

−k − b†
kbk + b−kb†

−k]. (C1)

Mx can be rewritten in the basis introduced in Eq. (A5):

Mx =
∑
k>0

[−a†
kak + a−ka†

−k − b†
kbk + b−kb†

−k] = (a†
k, a−k, b†

k, b−k )

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ak

a†
−k

bk

b†
−k

⎞
⎟⎟⎟⎟⎠

= (α†
k , α−k, β

†
k , β−k )Ûk

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠Û †

k

⎛
⎜⎜⎜⎜⎝

αk

α
†
−k

βk

β
†
−k

⎞
⎟⎟⎟⎟⎠

= (α†
k , α−k, β

†
k , β−k )

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ck

√
1 − c2

k 0

ck 0 0
√

1 − c2
k√

1 − c2
k 0 0 −ck

0
√

1 − c2
k −ck 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

αk

α
†
−k

βk

β
†
−k

⎞
⎟⎟⎟⎟⎠, (C2)

where |ck| � 1. In the Heisenberg picture,

Mx(t ) =
∑

k

(α†
k , α−k, β

†
k , β−k )

⎛
⎜⎜⎜⎜⎜⎜⎝

0 cke−2iλkt
√

1 − c2
keit (lk−λk ) 0

cke2iλkt 0 0
√

1 − c2
ke−it (lk−λk )√

1 − c2
ke−it (lk−λk ) 0 0 −cke−2ilkt

0
√

1 − c2
keit (lk−λk ) −cke2ilkt 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

αk

α
†
−k

βk

β
†
−k

⎞
⎟⎟⎟⎟⎠.

(C3)

We now calculate the linear and nonlinear magnetic
susceptibilities of the TKSC. We first consider the linear sus-
ceptibility χ (1)

xx (t ). The starting point is the Kubo formula:

χ (1)
xx (t ) = i�(t )

L
〈[Mx(t ), Mx(0)]〉

= i�(t )

L

∑
k>0

〈[
mx

k (t ), mx
k (0)

]〉

= 2

L

∑
k>0

c2
k (sin(2lkt ) + sin(2λkt )), (C4)

where 〈· · · 〉 represents the average in the ground state. The
second equality comes from the fact that mx

k with different k
commute. The second order nonlinear susceptibility is given
as

χ (2)
xxx(t, τ + t )= i2�(t )�(τ )

L
〈[[Mx(τ + t ), Mx(τ )], Mx(0)]〉

= i2�(t )�(τ )

L

∑
k>0

〈[[
mx

k (τ + t ), mx
k (τ )

]
, mx

k (0)
]

=0. (C5)

As pointed out in the main text, the second order suscepti-
bility of the TKSC vanishes. The formula for the third order
nonlinear susceptibility is given as

χ (3)
xxxx(t3, t2 + t3, t1 + t2 + t3)= i3�(t1)�(t2)�(t3)

L
〈[[[Mx(t1 + t2 + t3), Mx (t1 + t2)], Mx(t1)], Mx(0)]〉

= i3�(t1)�(t2)�(t3)

L

∑
k>0

〈[[[
mx

k (t1 + t2 + t3), mx
k (t1 + t2)

]
, mx

k (t1)
]
, mx

k (0)
]〉
. (C6)

134423-7



SIM, POLLMANN, AND KNOLLE PHYSICAL REVIEW B 108, 134423 (2023)

FIG. 5. (a), (b) Real part of Fourier transformed χ (3,1)
xxxx (t, τ + t, τ + t ) and χ (3,2)

xxxx (t, t, τ + t ) of the TKSC (four level system).
(c), (d) Real part of Fourier transformed χ (3,1)

xxxx (t, τ + t, τ + t ) and χ (3,2)
xxxx (t, t, τ + t ) of the TFIC (two level system). Since Reχ (2)

xxx (ωt , ωτ ) =
Reχ (2)

xxx (−ωt ,−ωτ ), the result is only shown in the first and fourth frequency quadrants.

We focus on the two limits which correspond to χ (3)
xxxx

measured in the two-pulse setup, χ (3,1)
xxxx (t, τ + t, τ + t ) with

t1 →0, t2 →τ, t3 → t , and χ (3,2)
xxxx (t, t, t + τ ) with t1 →τ,

t2 →0, t3 → t :

χ (3,1)
xxxx (t, τ + t, τ + t ) = �(t )�(τ )

L

∑
k>0

P(1)
k +P(2)

k +P(3)
k ,

with

P(1)
k = − 8c4

k [sin(2lkt )+(lk ↔ λk )],

P(2)
k = 8

(
c4

k −c2
k

)
[sin(2lkt +(lk + λk )τ )+(lk ↔ λk )],

P(3)
k = 8

(
c2

k −c4
k

)
[sin((lk −λk )t + (lk +λk )τ )+(lk ↔ λk )],

and

χ (3,2)
xxxx (t, t, τ + t ) = �(t )�(τ )

L

∑
k>0

Q(1)
k +Q(2)

k +Q(3)
k +Q(4)

k ,

with

Q(1)
k =−4c2

k [sin(2lk (t + τ ))+(lk ↔ λk )],

Q(2)
k =−4c4

k [sin(2lk (t − τ ))+(lk ↔ λk )],

Q(3)
k =4

(
c4

k − c2
k

)
[sin(2λkt + 2lkτ )+(lk ↔ λk )],

Q(4)
k =8

(
c2

k − c4
k

)
[sin((λk − lk )t + 2łkτ )+(lk ↔ λk )],

where ck is the matrix element of the magnetization as given
in Eq. (C2).

In Fig. 5, we plot the real part of Fourier transformed
χ (3,1)

xxxx (t, τ + t, τ + t ) and χ (3,2)
xxxx (t, t, τ + t ) for the TKSC and

TFIC. The formulation for the TFIC is explicitly given in
Ref. [8]. χ (3)

xxxx of the TKSC [Figs. 5(a) and 5(b)] contains
the off-diagonal signals unlike χ (3)

xxxx of the TFIC [Figs. 5(c)
and 5(d)]. Such signals come from the transition between
different excited states, whose presence originates from the
bond dependent spin exchange interactions. For example, P(2)

k
contains a transition between the first excited state |1〉 and the
second excited state |2〉 as illustrated in Fig. 5(e), resulting in
an oscillatory signal with frequency 2lk throughout the time
interval t .

APPENDIX D: SECOND ORDER SUSCEPTIBILITIES
OF THE TKSC WITH TRANSVERSE FIELD

The TKSC with a transverse field along x̂ direction is
written as

H = −J
L′∑

i=1

(σ̃2i−1(θ )σ̃2i(θ )+σ̃2i(−θ )σ̃2i+1(−θ ))−hx

L∑
i=1

σ x
i .

(D1)
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We now rewrite the model in terms of spinless fermions using
the Jordan-Wigner transformation:

H =
∑
k>0

(a†
k, a−k, b†

k, b−k )M̂k

⎛
⎜⎜⎝

ak

a†
−k
bk

b†
−k

⎞
⎟⎟⎠, (D2)

where

M̂k =

⎛
⎜⎜⎝

2hx 0 Sk Pk + Qk

0 −2hx Pk − Qk −Sk

S∗
k P∗

k − Q∗
k 2hx 0

P∗
k + Q∗

k −S∗
k 0 −2hx

⎞
⎟⎟⎠,

with Pk = iJ (1 + eik ) sin 2θ, Qk = −J (1 − eik ) cos 2θ , and
Sk = −J (1 + eik ). Using the Bogoliubov transformation,

(γ †
k , γ−k, η

†
k , η−k ) Ûk = (a†

k, a−k, b†
k, b−k ), (D3)

Eq. (D2) can be diagonalized as

H =
∑
k>0

[
lk (γ †

k γk − γ−kγ
†
−k ) + λk (η†

kηk − η−kη
†
−k )

]
, (D4)

where lk =
√

ξk + 4h2
x −

√
ξ 2

k − τ 2
k + 16h2

x |Sk|2 and λk =√
ξk + 4h2

x +
√

ξ 2
k − τ 2

k + 16h2
x |Sk|2, with ξk = |Pk|2 +

|Qk|2 + |Sk|2 + 4h2
x and τk = |P2

k − Q2
k + S2

k | + 4h2
x . Then,

one can use the Kubo formula given in Appendix C to obtain
nonlinear susceptibilities. In Fig. 6, we plot the real part of

FIG. 6. Real part of Fourier transformed χ (2)
xxx (t, τ + t ) of the

TKSC with (a) a small transverse field hx/J = 1/20 and (b) a strong
transverse field hx/J = 1/2.

Fourier transformed χ (2)
xxx(t, τ + t ) with a low hx/J = 1/20

and strong hx/J = 1/2 transverse field. As pointed out in
the main text, the additional transverse field terms break the
ẑ-glide symmetry of the TKSC and make χ (2)

xxx finite with
off-diagonal signals.
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