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Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
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We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior
of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom
is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different
angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant
parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and
type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect
bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect
the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the
anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice
of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements
and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high
temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching
values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role
on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility
for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations.
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I. INTRODUCTION

For basic research and applications, magnetic studies are
of fundamental relevance as they are an important tool for
revealing otherwise hidden structural, thermodynamic, and
physicochemical properties of a material. Hysteresis loops
are usually measured to characterize the dynamic behavior of
bulk samples that exhibit microstructures like grain bound-
aries, defects, etc., and multiple domains [1,2]. Furthermore,
such measurements are also performed for low-dimensional
magnets such as magnetic nanoparticles (NPs) or thin
films [3].

The power generated by a sample subject to an alternating
magnetic field can be directly determined from the shape of
a hysteresis loop. In fact, the specific absorption rate (SAR),
defined as the absorbed energy per unit of mass, is propor-
tional to the area of this curve [4]. In magnetic hyperthermia
[5–7], for instance, SAR provides the heating efficiency of
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a specific type of magnetic nanoparticle. Furthermore, the
magnetization of nanoparticles is of great interest for many
other technological applications [8,9]. Magnetization in small
NPs is expected to flip due to thermal fluctuations during
the timescale of a few seconds in typical experiments, giving
rise to superparamagnetic behavior below some critical size,
which for Fe is close to 20 nm. However, hysteresis loops
with ferromagnetic blocked behavior have been observed for
relatively simple Fe NPs, indicating complex magnetic be-
havior, which is not fully understood [10–12]. Some of this
behavior might be related to lattice defects [11,12]. It has
been emphasized that defect engineering will allow novel
future technological applications of magnetic nanoparticles
[13,14], pointing out the need to model defective magnetic
nanosystems.

Different classical models are used to describe magnetic
hysteresis [1,15]. Possibly, the most popular one is that of
Stoner and Wohlfarth (SW) [16,17]. This model is relatively
simple to evaluate numerically, allowing easy comparison
with experimental results. However, the SW model assumes
an important number of approximations. Among them, it is

2469-9950/2023/108(13)/134417(21) 134417-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2993-2963
https://orcid.org/0000-0003-1873-0522
https://orcid.org/0000-0003-2782-1282
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.134417&domain=pdf&date_stamp=2023-10-13
https://doi.org/10.1103/PhysRevB.108.134417


G. DOS SANTOS et al. PHYSICAL REVIEW B 108, 134417 (2023)

considered that the material behaves as a single magnetic do-
main. This is known as the macrospin approximation, which
implies that below a certain length scale, typically on the order
of a few nanometers, the internal structure of the material
is neglected. In the SW model the Hamiltonian is the sum
of a Zeeman term and a uniaxial anisotropy term. Hysteretic
behavior arises as a consequence of a simple zero-temperature
dynamic protocol: As the external field varies in time, the
magnetization can either change continuously while the sys-
tem remains at an energy minimum, or it can jump abruptly to
another value when that minimum becomes unstable. Usually,
the SW model is employed to compare with experiments
for a large collection of randomly oriented NP, and obtain
relevant physical quantities [10]. In addition, although in the
original SW model thermal fluctuations were not considered,
further approaches have attempted to incorporate temperature
effects [18].

Fortunately, micromagnetic simulations allow one to over-
come many of these limitations [19,20]. Thus, it is possible
to study a system made up of a large number of interacting
macrospins with a Hamiltonian including any complex ener-
getic term. In particular, the equilibrium or nonequilibrium
magnetization dynamics of such a model can be calculated
by numerically solving either the stochastic Landau-Lifshitz-
Gilbert (sLLG) or the stochastic Landau-Lifshitz (sLL)
phenomenological equations [21,22]. From first principles it
can be proved that this same theoretical framework is valid to
carry out atomistic spin dynamic (ASD) simulations [23,24].
This simulation method has been successfully applied to the
modeling of hysteresis loops [25–28]. Another alternative
to include temperature effects in hysteresis loops is to use
Metropolis Monte Carlo simulations for a fixed lattice [29,30].

More recently, there has been increased interest in studying
more realistic models that take into account both spin and lat-
tice degrees of freedom, and the coupling between them. Most
of these methods are based on coupled spin-dynamics (SD)
and molecular-dynamics (MD) simulations [31–35]. This is
commonly known as spin-lattice dynamics (SLD) simula-
tions. Other first-principle-based methods combine atomistic
spin dynamics with ab initio molecular dynamics (ASD-
AIMD) [36], but this is limited to systems with a few atoms
due to the high computational cost of calculating interatomic
forces via ab initio methods.

SLD simulations are typically based on a Langevin ap-
proach that allows one to describe the evolution of both lattice
and spin degrees of freedom [37]. Although this method is
very powerful, its implementation can be computationally
demanding and, as the complexity of a system increases,
the number of parameters that characterize it also increases.
Therefore, the practical use of this numerical scheme for
calculation of hysteresis loops requires a deep exploration. In
this work, we use SLD calculations with sLL spin dynamics to
simulate the hysteretic behavior of a ferromagnetic material.
We use physical parameters that are typical for bulk bcc iron.
We focus on determining optimal simulation parameters that
allow one to obtain reliable results at low temperatures. Also,
we explore how the hysteresis loops depend on the different
physical properties that characterize these magnetic systems:
Anisotropy, exchange, damping, and lattice vibrations. The
paradigmatic SW model is taken as a reference to achieve

this goal. Additional simulations are carried out to analyze the
importance of SLD simulation at higher temperatures. Finally,
we present NP hysteresis loops simulations, including defects
like the ones found in experiments.

We explore the possibility of using a high damping pa-
rameter in order to reduce the relaxation time and speed up
the calculations. The use of strong damping led us to re-
vise the definition of the noise-noise correlations in the sLL
equations and find the correct parameter dependence that lets
the systems thermalize with their equilibrium environments at
long times. In this work, we perform SLD simulations using
the SPIN package of the software LAMMPS [37–39]. In order to
enable its use in this study with relatively large damping, the
software was modified accordingly.

The paper is organized as follows. In Sec. II, the theoret-
ical models used and the simulation details are presented. In
Sec. III, the main results of this study are shown. A summary
and the conclusions of the work are drawn in Sec. V. In
order to simplify several parametric studies, as a first approach
we run spin-dynamics simulations with the positions of the
atoms fixed at their ideal equilibrium values. The influence
of the spin-lattice coupling is explored and discussed in the
last part of Sec. III. Finally, in an Appendix we derive the
Fokker-Planck equation associated to the SLD dynamics and
from it, we fix the noise-noise correlations that ensure the
asymptotic approach to equilibrium. We confirmed, with sim-
ulations not shown here, that these do indeed take the systems
to equilibrium even at large values of the damping factor, very
convenient to reduce the simulation time.

II. METHODS

In Sec. II A we describe the main characteristics of the SLD
model from LAMMPS [37–39], and in Sec. II B we give some
simulation details.

A. SLD model

Let us consider an ensemble of N atoms each endowed
with a classical magnetic moment. The Hamiltonian of the
model is

H =
N∑

i=1

|pi|2
2mi

+
N∑

i, j,i �= j

V (ri j ) + Hmag. (1)

The first term in Eq. (1) accounts for the kinetic energy of the
N atoms where pi and mi represent, respectively, the linear
momentum and mass of the ith atom (mi = 55.845 u for iron).
The second term is the interatomic potential describing the
interactions between pairs of atoms at positions ri and r j

separated by a distance ri j ≡ |ri − r j |. As usual in molecular-
dynamics simulations of metals, we use a classical embedded
atom model (EAM) potential which describes well a broad
spectrum of iron properties [40,41]. The interatomic cutoff
distance for this potential was set to 0.57 nm.

The coupling among the spin and lattice degrees of free-
dom is provided through the last term in Eq. (1), a magnetic
Hamiltonian defined as

Hmag = −μ0μH ·
N∑

i=0

si −
N∑

i, j,i �= j

J (ri j )si · s j + Hani. (2)

134417-2



FEASIBILITY ANALYSIS TOWARDS THE SIMULATION … PHYSICAL REVIEW B 108, 134417 (2023)

Here, si is a classical unitary vector representing the spin of
the ith atom. The first term in Eq. (2) is the Zeeman energy,
the interaction of each spin with an external uniform magnetic
field H , where μ = 2.2 µB is the atomic magnetic moment
for iron (μB is the Bohr magneton) and μ0 is the vacuum
permeability constant. Note that the Zeeman energy within
LAMMPS is defined slightly differently than in Eq. (2), and
a rescaling had to be applied to recover our formulation.
The second term is just a Heisenberg Hamiltonian describing
the interaction between spins, where J (ri j ) is an interatomic
distance-dependent exchange coupling which is defined as the
following Bethe-Slater curve [42,43]:

J (ri j ) = 4α
( ri j

δ

)2
[

1 − γ
( ri j

δ

)2
]

e−( ri j
δ )

2

�(Rc − ri j ), (3)

being �(Rc − ri j ) the Heaviside step function and Rc the
cutoff distance. The coefficients in Eq. (3) can be fitted with
ab initio or experimental data. In this work we fit Eq. (3) to
data by Ma et al. [44], as it was already done in previous
works [34,45]. Specifically, we use the following values: α =
96.0 meV, γ = 0.20, δ = 0.154 nm. In addition, we choose
Rc = 0.35 nm.

Finally, the last term in Eq. (2) is responsible for computing
the magnetocrystalline anisotropy. In this work we consider
one of two, either uniaxial Huni or cubic Hcub anisotropy. The
corresponding expressions are given by

Huni = −K1

N∑
i=1

(si · n)2 (4)

and

Hcub =
N∑

i=1

{K1 [(si · n1)2(si · n2)2 + (si · n2)2(si · n3)2

+ (si · n1)2(si · n3)2]

− K2 (si · n1)2(si · n2)2(si · n3)2}. (5)

Here, the unit vectors n1, n2, and n3 lie along the three crys-
tallographic directions [100], [010], and [001], respectively.
In Eq. (4), n is also a unit vector that in general could point
along any of these axes. The first term in the cubic anisotropy
energy above is defined with different sign within LAMMPS.
K1 and K2 are the magnetocrystalline anisotropy constants
which we set to K1 = 35 µeV/atom and K2 = 3.6 µeV/atom
(equivalents to volumetric anisotropies K1V = 470 kJ/m3 and
K2V = 46 kJ/m3). In order to make comparisons, we have
used the same value of K1 in both anisotropy equations. Since
this constant is positive (and also K2 > 0), then the easy axes
of magnetization in Eqs. (4) and (5) are given by the unit
vector defined above. Note that the values of K1 and K2 are
10 times larger than those usually used to model bulk bcc
iron [3]. However, such larger anisotropy magnitude has been
considered for Fe nanoparticles [10,46], and we also consider
bulk values for selected runs. As we will discuss later, using
a large anisotropy in the simulations helps to quickly stabi-
lize the magnetization of the system. Increasing anisotropy
for numerical reasons has been employed for other magnetic
simulations, for instance, to obtain domain walls with smaller

widths [47] or to confine the magnetization dynamics to a
plane [48].

We note that an improved implementation of the anisotropy
would include a better description of the spin-orbit coupling
[49–51] and also a local variation of magnetic moments and
couplings, for instance, depending on atomic volume [52].
However, uniaxial and cubic anisotropies are often used to
interpret experimental results, for a number of models and
simulations [10,53–56]. We include a simple description of
anisotropy within this spirit and, in our simulations, lattice and
spin dynamics are coupled through the distance-dependent
exchange function J (ri j ) and by the spins Langevin thermostat
set at the same temperature as the lattice (see below). In
addition, to speed up our calculations we have neglected long-
range dipolar interactions in the magnetic Hamiltonian. Since
we simulate small systems (see below), this approximation
should not affect the validity of our results.

The core of this simulation method, lattice and spin
coupling, is contained in the following coupled Langevin
equations [37]:

dri

dt
= pi

mi
, (6)

d pi

dt
=

N∑
i, j,i �= j

[
−dV (ri j )

dri j
+ dJ (ri j )

dri j
si · s j

]
ei j

− γL

mi
pi + ξi, (7)

dsi

dt
= 1

1 + λ2
s

[(ωi + ζi ) × si + λssi × (ωi × si )]. (8)

In Eq. (7), ei j represents a unit vector along the line con-
necting atoms i and j, γL is the lattice damping coefficient,
and ξ(t ) is a random fluctuating force drawn from a Gaussian
distribution with

〈ξ(t )〉 = 0,

〈ξa(t )ξb(t ′)〉 = 2DLδabδ(t − t ′), (9)

where the a and b subscripts indicate Cartesian vector compo-
nents, and the amplitude of the noise is

DL = γLkBT . (10)

Here, kB is the Boltzmann constant and T the thermostat
temperature. Equation (7) describes the atom dynamics which
is affected by the spin motion and by the functionality of the
exchange function J (ri j ).

As shown in Eq. (8), the spin dynamics is modeled through
the sLL equation. Here, ωi = − 1

h̄
∂Hmag

∂si
is the effective field

acting on spin i and λs is the spin damping parameter. ζ(t )
is the stochastic field which is also drawn from a Gaussian
probability distribution with

〈ζ(t )〉 = 0,

〈ζa(t )ζb(t ′)〉 = 2DSδabδ(t − t ′). (11)

In this case, the fluctuation-dissipation relation for the mag-
netic degrees of freedom is

DS = λs(1 + λ2
s )kBT

h̄
. (12)
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In the Appendix, we formally derive Eqs. (10) and (12). These
are the parameter dependencies of DL and DS that allow for
equilibration of the full system to a Boltzmann distribution
∝ e−βH with H in Eq. (1), and the lattice and magnetic con-
tributions specified below this equation.

We note that the Langevin equation presented in Ref. [37],
Eq. (8), does not have the stochastic field in the relaxation
term (the last term) and, following Ref. [37], we refer to
it as the sLL equation (stochastic Landau-Lifshitz). When
the stochastic field is added to both effective field terms
the equation is usually called the sLLG equation [stochastic
Landau-Lifshitz-Gilbert (sLLG)]. However, there is a small
difference between the typical sLL equation and Eq. (8): The
latter has the Gilbert factor included. Therefore, it is neither a
typical sLL nor a typical sLLG equation. Still, once the noise
parameters are well fixed, Eq. (8) also takes the system to
thermal equilibrium at long enough times.

B. Simulation details

As it was described in the previous subsection, in the
SLD implementation of the software LAMMPS [37–39], the
evolution of the system is described by two coupled Langevin
equations, one for the spins and another one for the lattice
degrees of freedom.

Each Langevin equation has a damping term and a random
force (or field) which are connected through the “fluctuation-
dissipation” theorem [see Eqs. (10) and (12)]. We have chosen
the damping constants equal to λs = 0.5 (for the spin degrees
of freedom) and λL = 1.0 s−1 (for the lattice). We use separate
Langevin thermostats for the lattice and spin subsystems, but
both are set to the same temperature. Most of the simulations
were carried out at T = 10 K but, as indicated in some cases,
others were performed at higher temperatures.

The hysteresis loops were calculated applying an alternat-
ing magnetic field H , and averaging the curves over up to
10 different cycles. At low temperatures, the individual loops
exhibit a small dispersion of a few percent with respect to the
average curve. A progressively larger dispersion is observed
at higher temperatures, resulting in a dispersion of about 20%
for the magnetization in these cases. It is important to note
that this variability, being inherent to the stochastic nature of
the simulation method, does not alter the reported results nor
the conclusions drawn from them. Instead, it reflects the com-
plexity of the system and the method’s capacity to effectively
capture temperature fluctuations, which provides valuable in-
sights into the behavior of the magnetization dynamics across
the temperature range studied.

The field amplitude is varied discretely: It remains constant
during certain simulation time, and then jumps to reach the
value given by a function H = Hmax cos(2π f t ). Hmax is set to
be larger than the expected saturation field, and jumps do not
have the same magnitude along the entire field range, given
that the simulation time at each field value is kept constant.

Typical MD simulations use a time step of 1 fs. However,
to capture spin dynamics, the time step has been set in a
range of 0.1 [37] to 10 fs [27]. Here we use 0.1 fs but we
have verified with several examples that using 1 fs does not
change our results within the statistical spread. Each hys-
teresis cycle took around 2–8 ns, giving MHz frequencies.

In particular, we have simulated field frequencies of f = f0,
f0/2, f0/4, and f0/8, with f0 = 500 MHz. These values are
equivalent to sweeping rates of approximately 2.2 × 109 T/s,
1.1 × 109 T/s, 0.55 × 109 T/s, and 0.275 × 109 T/s, respec-
tively, with T/s representing Tesla per second. We note that
in experiments, hysteresis loops are obtained using fields that
change almost continuously, and the measurement of the mag-
netic moment of a sample can take up to several microseconds.
Those timescales are well beyond the feasibility of SLD, or of
other simulation methods like ASD, since typically simula-
tions only reach nanosecond scale with sweep rates similar to
ours [25–27]. Nevertheless, as we show in the next section,
the hysteresis loops quickly converge to a limiting curve as
the frequency is decreased.

Efficient minimization techniques, such as the one in
Ref. [57]. would lead the system into efficiently finding and
falling into the lowest-energy minima, for every value of the
external field, meaning that the spins would be aligned with
the field as soon as the field direction is reverted and therefore
would not produce a hysteresis loop. In addition, the use of
efficient minimization techniques implies that there is no real
timescale associated with the hysteresis loop frequency, which
is important, for example, when calculating energy balance as
in hyperthermia calculations.

Simulations were run for different angles, φ = 0◦, 45◦, and
90◦, between the external field H and the easy anisotropy
axes. In practice, this was done by changing the uniaxial
anisotropy axis directions while keeping H aligned in the
[001] direction (z axis). For uniaxial anisotropy, for instance,
for φ = 90◦ or 45◦ the unit vector n was oriented along the
[100] or [101] direction. Most simulations where run with
magnetic uniaxial anisotropy according to Eq. (4).

For most cases we use cubic samples of dimensions (10 ×
10 × 10)a3

0 (a0 = 0.286 nm is the lattice parameter of bcc
Fe), with periodic boundary conditions in all directions. The
resulting system contains 2000 atoms. To show that this size
is large enough to capture the main hysteresis properties of
the model at low temperatures, we also run a few simula-
tions using a larger system with (15 × 15 × 15)a3

0 cells (6750
atoms), as shown in the Supplemental Material (SM) [58]. We
have also run a few simulations at higher temperatures, cases
in which the magnetic fluctuations increase significantly. In
these instances the volume of the system was set to (32 ×
32 × 32)a3

0 (around 65 000 atoms) in order to avoid undesired
finite-size effects.

Finally, we have to mention that the total magnetization M
as well as the components Mx, My, and Mz, will be expressed
normalized to the ideal Fe bulk saturation magnetization Ms.
The saturation magnetization is given by the maximum mag-
netic moment per unit volume. For bulk iron, in the volume
of a bcc unit cell (a3

0) there are two spins with magnetic mo-
ment μ = 2.2 µB and, therefore, Ms = 2 × 2.2 µB/a3

0 ≈ 1730
kA/m. In this way, M = 1.0 means M = 1730 kA/m.

C. Nanoparticle simulation details

As it was mentioned in the Introduction, we also performed
hysteresis simulations of Fe NPs including lattice defects.
In this subsection, we give additional details regarding these
simulations.
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We have run hysteresis simulations for two different
nanoparticles, a pristine and a defective nanoparticle, at a
temperature of T = 500 K. The pristine NP was built simply
by cutting a sphere with diameter 8 nm from the perfect bcc
lattice. No further relaxation was carried out to mimic usual
frozen lattice simulations in atomistic spin dynamics.

The defective NP was built generating vacancies to the
pristine NP above by removing 33.3% of the atoms, randomly.
After this, an energy minimization was performed to relax the
defective lattice. The NP temperature was then raised to 900 K
using a 20-ps linear ramp, held at 900 K during 20 ps, and then
cooled down to 500 K also with a linear ramp. After that, the
temperature was held at 500 K during 20 ps, resulting in a NP
with a few small vacancy clusters, since most vacancies were
absorbed at the surface. In order to include more extended
defects, this NP was deformed mechanically using a flat rigid
indenter [59], to mimic the strain that a NP could experience
due to synthesis conditions. We used an indenter with a repul-
sive constant K = 20 eV

Å3 (∼ 3 TPa), typical of indentation in
metals [60]. The indenter moved at 200 m/s, which is higher
than typical velocities used in indentation simulations, but
much lower than the sound velocity in the material and results
are expected to be qualitatively similar. The NP is compressed
up to a uniaxial strain of ∼20%, but expands sideways in such
a way that the compressive volumetric strain at the maximum
indentation depth is lower than 5%. The indenter is then dis-
placed upwards for unloading. The resulting NP was relaxed
within the microcanonical NVE ensemble during 10 ps. The
final configuration used for the calculation of hysteresis loops
included small vacancy clusters and also a twin boundary,
something expected in bcc NP [61], as seen in Figs. 13(f)
and 13(g). The software OVITO [62] was employed to render
snapshots and to analyze the NPs microstructure and defects.
Polyhedral template matching (PTM) [63] was used to obtain
the crystal structures and surface mesh tool [64] was used to
analyze the NPs surface and vacancies.

Vacancies imply a lower number of atoms that will produce
a smaller saturation magnetization, 10% smaller neglecting
surface effects. NP topology changed from the roughly spher-
ical shape of the pristine NP, including a more faceted surface,
as shown in Fig. 13(h). There are ordered terraces and facets in
the roughly spherical pristine NP. The defective NP shows sur-
face disorder in Fig. 13(e), and large deviations from spherical
shape in Fig. 13(i). From separate tests, dislocations do not
appear as stable for the NP size considered here. The magnetic
moments are assumed equal to the bulk value for these NP
simulations. We note that the magnetic moment is expected to
vary near defects, and recent studies have explored variations
near surfaces and vacancies [35,45]. However, these effects
would be small and are not expected to change the overall
behavior of the hysteresis loops.

For both NPs, the hysteresis simulations were carried
out at T = 500 K, considering uniaxial magnetic anisotropy
[Eq. (4)] with an anisotropy constant K1 = 35 µeV/atom
which has been considered previously for Fe NPs [10,46].
The external magnetic field is applied at zero degrees with
respect to the anisotropy axis and it is varied at a sweep rate
of SR = 0.227 × 108 T/s.

In these NP simulations the exchange function J (ri j )
[Eq. (3)] is fitted to the ab initio data by Pajda et al. [65] using

the following fitting parameters: α = 25.498 meV, γ = 0.281,
δ = 0.1999 nm. Previous simulations of Fe NPs with these
parameters have shown excellent agreement with experimen-
tal observations [34] and we note that for this parametrization
of J (ri j ), the Curie temperature for an 8-nm NP is close to
600 K. The remaining parameters are the same as those of the
bulk simulations.

III. RESULTS AND DISCUSSION

In this section, we first analyze how the computational
parameters, such as the simulation run time and the field fre-
quency, affect the final outcome of the calculations. The aim
is to establish optimal parameters that minimize the computa-
tional cost without affecting the reliability of the calculations.
Next, we focus on studying how the hysteresis loops can
change when different physical properties like anisotropy,
exchange interaction, and damping parameter are modified.
These studies are carried out on the bulk samples described in
the Methods section. In a first stage, we analyze these effects
without coupling the lattice vibrations to the spin dynamics,
i.e., we consider for most cases spin-dynamics simulations
with the atoms fixed at their ideal-lattice positions. The in-
fluence of coupling to the lattice vibrations is analyzed in the
final part of this section, where we run full SLD simulations
for both bulk and nanoparticle samples.

A. Simulation time

We start analyzing the effect of the simulation run time tsim.
This quantity represents the interval during which the external
field H is held constant before increasing or decreasing its
absolute value by a given amount. It is basically the total time
of simulation used to calculate each individual discrete point
of a hysteresis loop. After changing the external field, the
magnetic moments must relax to a new stable configuration
and therefore tsim must be large enough to allow this process
to occur. It is important, then, to determine an optimal value
of this quantity that allows to achieve this goal.

In principle, one can imagine an individual spin precessing
around the field direction, with a frequency which increases
with the field magnitude. For Fe, the resulting Larmor fre-
quency gives a period of 36 ps for a 1.0-T field, and several
precession periods are needed to describe the magnetization
evolution. However, for damped dynamics, the frequency re-
mains the same but the spin spirals down towards the field
direction, allowing shorter simulations [23]. Figure 1 shows
the time evolution of the components of the normalized total
magnetization along the three Cartesian axes, Mx, My, Mz, cor-
responding to directions [100], [010], and [001], respectively,
during the simulation of an entire loop for the case φ = 90◦.
Unless otherwise stated, for this and subsequent calculations
we use uniaxial anisotropy. As it can be noticed by inspec-
tion of this figure, the applied field (green dashed curve and
right axis) is maintained at a constant value for 90 ps before
increasing or decreasing it to the next value, so tsim = 90 ps.
We are interested here in the stabilization of the magnetiza-
tion along the field direction Mz. During the first moments
after the field value is varied a fluctuation period is observed,
especially in the region around the switching field, before
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FIG. 1. Time evolution of the components of the normalized total
magnetization throughout an entire cycle (a) and half a cycle (b). The
field value at each time is also included (green dashed line and right
axis). Note that each field value is kept constant for 90 ps (9 × 105

steps) of simulation time. In (b), the time average value of Mz, 〈Mz〉
(blue dotted line), obtained from the last 30 ps of simulation, is also
added for comparison.

Mz reaches a stable value after approximately 45 ps. This is
better appreciated in Fig. 1(b), where a zoom in the region

around the first magnetization switching is displayed. In this
figure, we have also included the average value of Mz, 〈Mz〉,
which is obtained in our simulations from the last 30 ps of
each step, where a well-stabilized magnetization is observed.
We note that tsim = 90 ps is similar to simulation times used
in micromagnetic and ASD calculations of hysteresis loops
[20,25–27,66,67]. We have checked that longer simulation
times do not significantly affect the final results, as it is shown
in Fig. S3 in the SM [58]. It is crucial that our magnetization
dynamics is well described near the switching field values. For
fields of 0.5 T, the precession period is ∼72 ps, and one would
need a few ns of simulation time for low damping. However,
thanks to the high damping values discussed below, shorter
simulation times can be employed.

Using tsim = 90 ps and frequency f0/4, we calculate the
hysteresis loops for the cases φ = 0◦ and 90◦. These curves,
along with snapshots showing typical spin configurations at
different stages of the process, are shown in Fig. 2. As
we can see, the system behaves qualitatively according to
what the SW model predicts, i.e., all spins are roughly in
sync like a single macrospin [16,17]. This is expected for
low-temperature simulations, but deviations would occur at
higher temperatures. Still, Fig. 3 shows that there is a roughly
Gaussian distribution of spin values, an appreciable deviation
from the simpler macrospin assumption. The spin orientation
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FIG. 2. Top images: Resulting hysteresis loops obtained at the converged frequency for φ = 0◦ (top left) and φ = 90◦ (top right). Bottom
images: Snapshots of a fraction of the system, showing typical spin configurations at different stages of the hysteresis loop for the case φ = 0◦

(bottom left) and φ = 90◦ (bottom right). Each snapshot, (a), (b), (c), and (d), corresponds to the points marked on the hysteresis curves (upper
images). In the snapshots, the atoms are represented as red spheres and the spins are colored according to their orientation along the field
direction z. Each cubic cell represents a fraction of the system with a volume of (8 Å)3, extracted from the center of the original system.
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FIG. 3. Histograms of individual spin orientations sx , sy, sz along
the three axes. The histograms correspond to the state of the system
described in the snapshot (c) of Fig. 2 for the case φ = 90◦.

histograms in this figure correspond to the state of the system
described by the snapshot (c) of the φ = 90◦ case of Fig. 2
(bottom right).

Another observation is the behavior of the magnetization
components around H ≈ 0 (being H the modulus of H) for
the case φ = 90◦. In Fig. 1 we can see that when this field
takes values close to zero, Mz ≈ 0 (and also My ≈ 0) while
Mx takes values close to saturation. This means that, at this
stage, all spins are aligned approximately along the x direction
(the easy axis of magnetization for the uniaxial anisotropy),
showing that the simulation reproduces well the expected
behavior for φ = 90◦. The snapshots in Fig. 2 (right panels)
confirm this interpretation.

Since these tests confirm that our simulations are consistent
with some general physical properties of the system, from now
on we set tsim = 90 ps.

B. Hysteresis loops and the effect of field frequency

As it was argued in Sec. II, it is not possible to calculate
hysteresis loops at typical very low experimental frequencies
using SLD simulations, due to intrinsic time limitations of
atomistic simulation approaches. Instead, we are limited to
working with high frequencies in the order of MHz. However,
high-frequency hysteresis loops appear to converge to a limit
curve as the frequency is decreased and, as the following
analysis shows, this limit loop should not be so different
from those measured experimentally or calculated theoreti-
cally. Following this line of argumentation, we calculate the
hysteresis loops for different frequencies. In Fig, 4, we show
how the area of the hysteresis loops depends on the field

FIG. 4. Loop area vs field frequency for the cases with φ = 0◦

and 45◦. The values of the area are normalized by the area of the SW
loop.

frequency for the cases with φ = 0◦ and 45◦. Note that we ex-
clude the case φ = 90◦ from this analysis since for this angle
the curves do not present an hysteretic behavior. The curves
in Fig. 4 exhibit a typical crossover from a high-frequency
dynamic regime (for which the area of the loops is large) to a
low-frequency dynamic regime (a weak variation of the area
with field frequency) [68].

Given that the simulation time for a given field value is
always the same and, in principle, long enough to cover spin
relaxation for high damping, higher frequency would only
mean larger changes in the discrete field values. The larger the
field jumps, the larger the change across the energy landscape,
and the system might not adapt fast enough within the 90
ps of simulated time, decreasing spin-switching probability
and generating wider loops. The magnitudes of the jumps
around the region of the switching field are ∼0.3 T for f0 and
∼0.06 T for f0/4. Therefore, the stabilization of the frequency
for φ = 0◦ occurs when the field jumps are about one order
of magnitude lower than the value of the converged coercive
field.

For φ = 45◦, we found convergence at a frequency of f0/2
while for the φ = 0◦ case it is not until a frequency of f0/4
that the loop area reaches a stable value. At these frequencies
the area of the loops coincides (within the statistical errors)
with the predictions of the SW model. Figure S2 in the SM
[58] shows the corresponding hysteresis curves calculated at
several different frequencies for the case φ = 0◦, evidencing
convergence as frequency decreases. This is similar to results
showing convergence as loop time increases in ASD simula-
tions [69] for simulation times similar to our SLD runs. This
analysis shows that, although the convergence frequencies
found in this study are much higher than those typically used
in experiments, they are low enough to let the magnetization
equilibrate with the field direction at each field step. This
means that, at these rates, our simulated hysteresis loops
should not present large discrepancies with experiments, as
discussed, for example, by Westmoreland et al. [27].
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FIG. 5. Hysteresis curves calculated with SLD simulations (full
lines) at different angles φ compared to the theoretical ones accord-
ing to the SW model (dashed lines). The SLD curves correspond to
the average curve obtained from many different cycles. In all cases a
field frequency f = f0/4 was used.

In Fig. 5 we compare the hysteresis loops calculated for
φ = 0◦, φ = 45◦, and φ = 90◦ at a single frequency f0/4,
with those of the SW model [3]. As we can see, a good
agreement is observed in all cases. Nevertheless, it is im-
portant to stress that we do not expect that the simulation
curves should fit exactly the theoretical ones. Unlike the SW
model (for which the macrospin approximation is considered
at T = 0), the SLD simulations are carried out at low but finite
temperature for many magnetic atomic moments which, along
a hysteresis cycle, do not rotate coherently in a perfect way
(see Fig. 3). For example, for the φ = 0◦ case, we do not
obtain a rectangular curve because thermal fluctuations and
also the existence of many degrees of freedom make it easier
for the magnetization to change its orientation at an external
field value slightly lower than predicted by the SW model.

C. Anisotropy

According to the SW model, the coercive field and, there-
fore, the area of the hysteresis loop when the external field
is applied along the easy axis (φ = 0◦), is proportional to the
anisotropy constant K1 in Eq. (4). We have explored this de-
pendency in our SLD simulations by reducing and increasing
the original anisotropy constant value (throughout this test
called K∗

1 = 35 µeV/atom) by a factor of 10. Figure 6(a)
shows that the resulting simulated loops qualitatively exhibit
the expected behavior, that is, the loop broadens (narrows)
according to the increase (reduction) of the anisotropy con-
stant. This is further confirmed in Fig. 6(b) where it can
be seen that the loop area follows an approximately linear
behavior as a function of K1/K∗

1 , deviating slightly from the
SW model prediction only for small values of this constant.
These deviations arise from the combination of two effects.
On the one hand, this is due to the fact that simulated loops
are “rounded” near the point of magnetization reversal, devi-
ating from perfect rectangular loops as explained above. The
discrepancy with the SW model area becomes increasingly
important as the loop narrows. On the other hand, as it was
mentioned in the Methods section, large anisotropy helps sta-
bilizing the magnetization of the system [26]. For the case of
low anisotropy (K1 = 0.1K∗

1 ) there is poor stabilization of Mz

during the 90 ps of simulation of each field step (especially
near the region of magnetization switching), as seen in Fig. S6
[58]. Much longer simulation times would be required for
low anisotropy values. Given that our smallest anisotropy is
the Fe bulk anisotropy, we could compare with some exper-
imental results. Magneto-optic Kerr effect measurements of
Fe(100) appear to give a slightly lower coercive field than
our simulation estimate [70], although those measurements
were obtained at higher temperatures and for multidomain
samples.

We have also analyzed the influence of anisotropy sym-
metry. Loops calculated with SLD simulations for systems
with uniaxial and cubic anisotropies, Eqs. (4) and (5), are
shown in Fig. 7 for the case φ = 0◦. We compare these curves
to the corresponding one for the SW model with uniaxial
anisotropy. The reason is that at T = 0 K both simulation

FIG. 6. (a) Loops for different values of uniaxial anisotropy K1. (b) Loop area normalized to the area of the loop with K∗
1 = 35 µeV/atom,

against K1/K∗
1 . The dashed line is the prediction of the SW model.
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FIG. 7. Hysteresis loops for uniaxial (red full line) and cubic
(blue circles) anisotropies for the φ = 0◦ case and frequency f0/4. The
results are compared to the SW prediction for uniaxial anisotropy
(red dashed line).

curves should coincide with the latter. Our results show that
for φ = 0◦ the hysteresis loop does not depend on the type
of anisotropy. Therefore, the small differences between the
curves shown in Fig, 7 can be attributed to the effect of
temperature, which is more pronounced in the case of cubic
anisotropy. The area of the loop is slightly smaller for cubic
anisotropy, similar to the results reported in Ref. [66]. Usov
and Peschany [71] considered the SW model for uniaxial
and cubic anisotropies, for randomly oriented nanoparticles.
They report that the maximum normalized coercive field in
both cases is 1, in agreement with our result. For a random
collection of anisotropy orientations, the resulting coercive
field for cubic anisotropy was ∼0.68 of the one for uniaxial.

It is more interesting to analyze the difference between
uniaxial and cubic anisotropies, when the field is applied in the
[111] direction. For this field orientation, we consider a SW
model, the Hamiltonian of which has an arbitrary anisotropy
term. We start by applying a strong enough external field such
that the Hamiltonian has a single minimum with the magne-
tization M pointing in the direction of H . Then, we decrease
the intensity of the field using small jumps. At each step we
use a steepest descent method to try to escape from the energy
minimum, so that if it becomes unstable, a new minimum can
be reached. Using this simple algorithm, we have simulated
the zero-temperature dynamics of the SW model with both
uniaxial and cubic anisotropies. As shown in Fig. 8, in this
case the corresponding hysteresis loops for the SW model
are very different. However, as expected, the loops calculated
with the SLD simulations agree very well with the curves for
the SW model for both cubic and uniaxial anisotropies. In the
case of cubic anisotropy, while the remanent magnetization
for both SW and SLD curves is ±1/

√
3, there is a qualitative

difference between them for field values greater than the co-
ercive one: A small hysteresis behavior present in the loop of
the SW model is not well reproduced in the SLD simulation.
The reason for this is that the energy barrier separating these

FIG. 8. Hysteresis loops for an external field applied along the
[111] direction (φ ≈ 54.7◦) and frequency f0

4 , for cubic and uni-
axial anisotropies. The loops obtained with SLD are compared to
the predictions of an extension of the SW model that incorporates
cubic anisotropy (red short-dotted line) and to the SW with uniaxial
anisotropy (green dotted-dashed line).

states is of approximately 0.3 µeV/atom, several orders of
magnitude smaller than kBT ∼ 8.6 × 10−3 eV. Only a simu-
lation at much lower temperature would be able to reproduce
this behavior. The cubic case has a lower coercive field, which
could be somewhat expected from results for a collection of
nanoparticles with random orientation [71].

To conclude this section, we mention that for a couple of
cases, we have tested a lattice-dependent Neel’s anisotropy
within the framework of Nieves et al. [52] and the results ob-
tained are similar to the ones for uniaxial or cubic anisotropy
presented above.

D. Exchange interactions

The exchange energy does not play a role in the SW results,
and within that framework there should be no effect of the
exchange interaction on the simulated hysteresis loops. To
test this prediction within the SLD framework, we have run
simulations with different values of the function J (ri j ). In
Fig. 9, we compare the curves obtained using the original
exchange J (ri j )∗, with the ones obtained by increasing or
reducing this interaction by a factor of 10. As it can be seen,
loops are nearly unaffected by these changes. Increasing the
magnitude of the exchange interaction is expected to give
higher magnetization values and broader loops [72], but at
low temperatures (as in this case) this effect is expected to
be very small. Larger differences should be noticed at higher
temperatures where thermal fluctuations start to play a major
role in the magnetization behavior. Nevertheless, even at these
low temperatures, a few subtle effects can be noticed: (i) for
the simulation with J (ri j ) = 0.1 × J (ri j )∗ a small but con-
sistent reduction of the saturation magnetization is observed,
and (ii) for J (ri j ) = 10 × J (ri j )∗ the loop becomes more rect-
angular. This last effect is also observed in other theoretical
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FIG. 9. Simulated hysteresis curves for the case φ = 0◦ consid-
ering different magnitudes of the exchange coupling.

approaches based on the SW model which include exchange
interactions through a mean field approach as in Refs. [73,74].
Lower (higher) exchange will lead to lower (higher) Curie
temperature (TC) and spin ordering will be modified. For the
same value of the external field, the histogram of spin values
is narrower and with a higher mean value for the higher
exchange, facilitating the macrospin behavior, leading to a
larger saturation field and helping with the sudden spin flip
which causes a more square loop.

E. Damping parameter

The value of the Gilbert damping parameter in the sLL
equation is usually chosen to be in the range 0.01–1. Ex-
perimental estimates for Fe are around 0.001. However, the
possibility of increasing the spin damping values for numeri-
cal convenience is often explored. In SLD simulations a value
of λs = 0.1 was used in Ref. [34]. ASD [75] and micromag-
netic [20,66] simulations use values in the range 0.1–1.

The dynamic of a single spin in a magnetic field is well es-
tablished, and there are studies discussing the role of damping
and simulation times [23]. However, obtaining spin relaxation
times at a given damping for correlated multispin systems at
finite temperature will typically require simulations. In gen-
eral, as the damping increases, there is a faster energy loss, and
the relaxation time required for the system to reach a steady
state decreases, with spins aligned with the preferred orien-
tation determined by the external field and the anisotropy.
Therefore, it is possible to use higher frequencies to calcu-
late the hysteresis loops, which become narrower as damping
grows. In the same spirit, in most of the simulations presented
here we use a larger damping value λs = 0.5. Using lower
damping is possible but would require lower frequencies as
discussed below. The parameter λs is related to the optimal
value of the simulation run time tsim.

In micromagnetic simulations, it has been proposed to use
both very high damping and high loop sweep rates (SR), in
order to achieve computational efficiency [20]. The rationale

behind this proposal was as follows. The magnitude of the
coercive field is a function of the measurement time, and the
attempt frequency for spin flips. This measurement time can
be related to the SR, and the flip frequency can be assumed
to be proportional to the damping. Therefore, loops calculated
with the same value of SR/λs would have the same coercive
field which gives the loop width. Based on this, Behbahani
et al. were able to use high SR in their simulations to obtain
hysteresis loops that closely match those obtained at very
low SR, by employing extremely high damping values, and
large time steps. Recently, this methodology was successfully
applied to simulate hysteresis of iron oxide magnetic nanopar-
ticles with application to hyperthermia [67].

In Fig. 10 we use a field frequency f0 for the case with
φ = 90◦. For λs = 0.5 the hysteresis loop in Fig. 10(a) is
reasonably close to the SW prediction, and the magnetization
versus time in Fig. 10(b) indicates reasonable convergence.
However, for λs = 0.1, the loop in Fig. 10(a) is poorly de-
fined, as expected from the lack of convergence towards stable
magnetization values shown at the top of Fig. 10(b). The
possibility of reducing the simulation time in micromagnetic
simulations by increasing both the SR and the damping, leav-
ing constant the ratio SR/λs, would be equivalent, in our case,
to keeping constant the ratio f /λs. However, SLD simulations
at high damping might depart from the desired dynamics and
should be treated with care. In our simulations, by choosing
λs = 0.5, we were able to set tsim = 90 ps and use f0/4 as
discussed at the beginning of this section. For lower damping
values, smaller frequencies would be required, significantly
increasing the computational costs. Following the previous
scaling, for instance, for λs = 0.1, around 400 ps (4 × 106

steps) are required to stabilize the magnetization at each field
value, in contrast to the 90 ps (9 × 105 steps) that are required
for λs = 0.5. We have run some simulations for such a low
damping and nanosecond steps, and verified that this is indeed
the case, explaining the lack of convergence in Fig. 10(a).

F. Coupling the lattice dynamics

All the results presented so far correspond to frozen-lattice
simulations, meaning that the lattice vibrations are not in-
cluded in the dynamics. We now analyze the effect of full SLD
calculations actually coupling the spin and lattice degrees of
freedom, which we refer to as moving-lattice simulations. We
analyze this effect for two different systems, perfect bcc bulk
samples and nanoparticle samples including defects.

1. Low-temperature bulk simulations

In Fig. 11 we compare the simulated hysteresis loops at
T = 10 K for φ = 0◦ obtained with (moving-lattice) and
without (frozen-lattice) spin-lattice coupling at different fre-
quencies. The former gives lower coercivity and narrower
loops in comparison with the frozen-lattice case. This effect
is more pronounced for higher frequencies. This is consis-
tent with the fact that in a system that incorporates new
degrees of freedom (in this case those of the lattice), the
energy barrier that must be overcome to reverse the mag-
netization should decrease. In other words, when a reversal
field is applied, a moving lattice provides additional paths for
the magnetization relaxation process. However, this effect is
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FIG. 10. (a) Hysteresis curves for the case φ = 90◦ with a field frequency f0 and damping parameters λs = 0.1 (dashed line) and λs = 0.5
(full line). The plot shows several cycles for each case. (b) Time evolution of the components of the magnetization throughout the simulation
of half a cycle for the cases considered in (a). The field value at each time is also included (green dashed line and right axis). Note that each
field value is kept constant for 90 ps (9 × 105 steps) of simulation time.

small at a frequency f0/4 where a stable magnetization is
easily achieved for the chosen sweep rate, showing that the
lattice dynamics contributions are not very important at these
low temperatures (T = 10 K). As it was previously shown
for iron nanoparticles at equilibrium, the lattice fluctuations
would become significant at temperatures higher than 300 K
[34,45]. The equilibrium magnetization for a moving lattice
is always smaller than that of a frozen lattice for all tempera-
tures [45]. In addition, in the present approach, the anisotropy
contributions do not depend on the atomic positions nor the
lattice temperature. Larger differences between moving- and
frozen-lattice simulations might be observed for Hamiltonians
that include additional terms which are sensitive to factors like
atomic volume [52,76], or effective” local electronic density
[50].

2. Intermediate- and high-temperature bulk simulations

In this subsection, we focus on intermediate temperatures,
above ∼ 1

3 of the Curie temperature and also high tempera-
tures, close to TC . Lattice-induced spin fluctuations enter in
this model through the interatomic distance dependence of the
exchange function J (ri j ) in the magnetic Hamiltonian (2). At
low temperatures, changes in J (ri j ) due to lattice vibrations
are negligible. Therefore, the coupled spin-lattice dynamics
show little influence in hysteresis loops in that regime, as it
was shown in Fig. 11 and discussed in the previous subsection.
To address the effect of the coupled spin-lattice dynamics at
higher temperatures, we have run simulations for the case
of uniaxial anisotropy with the easy axis aligned with the
external field, φ = 0◦, at several temperatures, in the range
of T = 300–1000 K. For the parametrization of J (ri j ) used
in this work, TC is around 1050 K, as discussed in Sec. II A.
Given the large fluctuations observed at these temperatures,
we consider for these simulations a larger bulk system, in-
cluding around 65 000 atoms, as mentioned in the Methods
section, in order to avoid finite-size effects, and use longer
simulation times (180 ps per point) in order to avoid the

undesirable regime in which the magnetization cannot equi-
librate to the field direction before the next field increment.

In Fig. 12, we compare the hysteresis loops obtained
at these conditions under the two different simulation ap-
proaches, lattice frozen and lattice moving, for T = 500 and
1000 K contrasted to the previous results at T = 10 K. A
small difference, consistent with the results at 10 K and with
the arguments outlined in the previous subsection, can be ob-
served between the lattice-frozen and lattice-moving loops at
T = 500 K. However, this difference is within the margin of
error given by the standard deviation of the average by which
the curves are obtained. This is because, at these relatively
high temperatures, the effect of increased lattice vibrations
on exchange and spin fluctuations is small compared to the
large fluctuations caused by the thermal noise in the stochastic
field ζ(t ) in Eq. (8). This is confirmed by the spin histograms
in the inset of Fig. S7 in the Supplemental Material [58],
where a very similar dispersion of spin orientations is ev-
idenced for both frozen- and moving-lattice cases. A more
pronounced difference between the frozen- and moving-lattice
protocols is observed for the loops calculated at T = 1000 K.
For the moving-lattice simulations, the Curie temperature is
close to 1050 K (as it was mentioned above), while for the
frozen-lattice ones TC ∼ 1150 K [45]. Consequently, in the
moving-lattice procedure, the system is closer to a state where
hysteresis should vanish and, therefore, present loops with
smaller area than those of the lattice-frozen simulations.

Despite the small differences obtained between the lattice-
moving and lattice-frozen approaches, the effect of temper-
ature is well captured by the present simulation method and
protocol. At higher temperatures, smaller loops are obtained,
i.e., smaller coercivity and saturation magnetization as the
temperature is increased, following the expected behavior.

We note that the SW model is sometimes applied at fi-
nite temperatures, despite its lack of validity under those
conditions [53], by rescaling the saturation magnetization to
match values at the desired temperature. If the same procedure
was applied to our case, there would be strong disagreement
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FIG. 11. Comparison of the hysteresis loops obtained with (lat-
tice moving) and without (lattice frozen) coupling to the lattice
dynamics at T = 10 K. All the figures correspond the case φ = 0◦ at
different field frequencies f0 (top), f0/2 (middle), and f0/4 (bottom).
The inset in the top panel shows histograms of the spins’ orientation
along the field direction z and correspond to the state of the system
just before the beginning of the magnetization reversal marked with
circles in the respective curves.

between the model and the simulations, which represents a
warning for such future comparison between the SW model
and experiments at finite temperature.

3. Nanoparticle simulations

Magnetic nanoparticles are of technological interest, and
their nanostructure will affect magnetization. For example,
the microstrain state inside nanoparticles can greatly modify
their magnetic properties [77], including cases where lattice
deformation can be driven by vacancies [78]. As another
example of defects influencing magnetization, experiments
suggest that defects might play a role in Fe NPs remaining
blocked, as opposed to defect-free NP which would behave
superparamagnetically [11,12].

Most atomistic spin-dynamics simulations consider a
frozen perfect lattice, even for cases with defects, like NP
surfaces [23,79–81], interfaces [69,82], and point defects [78].
Such approach allows for the use of discrete exchange values
for first, second, etc., nearest neighbors, greatly saving com-
putational time. There are isolated efforts to include lattice
distortions for a frozen lattice, which require the capability
of handling magnetic interactions at arbitrary distances and

FIG. 12. Comparison of the hysteresis loops at T = 10, 500,
and 1000 K for lattice-frozen and lattice-moving procedures. These
results correspond to the case φ = 0◦. For the simulations at T = 500
and 1000 K a smaller sweep rate SR = 0.5 × 108 T/s (which corre-
sponds to 180 ps of simulation time per point) was used.

not just regular lattice positions. Spatial configurations from
molecular dynamics can be used as input [83], or set with
other criteria, like in the recent study of a single dislocation
dipole in bulk Cr [84]. Sometimes, defects have been emulated
by more symmetric configurations, like the the simulation of
vacancies by weakly coupled ferromagnetic spin pairs, with-
out considering lattice strain [78]. In addition, these codes will
not allow for dynamical lattice effects, including evolution of
defects with time due to temperature, stress, and coupling to
magnetic degrees of freedom. For a NP, surface roughness
might vary considerably with temperature.

In order to explore the role of lattice dynamics, we simulate
hysteresis loops for pristine and defective Fe NPs samples. In
principle, one could also compare the magnetization of the de-
fective NP with a frozen lattice with exactly the same NP with
a moving lattice. Here we focus on the extreme comparison
of a pristine NP with frozen lattice and a defective NP with
moving lattice, i.e., coupling the spin and lattice dynamics,
given that we would like to emphasize the potential of the
method compared to the current standard simulations that
generally lack the inclusion of MD simulations configurations
and employ a fixed, ideal lattice structure. Figure 13 shows the
perfect NP used for the frozen-lattice simulations, alongside
the Fe NP with defects. It can be seen that the defective NP
has a nonspherical topology, with large planar facets, and
also includes a twin boundary, and a few vacancy clusters.
Figure 14 shows the histograms of magnetization values over
the entire simulation, covering several hysteresis cycles for
both NPs. The differences between the two NPs is large, with
the defective NP experiencing significantly larger and more
frequent magnetization fluctuations. This suggests that, for a
NP, defects which can be included in spin-lattice dynamics
display different qualitative and quantitative behavior than the
absence of defects. The larger fluctuations lead to narrower
hysteresis loops, as qualitatively expected. Figure 15 shows
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FIG. 13. Snapshots of Fe nanoparticles employed in the hysteresis loop simulations. The upper panel (a)–(d) shows snapshots of the
pristine NP (8-nm-diameter spherical NP) while the lower panel (e)–(h) shows the corresponding snapshots for the defective NP. In (a) and (e)
the entire NP is shown, with atoms colored by PTM structure type. Surface atoms are classified as other (unknown structure). In (b) and (f) a
slice near the center of the NP is shown, also colored by PTM structure type. In (f), atoms in a twin boundary crossing the NP, and around a
vacancy are also classified as other. (c), (g) Show the same slice as (b) and (f), but atoms are colored according to their PTM atomic orientation
along the x axis, to better show the twin rotation in the defective NP. Finally, in (d) and (h) a surface mesh is shown for the NP surface, a few
single vacancies, and vacancy clusters inside the defective NP.

hysteresis loops for both NPs, with the defective NP display-
ing lower saturation magnetization and lower coercive field,
resulting in a significantly lower loop area, approximately
one-quarter that of the perfect NP. We obtain a coercive field
around 50 mT for the pristine frozen NP and around 18 mT
for the defective NP at 500 K. This is for a single, oriented

FIG. 14. Histograms of the magnetization along the field direc-
tion (Mz), for the defective and the pristine NPs. The histograms were
built with the data obtained directly from the entire simulation and
are normalized to unit area.

NP, with a diameter of 8 nm. Loops from other experiments
[11] show smaller coercive fields, around 3 mT. However, our
value for the defective NP shows very good agreement with
an experimental value of around 20 mT for a collection of Fe
NP of the same size as in MD, at 300 K [10]. Furthermore, the
experimental coercive field is approximately half of what we
have obtained for the pristine NP. Given that the coercive field
of a random collection of NP is expected to result in a coercive

FIG. 15. Hysteresis loops comparing defective and pristine
nanoparticles (NPs). The hysteresis loop area of the defective NP
is nearly four times smaller than that of the pristine NP.

134417-13



G. DOS SANTOS et al. PHYSICAL REVIEW B 108, 134417 (2023)

field of about half that for oriented NP [3], the agreement
is reasonable. In addition, the hysteresis loop of a prismatic
Fe NP (210 × 210 × 15 nm3) gives Hc ∼ 75 mT for the field
at 45◦, according to recent micromagnetic simulations [85],
also indicating that our simulations obtain reasonable coercive
field values. For experimental measurement times of seconds,
NP below some critical size are expected to behave superpara-
magnetically at high temperatures [3,7], but for our NP size
and simulation times of ns, the NPs behave ferromagnetically.
Recent experiments observed that, within a collection of Fe
NP with 5–20 nm diameter, many behaved with the expected
superparamagnetism, but some remained in a blocked ferro-
magnetic state [11,12]. Defects were assumed to be the cause
for the ferromagnetic behavior, opposite to what we find in
our simulations, where the defects considered here facilitate
magnetization flips and decrease the coercive field. These
preliminary simulations of pristine and defective NPs high-
light the importance of SLD calculations. The introduction of
defects, and the possibility that they can evolve and migrate
during the simulation time, can change the magnetic behavior
of such samples.

IV. DISCUSSION

Given the short time step required to integrate the atomic
degrees of freedom, usually ∼0.1–1 fs, one needs relatively
long simulations to achieve a stable magnetization at a given
value of the applied magnetic field. Typically, this would in-
volve several precession periods. Using the Larmor frequency
for Fe gives a period of ∼36 ps for a field of 1 T. In order to
speed up the spin-dynamics convergence, a Gilbert damping
λs = 1.0 is used in most ASD simulations [25–28] and values
much larger than 1 have been used in micromagnetic simula-
tions of hysteresis loops [20]. In our simulations, we found
that for a given damping, as frequency decreases, the loop
area also decreases until reaching a constant value. For bulk
iron, and a Gilbert damping of 0.5, we found that frequencies
of 125 MHz or lower provide such a constant loop area, for
simulation times of 90 ps for each field. Values between 30
and 200 ps (depending on the system under study and the
Gilbert damping employed) are also used for ASD simulations
[25,26,28]. For the case in which the anisotropy axis and
the field direction are perpendicular, φ = 90◦, a converged
loop can be found at even higher frequencies. Agreement
between SLD and SW suggests that loops using this limiting
frequency would not be much different from the experi-
mental or theoretical estimates. This result partially solves
the problem related to the computational costs in atomistic
simulations of hysteresis loops, allowing to reproduce exper-
imental hysteresis loops, running SLD simulations at much
higher frequencies than those typically used in experiments.
Large computer clusters allow for simulations of increasingly
larger systems by distributing spatial scales, but timescale can-
not be split amongst different parallel processes. Therefore,
new approaches for accelerated dynamics [86], bypassing this
timescale problem, will be required for more efficient simula-
tions of hysteresis loops with SLD.

When atomic motion is coupled to spin dynamics we
found that, for the bulk simulations, the lattice dynamics
contributions depend on the loop frequency, but they are

typically small at low and intermediate temperatures, but more
notorious at higher temperatures close to TC . At low temper-
atures (10 K) atom vibrations are negligible. At intermediate
temperatures (300–500 K), fluctuations in spin-spin exchange
J (ri j ) produced by the atomic motion are outweighed by
the thermal fluctuations induced by the stochastic term in the
sLL equation of the spin dynamics. In the case of the NP
simulations we find significant differences, both qualitative
and quantitative, between the hysteresis loops of a pristine NP
with a frozen lattice and the loops of a defective NP with a
moving lattice, both with a spin temperature of T = 500 K.

Although the effects of the coupled spin-lattice dynamics
are small for bulk bcc iron, in more complex systems that
exceed the scope of this work, there might be dynamical
effects that would result in different hysteresis loops if the
lattice and spin dynamics are coupled. Also, future studies
could include a quantum thermostat to improve the descrip-
tion of thermodynamic properties at low temperatures [87].
Equations of motion which would provide angular momentum
conservation might be explored too [50,51].

SLD simulations could be applied to hysteresis loops for
other systems of technological interest, such as more complex
nanoparticles [14], including core-shell nanoparticles with
realistic interfaces [88], magnetostrictive materials with mag-
netic microstructures [89], compounds like CrN, where the
spin-lattice coupling is responsible for the unusual tempera-
ture dependence of the thermal conductivity [36], and bulk
systems with defects [28,45,90–92]. Further examples include
strained antiferromagnetic materials that exhibit different re-
sponses to external fields [93] and other materials where strain
affects the magnetic properties [94,95]. Finally, recent theo-
retical studies suggest topological magnon phase transitions
tuned by time-dependent strains in two-dimensional (2D) ma-
terials [96]. In binary alloys like Fe-Cr the formation of stable
precipitates is known to occur at certain concentrations, and
this would dynamically affect magnetic properties [97], as
well as magnetically driven phase transformation [98]. Mag-
netic alloys can display complex microstructure, including
dislocations, stacking faults, twins, etc., which greatly affects
their magnetic properties [99]. In particular, high entropy
alloys (HEA) are materials of technological interest, with a
complex microstructure, including dislocations, twins, pre-
cipitates, and different crystallographic phases, which leads
to a complex magnetic behavior [100], pressure-induced
phase stabilities, and magnetovolume effects [101]. For all of
the above cases, SLD could provide information which can
inform micromagnetic and atomistic spin-dynamics simula-
tions.

V. SUMMARY AND CONCLUSIONS

In this study, we apply a systematic approach toward incor-
porating spin-lattice dynamics in the simulation of hysteresis
phenomena. Each step of the process was thoroughly eval-
uated and optimized to ensure the accuracy and reliability
of the simulation results. We used SLD simulations to cal-
culate the hysteresis loops of a bulk ferromagnetic system
at different temperatures and the hysteresis loops of bcc Fe
NPs with the inclusion of structural defects. SLD can in-
clude temperature effects (thermal spin fluctuations as well
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as lattice vibrations) and lattice defects in a relatively sim-
ple way, complementing spin-dynamics or micromagnetic
simulations.

We have also performed formal calculations to derive
the Fokker-Planck equation associated to the set of coupled
Langevin equations (6)–(8). From this, we deduce the correct
expressions for the amplitudes of the white-noise correlations
that allow the system to reach an asymptotic stationary Gibbs-
Boltzmann equilibrium state.

From our simulations at a temperature of 10 K, spins
behave almost like a macrospin, but there is some spread
in the magnetization values, associated with thermal effects
and exchange interactions. The exchange energy, which is
much larger than the Zeeman or anisotropy energies, does not
significantly affect the hysteresis loops at low temperatures.
The coercive field depends linearly on the magnitude of the
uniaxial anisotropy, as in the SW model. Cubic anisotropy
and uniaxial anisotropy produce nearly the same loops for the
external field aligned with an easy anisotropy axis. However,
there are important differences for the case of φ ≈ 54.7◦ mis-
alignment, for which the applied field lies along the [111]
direction. For this case, cubic anisotropy leads to a lower
coercivity value. At this low temperature, we have also tested
a Neel’s anisotropy [52]. Although we have obtained similar
results using this energy term, changes to the hysteresis loops
cannot be ruled out if different lattice-dependent anisotropy
terms [102] are considered.

In order to validate our low-temperature SLD results, we
compared to the Stoner-Wohlfarth model, which is widely
used in experimental and simulation studies. In the SW model,
there is no lattice, no temperature, and no exchange interac-
tions. The model assumes uniaxial anisotropy and Zeeman
energy contributions, and spins in the volume are assumed to
behave like a single macrospin. We compared the outcome
of the SLD simulations at T = 10 K to the predictions of
the SW model for different angles between the external field
and the anisotropy axis. We analyzed the effects of several
parameters like simulation run time, field frequency, damp-
ing, exchange, anisotropy and lattice vibrations. We found
that the low-temperature loops obtained with SLD agree very
well with those predicted by the SW model, provided that
several parameters are chosen with care. Once this agreement
is established, validating our model, we study the effect of
the coupled spin-lattice dynamics on the intermediate- and
high-temperature hysteresis loops where the SW model is no
longer valid.

Our study employs several approximations, including a
classical Heisenberg Hamiltonian, but it can capture reason-
ably well the behavior of lattice defects that modify magnetic
properties. In particular, we are able to model the high-
temperature evolution of a nanoparticle with both point and
extended defects, where such defects lower the overall mag-
netization and significantly reduce the area of the hysteresis
loop, compared to a typical frozen-lattice approximation. This
was qualitatively expected, given that disorder hinders global
magnetization and, under varying external fields, helps fluc-
tuations which would reduce loop area. However, quantitative
simulations can certainly contribute to the understanding of
experimental results, and with the future design of tailored
magnetization in NP.

In order to model complex materials of interest, it is de-
sirable to have reliable simulation techniques and protocols
for hysteresis processes that incorporate the effects of coupled
lattice and spin dynamics and this study would be a contribu-
tion in that direction. While most of our results correspond to
the already well-studied case of pure bulk Fe, our approach
provides a framework for future studies to efficiently use SLD
for the study of hysteresis behavior in magnetic materials in
general.
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APPENDIX

The aim of this Appendix is to derive the Fokker-Planck
equation associated to the set of coupled Langevin equa-
tions (6)–(8), which rule the translational and rotational
dynamics of the magnetic moments. From the Fokker-Planck
equation, we then deduce the amplitudes of the white-noise
correlations, Eqs. (10) and (12), that allow the system to
reach an asymptotic stationary state of equilibrium Gibbs-
Boltzmann form.

For the sake of completeness, we work with a Langevin
equation for spins in which we add the stochastic field to both
the gyromagnetic and the relaxation terms, with a parameter
A controlling the presence or absence of noise in the latter
dissipative mechanism. In this way, for A = 1 we obtain the
sLLG equation while for A = 0 we recover our sLL (8) [22].

1. Langevin formulation

We take a set of i = 1, . . . , N particles at positions ri =
(ri

x, ri
y, ri

z ), with momenta pi = (pi
x, pi

y, pi
z ) and magnetic mo-

ments si = (si
x, si

y, si
z ). As in the main text, we label a, b,

or c the space coordinates x, y, and z. Since the number of
components of the magnetic moments are also three we use
the labels a, b, c for them as well. The magnetic moments are
normalized such that |si|2 = (si

a)2 = 1 for each particle i. Here
and in the following we use Einstein summation notation over
repeated a, b, c indices, not over i, j particle indices, and we
write the sums over these indices explicitly when needed.
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The stochastic Langevin equations of motion (6)–(8) are
recast in the generic form [105]

dt r
i
a = pi

a

mi
, (A1)

dt pi
a =

N∑
j( �=i)

[
−∂V (ri j )

∂ri
a

+ ∂J (ri j )

∂ri
a

si · s j

]
− γL

mi
pi

a + ξ i
a,

(A2)

dt s
i
a = gi

ab ωi
b + gi

ab ζ i
b, (A3)

where dt denotes the time derivative d/dt and ωi
b = − 1

h̄
∂Hmag

∂si
b

is the component b of the effective field acting on spin i.
The noises affecting the translation and magnetic degrees of
freedom, ξ i

a and ζ i
a, are independent Gaussian white random

variables with zero mean and correlations〈
ξ i

a(t )ξ j
b (t ′)

〉 = 2DLδabδ
i jδ(t − t ′) (A4)

and 〈
ζ i

a(t )ζ j
b (t ′)

〉 = 2Dsδabδ
i jδ(t − t ′). (A5)

We will fix the coefficients DL and Ds below. The matrices gi
ab

and gi
ab are defined as

gi
ab = 1

1 + λ2
s

[
εabcsi

c + λs

si

(
s2

i δab − si
asi

b

)]
, (A6)

gi
ab = f i

ab + Ahi
ab, (A7)

with

f i
ab = 1

1 + λ2
s

εabcsi
c = 1

2

(
gi

ab − gi
ba

)
, (A8)

hi
ab = λs

si

1

1 + λ2
s

(
s2

i δab − si
asi

b

)
= 1

2

(
gi

ab + gi
ba

)
. (A9)

Here, f and h are the antisymmetric and symmetric parts of
g, respectively, and εabc is the completely antisymmetric Levi-
Civita tensor. Note that for A = 0 Eq. (A3) corresponds to the
sLL (8). Instead, since f i

ab + hi
ab = gi

ab, for A = 1 we have that
gi

ab = gi
ab and it is then easy to show that Eq. (A3) reduces to

the well-known sLLG equation. Importantly enough, we have
reinserted the modulus of the local spins si since although it is
fixed to be one, its variations with respect to the various spin
components are nontrivial and have to be taken into account
in the calculations that follow. For instance,

∂s2
i

∂si
a

= 2sa,
∂s2

i

∂ (si
a)2

= 6 (A10)

for each spin i. In the second equation a sum over the three a
components was implicit and led to a factor 3.

2. The Fokker-Planck equation

Let us join the momenta, position, and magnetic variables
of all particles, each with three components, in a single α =
1, . . . , 9N component vector

y = (p1, . . . , pN , r1, . . . , rN , s1, . . . , sN ). (A11)

Starting from the Chapman-Kolmogorov equation

P(y, t + �t ) =
∫

dy0P(y, t + �t |y0, t )P(y0, t ), (A12)

we obtain the Fokker-Planck description from the Langevin
one by using the definition of P(y, t ) via the Dirac delta
function:

P(y, t + �t |y0, t ) = 〈δ(y − yξ,ζ (t + �t ))〉. (A13)

This compact Dirac delta notation indicates a product over all
the 9N components of the vector y which is forced to take
the value given by the solution to the Langevin equations.
The mean value 〈. . . 〉 is taken over the two noise sources and
yξ,ζ (t + �t ) is the solution to the Langevin equations (A1)–
(A3) evaluated at time t + �t , with initial condition y(t ) =
y0, which clearly depends on the noises. We now expand
yξ,ζ (t + �t ) around y0 since the time increment �t is small
and the y increment �y as well. Using y = y0 + �y,

P(y, t + �t |y0, t ) = δ(y − y0) − ∂α (δ(y − y0)〈�yα〉)

+ 1
2∂α∂β (δ(y − y0)〈�yα�yβ〉)

+ O(�t2), (A14)

with summation over repeated α, β = 1, . . . , 9N indices.
Combining Eqs. (A12) and (A14), and integrating over y0, one
gets

P(y, t + �t ) = P(y, t ) − ∂α (〈�yα〉P(y, t ))

+ 1
2∂α∂β (〈�yα�yβ〉P(y, t ))

+ O(�t2). (A15)

Taking the limit for the differential of P,

∂t P(y, t ) = lim
�t→0

P(y, t + �t ) − P(y, t )

�t
, (A16)

and eliminating any term of higher order than �t in the right-
hand side of Eq. (A15), we obtain the Fokker-Planck equation

∂t P(y, t ) = −∂α

[ 〈�yα〉
�t

P(y, t )

]

+ 1

2
∂α∂β

[ 〈�yα�yβ〉
�t

P(y, t )

]
. (A17)

The next step is to calculate the averages 〈�yα〉 and
〈�yα�yβ〉 to leading order in �t using the Langevin equa-
tions (A1)–(A3) which read as, in discrete time,

�ri
a ≡ ri

a(t + �t ) − ri
a(t ) = pi

a

mi
�t, (A18)

�pi
a ≡ pi

a(t + �t ) − pi
a(t )

=
N∑

j( �=i)

[
−∂V (ri j )

∂ri
a

+ ∂J (ri j )

∂ri
a

si · s j

]
�t

− γL

mi
pi

a �t + ξ i
a �t, (A19)

�si
a ≡ si

a(t + �t ) − si
a(t )

= gi
ab ωi

b �t + gi
ab ζ i

b �t . (A20)
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All variables in the right-hand sides of these equa-
tions are evaluated at the midpoint ymp = [y(t ) + y(t +
�t )]/2 since we chose to work with the Stratonovich
prescription, the unique scheme consistent with the con-
servation of the modulus of the magnetization, in the
way we wrote the equations [22,105]. When work-
ing at O(�t ) we will be able to, in some cases,
replace this midpoint by the initial one y0 in the
interval [t, t + �t].

The averages of the position increments or the product of
two position increments are

〈
�ri

a

〉 =
〈

pi
a

�t

mi

〉
= pi

a

mi
�t + O(�t2), (A21)〈

�ri
a �r j

b

〉 = O(�t2). (A22)

Besides, for the momentum and magnetization components
we obtain, respectively,

〈
�pi

a

〉 =
N∑

j( �=i)

[
−∂V (ri j )

∂ri
a

+ ∂J (ri j )

∂ri
a

si · s j

]
�t − γL

mi
pi

a�t + O(�t3/2), (A23)

〈
�pi

a �pj
b

〉 = 2DLδabδ
i j�t + O(�t3/2), (A24)

and

〈
�si

a

〉 = gi
ab ωi

b �t − 2Ds
1 + (Aλs)2

(1 + λ2
s )2

si
a �t + O(�t3/2),

(A25)

〈
�si

a �s j
b

〉 = 2Ds
1 + (Aλs)2

(1 + λ2
s )2

(
s2

i δab − si
asi

b

)
δi j�t + O(�t3/2). (A26)

The averages over the cross products are subleading since the noises ξ i
a and ζ i

a are not correlated. Replacing now Eqs. (A21)–
(A26) into Eq. (A17), we finally find the explicit Fokker-Planck equation

∂t P = − ∂

∂ri
a

(
pi

a

mi
P

)
− ∂

∂ pi
a

⎧⎨
⎩

N∑
j( �=i)

[
−∂V (ri j )

∂ri
a

+ ∂J (ri j )

∂ri
a

si · s j

]
P − γL

mi
pi

a P

⎫⎬
⎭ + 1

2

∂

∂ pi
a

∂

∂ pi
b

(2DLδab P)

− ∂

∂si
a

[
gi

ab ωi
b P − 2Ds

1 + (Aλs)2

(1 + λ2
s )2

si
a P

]
+ 1

2

∂

∂si
a

∂

∂si
b

[
2Ds

1 + (Aλs)2

(1 + λ2
s )2

(
s2

i δab − si
asi

b

)
P

]
, (A27)

where we recall that there is a sum over repeated a and b indices, and here also the i index.

3. Stationary solution

We now check whether the Gibbs-Boltzmann distribution Peq = Z−1e−H/kBT , where Z is the partition function, is a stationary
solution of the Fokker-Planck equation (A27). Such a stationary P does not depend on time and should satisfy ∂t P = 0, i.e.,

0 = −
N∑
i

pi
a

mi

∂P

∂ri
a

−
N∑

i �= j

[
−∂V (ri j )

∂ri
a

+ ∂J (ri j )

∂ri
a

si · s j

]
∂P

∂ pi
a

+ 3
N∑
i

γL

mi
P +

N∑
i

γL

mi
pi

a

∂P

∂ pi
a

+ DL

N∑
i

∂2P

∂ (pi
a)2

+ 2
λs

si

1

(1 + λ2
s )

N∑
i

si
b ωi

b P −
N∑
i

gi
ab ωi

b

∂P

∂si
a

+ 6DsN
1 + (Aλs)2

(1 + λ2
s )2

P + 2Ds
1 + (Aλs)2

(1 + λ2
s )2

N∑
i

si
a

∂P

∂si
a

+ Ds
1 + (Aλs)2

(1 + λ2
s )2

[
−6NP − 4

N∑
i

si
a

∂P

∂si
a

+
N∑
i

(
s2

i δab − si
asi

b

) ∂2P

∂si
a∂si

b

]
, (A28)

where we wrote the sum over i explicitly. Now, considering that ∂αPeq = − Peq

kBT ∂αH and assuming that P = Peq, it follows that
the translational terms in Eq. (A28) are

0 = − P

kBT

∑
i �= j

pi
a

mi

[
∂J (ri j )

∂ri
a

si · s j − ∂V (ri j )

∂ri
a

]
+ P

kBT

∑
i �= j

[
−∂V (ri j )

∂ri
a

+ ∂J (ri j )

∂ri
a

si · s j

]
pi

a

mi

+ 3P
N∑
i

γL

mi
− γLP

kBT

N∑
i

(
pi

a

mi

)2

+ DLP

kBT

[
−

N∑
i

3

mi
+ 1

kBT

N∑
i

(
pi

a

mi

)2
]
. (A29)
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The first line automatically cancels out while the second line leads to the well-known dynamical fluctuation-dissipation relation

DL = γLkBT . (A30)

This is the exact relationship as derived by Einstein which perfectly matches Eq. (10).
On the other hand, for the magnetic degrees of freedom and after trivial cancellations of terms we obtain

0 = 2
λs

si

1(
1 + λ2

s

) N∑
i

si
b ωi

b P −
N∑
i

gi
ab ωi

b

∂P

∂si
a

+ Ds
1 + (Aλs)2(

1 + λ2
s

)2

[
−2

N∑
i

si
a

∂P

∂si
a

+
N∑
i

(
s2

i δab − si
asi

b

) ∂2P

∂si
a∂si

b

]
. (A31)

Replacing gi
ab by its explicit expression and the derivatives of P, ∂P/∂si

a = β h̄ωi
a P and ∂2P/∂si

a∂s j
b = (β h̄)2ωi

aω
j
b P, we have

that

0 = 2
λs

si

1(
1 + λ2

s

) N∑
i

si
b ωi

b P − 1

1 + λ2
s

N∑
i

[
εabcsi

c + λs

si

(
s2

i δab − si
asi

b

)]
ωi

b ωi
a

h̄

kBT
P

+ Ds
1 + (Aλs)2(

1 + λ2
s

)2

[
−2

N∑
i

si
aω

i
a

h̄

kBT
P +

N∑
i

(
s2

i δab − si
asi

b

)
ωi

b ωi
a

(
h̄

kBT

)2

P

]
. (A32)

The term proportional to εabc vanishes because εabc ωi
a ωi

b si
c = ωi · (ωi × si ) = 0. Instead, the remaining terms cancel if we

choose

Ds = λs
(
1 + λ2

s

)
[1 + (Aλs)2]

kBT

h̄
, (A33)

we have already set si = 1. This is the fluctuation-dissipation relation for the magnetic degrees of freedom. Note that for A = 0
we obtain Eq. (12). However, it is important to highlight that Eq. (A33) is different from the one reported in Ref. [37], which is
valid only for damping values λs � 1. We have checked, with simulations not shown here, that this is the correct expression that
allows one to use large values of the damping constant λs and let the magnetic degrees freedom equilibrate with the environment.
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