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We carried out numerical simulations of propagation of spin waves (magnons in quantum language) in an
yttrium-iron garnet film. The numerical model is based on an original formalism. We demonstrated that a
potential barrier for magnons, created by an Oersted field of a dc current flowing through a wire sitting on
top of the film, can act as an electrically controlled partly transparent mirror for the magnons. We found that the
mirror transparency can be set to 50% by properly adjusting the current strength, thus creating a semitransparent
mirror. A strong Hong-Ou-Mandel effect for single magnons is expected in this configuration. The effect must
be seen as two single magnons, launched simultaneously into the film from two transducers located from the
opposite sides of the mirror, creating a two-microwave-photon state at the output port of one of the transducers.
The probability of seeing those two-photon states at the output port of either transducer must be the same for
both transducers.
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I. INTRODUCTION

The Hong-Ou-Mandel effect (HOME) represents a particu-
lar manifestation of the property of indistinguishable bosonic
particles to bunch. It has been studied in detail for optical
photons and is seen as a specific interference pattern which
is generated by pairs of photons while incident on a 50:50
lossless optical beam splitter [1]. If two indistinguishable
optical photons are simultaneously incident on the beam split-
ter, each onto its own input port, both of them always exit
the splitter together through the same output port but never
separately with one photon through each of the two output
ports [2,3]. Later, it was theoretically shown that, if the beam
splitter is lossy, the same interference pattern must remain
for coincidence photons, i.e., when both photons survive the
transmission through the lossy medium.

Very recently, the same effect was demonstrated in quan-
tum acoustics for pairs of traveling phonons. Surface acoustic
waves (SAWs) in LiNbO3 plates were employed to observe
this effect [4]. In this paper, we make a theoretical prediction
that the same effect can be seen for traveling microwave
magnons in single-crystal yttrium iron garnet (YIG) films.
Central for observation of HOME is the availability of a semi-
transparent mirror for specific (quasi-)particles, for which the
effect is to be observed. In this paper, we propose a partly
transparent mirror for magnons, the degree of transparency
of which can be controlled electrically; investigate its prop-
erties theoretically; and consider its usefulness for observing
HOME for traveling magnons. Importantly, we do this specifi-
cally for short spin-wave (SW) pulses. The reason for that will
be explained below.

Magnons (or magnon-polaritons) are bosonic quasiparti-
cles that represent quanta of SWs. Quantum magnonics has
attracted a lot of attention recently; see Ref. [5] for a recent
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review on that matter and references therein. For instance,
excitation and propagation of SWs at millikelvin temperatures
was successfully demonstrated [6,7], It has also been shown
that traveling single magnons can be employed to convert
microwave photons to optical photons [8] and that parametri-
cally squeezed states of traveling magnons can be created [9].
Classically, SWs represent collective precession of electron
spins in a magnetic material. The collective character of the
spin dynamics is due to coupling of spins at nearby crys-
tal lattice sites by exchange and dipole-dipole interactions.
The best medium for experiments with traveling magnons is
thin single-crystal films of YIG. In these films and for small
magnon wave numbers k (0 to 1000 rad/cm), the coupling
of ferromagnetic spins is predominantly by a dynamic dipole
(or stray) magnetic field they generate collectively while pre-
cessing. The total magnon energy is then the sum of energies
of the dipole-dipole and Zeeman interactions. The Zeeman in-
teraction results in formation of an energy gap in the magnon
spectrum, such that application of a reasonably small external
spatially uniform magnetic field H able to saturate the YIG
films magnetically shifts the frequency of SWs ω(k = 0) into
the microwave frequency range.

In addition, the dependence of SW dispersion ω(k) on the
applied field results in efficient scattering of traveling SWs
from localized nonuniformities of a magnetic field applied to a
YIG film [10,11]. A field nonuniformity can easily be created
by placing a narrow metallic wire on top of the film and
sending a relatively small dc current through it. The current
induces a dc Oersted field around the wire. The Oerstead field
is highly localized, thus forming the necessary conditions for
efficient SW scattering from the Zeemann energy barrier.

In Ref. [11], it was shown that, by controlling the strength
of the current, the coefficients of SW transmission and re-
flection from the localized nonuniformity may be varied in
a very broad range—from complete reflection to complete
transmission. This potentially creates conditions for forming
a semitransparent mirror for magnons traveling in the film.
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Importantly, the SW dispersion strongly depends on the ori-
entation of the applied field with respect to the film surface
and the direction of SW propagation in the film plane [12,13].
To use the Oerstead field of a wire as a narrow energy barrier,
the wire must lie in the film plane, be orientated perpendic-
ular to the SW wave vector, and have a component of its
Oersted field parallel to a static spatially uniform magnetic
field also applied to the film. These conditions are satis-
fied for the backward volume magnetostatic SW (BVMSW)
and the forward volume magnetostatic SW (FVMSW). A
FVMSW propagates in a film which is magnetized by ap-
plying a static field perpendicular to its plane [13]. A wave
has a BVMSW character if a film is magnetized in its plane
and the wave propagates along the direction of the applied
field [12].

In this paper, we focus on creating an electrically con-
trolled mirror for BVMSWs. The case of FVMSWs is slightly
more involved, as these waves scatter from the perpendicular-
to-plane component of the Oersted field of a wire. This
component of the field has an antisymmetric shape in the
direction of the SW wave vector. This breaks symmetry of
the scattering geometry. Our numerical simulation shows that
the symmetry break results in slightly different time delays of
waves reflected from the barrier if they are incident onto the
barrier from its opposite sides. This may affect indistinguisha-
bility of single magnons scattered from the mirror.

On the contrary, BVMSWs are sensitive to the component
of the wire Oersted field that lies in the film plane. This
component is symmetric and hence must preserve indistin-
guishability of magnons. It is the main reason for the focus
on BVMSWs in this paper, and we do not consider FVMSWs
any further.

It is important to emphasize the difference of the present
treatment of the effect of BVMSW scattering from the poten-
tial barrier created by the Oersted field of a dc current in a
wire from the earlier work [11]. The theory of SW scattering
from Ref. [11] lacks time dependence. As a result, the integral
equation obtained in that earlier work is suitable for modeling
continuous-wave (CW) or single-frequency SW signals. How-
ever, as follows from Ref. [4], the single-microwave-photon
output of superconducting qubits represents a radiofrequency
(RF) pulse of ∼ 20 ns in duration.

The SAW phonons are dispersionless, meaning that the
dispersion law ω(k) for them represents a straight line. (Here
ω is the wave frequency and k is its wave number.) This is an
important difference between Ref. [4] and this paper. SWs in
thin magnetic films are fundamentally dispersive—the depen-
dence ω(k) for them is not a straight line. This implies that SW
group velocity Vg = dω/dk is k dependent. As a result, differ-
ent parts of the frequency spectrum of an RF pulse carried
by SWs travel with different speeds. This leads to dispersive
broadening of the pulse both in space and time, potentially
severely deforming the pulse shape. The adverse impact of the
dispersion increases with a decrease in the SW pulse length.
For YIG films with thicknesses typically used in SW experi-
ments (5–7 µm), the dispersion spreading becomes significant
for pulse lengths < 25ns or so (see, e.g., Ref. [14]). Shap-
ing the microwave photons released by the superconducting
qubits as 17-ns-long pulses, as was done in Ref. [4], thus
requires considering SW dynamics time resolved.

In addition, in Ref. [11], it was shown that the efficiency of
scattering of a CW SW from a potential barrier created by a
dc current in a wire is strongly k dependent. This suggests that
the shape of a SW waveform of a nonvanishing spectral width
may be noticeably modified during the process of scattering
from the potential barrier. Furthermore, due to the presence of
the energy gap in the SW spectrum (which also distinguishes
magnons from SAW phonons), it is important to ensure that
the whole spectral width of input microwave pulses that excite
the traveling SW pulses fits into the allowed energy band for
magnons [14]. If it does not, spectral components of the RF
pulse that fall into the energy gap will get filtered out. This
will contribute to a further distortion of the temporal/spatial
shape of the SW pulse. Modeling the SW dynamics time
resolved is the direct way to account for these two effects too.

All these aspects call for considering the process of SW
scattering from the energy barrier time resolved and specif-
ically for short SW pulses. Accordingly, in this paper, we
derive an integrodifferential equation that governs classical
dynamics of the envelopes of narrow packets of BVMSWs
in a ferromagnetic film and simulate excitation, propagation,
and scattering of SWs by numerically solving the envelope
equation.

We show that short BVMSW pulses scatter efficiently from
a Zeemann energy barrier created by an Oersted field of a
dc current in a wire orientated in the film plane and along
the BVMSW fronts. If parameters of the physical process are
properly selected, the pulses are not significantly affected by
the dispersive character of BVMSWs and the k-dependent
efficiency of SW scattering from the barrier. By properly
adjusting the current through the wire, a semitransparent SW
mirror can be created. The mirror is characterized by a transfer
matrix that satisfies requirements for the presence of a HOME
for it. We also discuss technical details of how to organize
a future experiment on observation of the magnonic HOME
based on the proposed semitransparent SW mirror.

The paper is organized as follows. Section II presents
the developed time-resolved theoretical model and results
of numerical simulations of scattering of BVMSW pulses
from the energy barrier. Section III introduces details the SW
HOME, which follow from the numerical simulations, and
discusses technical details of the proposed SW HOME exper-
iment. Section IV contains conclusions. Technical details of
the derivation of the model equation, the numerical solution
of the equation, and less important results of the numerical
simulation are placed in the appendices.

II. THEORY AND SIMULATION RESULTS

Figure 1 shows a sketch of the problem geometry. Its main
component is a 5-µm-thick ferromagnetic film (film thickness
L = 5 µm). The film is magnetized in its plane by a spatially
uniform magnetic field H of a strength μ0H = 85 mT (H =
850 Oe). Two wire-loop transducers (labeled ports 1 and 2)
are placed d = 7 mm apart and perpendicular to the applied
field. This creates conditions for the excitation of BVMSWs
in the film. The transducers are also used to receive the signals
carried by BVMSWs. Appendix C explains why we opt for the
loop transducers in our simulations and how we simulate the
driving microwave magnetic field hdr of a transducer operating
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FIG. 1. (a) Sketch of the simulated geometry. (b) Backward vol-
ume magnetostatic spin wave (BVMSW) dispersion for a 5-µm-thick
yttrium iron garnet (YIG) film. Solid line: applied field H = 850 Oe.
Dotted line: a slightly smaller applied field H = 842 Oe. Thin dashed
line shows the carrier frequency of the simulated input microwave
pulses ω0/2π = 4145 MHz.

as an input one and how we simulate output transducer signals
when a transducer receives a BVMSW signal.

A single wire (shown as “conducting wire” in the sketch)
is located midway between the transducers (i.e., at x = d/2 =
3.5 mm). The wire width ω = 50 µm. The wire carries a dc
current I. The Oersted field of the current δh(I,x) creates a po-
tential barrier for SWs in the film. A BVMSW pulse is excited
by one transducer, or two counterpropagating SW pulses are
excited by both transducers simultaneously. The SW pulse(s)
travel(s) through the film and scatter(s) from the barrier to
create reflected and transmitted pulse(s). The reflected and
transmitted pulses are received by the transducers and create
output microwave signals of ports 1 and 2.

As shown in Appendix A, the BVMSW dynamics in this
geometry is governed by an integrodifferential equation as
follows:

dm(x, t )

dt
− i

{
[ωH + γ δh(I, x)]2

2ω0
− ω0

2

}
m(x, t )

+ i
[ωH + γ δh(x)]ωM

2ω0

∞∫
−∞

Ĝ(x − x′)m(x′, t )dx′

= −i
ωHωM

2ω0
hdr (x, t ). (1)

FIG. 2. Snapshots of backward volume magnetostatic spin wave
(BVMSW) pulses taken at different moments of time t (see the
legend). Carrier wave number of pulses is 49 rad/cm, which cor-
responds to ω0/2π = 4145 MHz. Applied field H = 850 Oe. Film
thickness L = 5 µm. Length of input microwave pulses: 20 ns. The
pulses are excited by the transducer located at x = 0. No potential
barrier is present (I = 0).

Here, γ is the gyromagnetic ratio, which is equal to 2π ×
28 MHz/mT (2π × 2.8 MHz/Oe) for YIG, ωH = γ (H +
i�H ), 2�H = 0.5 Oe is the magnetic loss parameter for YIG
(at room temperature), i is imaginary unit, ωM = γμ0M,
where μ0 is permeability of vacuum, M is the saturation
magnetization of the films (μ0M = 175 mT for YIG), and
m(x, t ) and hdr (x, t ) are the perpendicular-to-film-plane vector
components of the slow envelopes of dynamic magnetization
of BVMSWs and of the microwave driving field, respectively.
They are slow with respect to the microwave carrier frequency
ω0 of these waveforms. The expressions for the Green’s func-
tion of the perpendicular-to-plane component of the dipole
magnetic field of the dynamic magnetization Ĝ(s) [15] and
for the in-plane component of the Oersted field δh(I,x) of the
wire that creates the potential barrier are given in Appendixes
A and B, respectively.

In this paper, we solve the envelope equation numeri-
cally. We use a mesh of 1000 discrete coordinate points
x = xn, n = 1, 2, . . . , 1000. This creates a 1000-component
vector with components m(xn, t ). We employ the fourth-order
Runge-Kutta method to obtain a time-dependent solution
for the vector. The whole solution process is implemented
as a MathCAD worksheet employing MathCAD’s Adaptive
Runge-Kutta solution function Rkadapt. Simulating the whole
process of pulse scattering from the barrier takes 3–5 min of
computer time.

Like the experiment on the phononic HOME [4], we as-
sume that microwave superconducting qubits act as sources of
single microwave photons, which the transducers convert into
single magnons. The photons were formed as 17.6-ns-long
pulses in Ref. [4]. Similarly, we use 20-ns-long rectangular-
shaped pulses as hdr(t).

All simulations in this paper are carried out for a carrier
wave number of SWs of 49 rad/cm. This corresponds to
ω0 = 4145 MHz, as shown in Fig. 1(b). Figure 2 displays
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the simulated screenshots of a BVMSW pulse launched by
the transducer located at x = 0 (Port 1). The screenshots are
taken at different moments of time t. No potential barrier is
present (I = 0). Here, t = 0 corresponds to the front edge of
the driving pulse hdr(t). The transducer excites two BVMSW
pulses traveling in two opposite directions from it, but we
only show the pulse propagating toward the receiving antenna
(located at x = 7 mm).

The waveform shape evolves during the pulse propagation
in the film. The shape of the envelope of the BVMSW pulse
is not rectangular even for small t . This is because the pulse
edges are smoothed during the transduction process due to
the finite width of the transduction frequency/wave number
band of the transducer. As the pulse propagates in the film,
it broadens and its height drops. The former is an effect of
the presence of dispersion, which distinguishes SW pulses
from SAWs exploited in Ref. [4]. The dispersion law for the
fundamental mode of BVMSWs is shown in Fig. 1(b). One
sees that the eigenfrequency vs wave number dependence for
the waves does not represent a straight line—the line has a
slight positive curvature. This makes narrow pulses carried by
BVMSWs prone to dispersion broadening [16].

The decrease in the pulse amplitude has two origins. The
first one is the presence of magnetic loss in the medium. Due
to the loss, the pulse amplitude drops exponentially with dis-
tance from the location of pulse excitation. The second origin
is the conservation of pulse energy—when a pulse broadens
in a dispersive medium, its height must decrease to conserve
energy of the pulse.

Figure 3(a) demonstrates exemplary snapshots of the same
BVMSW pulse taken in the presence of a potential barrier.
Here, I = −0.35 A for the example. The negative sign indi-
cates that, within the film, the Oersted field of the current is
antialigned to the applied field H. As a result, the total static
field within the barrier is smaller than elsewhere. This regime
of SW transmission through a barrier was termed tunneling
in Refs. [10,11]. The decrease in the total static field locally
shifts the dispersion relation downward in frequency. If the
shift is small, this just makes the local value of the BVMSW
wave number smaller. However, for larger magnitudes of the
negative I, the downshift of the dispersion relation becomes
large enough to place the BVMSW frequency locally into the
energy gap that exists above the BVMSW band. This situation
is shown in Fig. 1(b) by the dotted line. One sees that, for a
smaller H, any point of the dispersion relation lies below ω0

(shown by the horizontal dashed line). Then the only way for
a BVMSW to cross the barrier is by tunneling through it as a
leaky wave.

The example from Fig. 3(a) is for a specific value of
I, for which energy of the transmitted (the right-hand-side
waveform) pulse equals to energy of the reflected pulse (the
left-hand-side pulse). The quantity we plot in the graph is
|m(x, t )|2. Power carried by a SW must scale as |m(x, t )|2.
Therefore, in the following, we term this quantity SW power.
Similarly, integrating |m(x, t )|2 over the spatial or temporal
width of the pulse, we obtain a quantity which scales as
pulse energy. In the following, we will term the integral pulse
energy.

In Fig. 3(a), the barrier is located at x = 0.35 cm. One sees
that the scattered pulses are located at equal distances from

FIG. 3. (a) Snapshot of backward volume magnetostatic spin
wave (BVMSW) pulses scattered from a barrier I = −0.35 A. The
snapshot corresponds to t = 140 ns. (b) Output microwave signals of
Port 1 (denoted as “to Port 1” in the legend) and Port 2 (denoted
as “to Port 2”), when a single input microwave pulse is applied
to either Port 1 (denoted as “from Port 1”) or Port 2 (denoted as
“from Port 2”). The barrier height is the same as for (a). (c) The
same as (b), but the same microwave pulses are now applied to both
ports simultaneously. Ports 1 and 2 in the legend denote the ports
that receive the respective signals. φ is the initial phase of the input
microwave pulse applied to Port 2. The initial phase of the input pulse
fed into Port 1 is zero. The barrier height is the same (I = −0.35 A).
The other simulation parameters are the same as for Fig. 2.

this point. This demonstrates that the pulses acquire the same
time delay while scattering from the barrier. This is better seen
from Fig. 3(b), which displays microwave signals received by
the transducers. The signal from Port 1 is the reflected signal,
and the one exiting Port 2 is the transmitted one. One sees
that the shapes of the output pulses are slightly different, but
they overlap quite well in time. The same power vs t traces
are obtained when we excite an SW pulse with the second
transducer (Port 2) located at x = 0.7 cm. The only difference
is that the reflected pulse is now received by Port 2 and the
transmitted one by Port 1.

Panel (c) of the same figure displays the output pulses of
the ports for a case when two identical rectangular microwave
pulses are applied to both ports simultaneously. The only
difference between the input pulses is their initial phases. The
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phase difference between the input pulses is either +π /2 or
−π /2. We see that, in either case, the microwave signal from
one port is strong, and the output signal of the other port is
strongly suppressed. This behavior is in full agreement with
what is expected from an optical semitransparent mirror [2].
We also see that changing the phase difference by π (i.e., from
+π /2 to −π /2) swaps ports, through which the larger and
smaller pulses exit. Again, this agrees with what is expected
from an optical semitransparent mirror [17].

Figure 3(c) is the main finding of this paper. It demon-
strates that the barrier acts as semitransparent mirror for short
SW pulses, for which we may expect a magnonic HOME.
However, before we proceed to a discussion of the effect,
it is worth noting that the mirror transparency is electrically
controlled. The ratio R of transmitted and reflected pulse en-
ergies can easily be decreased or increased by altering I. This
is shown in Appendix D.

III. MAGNONIC HOME

Important for a theoretical description of HOME is estab-
lishing the transfer matrix for a semitransparent mirror. The
general form of the matrix is

Ŝ =
(

S11 S12

S21 S22

)
. (2)

The matrix element S11 represents the signal exiting Port 1
if an input pulse of amplitude of 1 is applied to Port 1.
Similarly, S22 is the output signal of Port 2 if an input pulse is
applied to Port 2. Physically, these quantities represent reflec-
tion coefficients from the barrier. Here, S21 and S12 represent
the coefficients of transmission of the mirror—from Port 1
to Port 2 and from Port 2 to Port 1, respectively. All these
quantities are complex valued. A BVMSW is a reciprocal
wave (i.e., it has the same properties while propagating in +x
and −x directions); therefore, we expect that S22 = S11 = τ

and S12 = S21 = r, where we introduced the complex-valued
transmission τ and reflection r coefficients. Our numeri-
cal simulation results are in excellent agreement with these
equalities.

We will establish the matrix specifically for the case of
a perfectly semitransparent mirror and for the pulse regime
we studied above. This implies that energy of the transmitter
pulse equals energy of the reflected one (|τ |2 = |r|2). This
is the case for I = −0.35 Å. We will also neglect losses of
the pulses due to magnetic damping on their way to and
from the barrier, thus effectively moving the ports to the
edges of the barrier. In addition, we will neglect the signal
loss within the barrier due to the same magnetic damp-
ing. As the barrier is short, this loss is insignificant. Under
these conditions and considering the energy conservation law
(|τ |2 + |r|2 = 1), we obtain |S11| = |S21| = |S22| = |S12| =
|τ | = |r| = 1√

2
.

We also need phases of these quantities. To find the phases,
in Fig. 4, we plot the phase differences �φ1 = arg(S21) −
arg(S11) and �φ2 = arg(S12) − arg(S22), where arg(z) denotes
the phase of a complex number z. We obtain the phase dif-
ferences from simulating single pulses incident to the barrier
either from port 1 or 2. The data are shown for the case of
the perfectly semitransparent BVMSW mirror (I = −0.35 A).

FIG. 4. Thick solid line: difference in phases �φ1 of signals
received by ports 1 and 2, when a single input pulse is applied to Port
1. Dashed line: the same, but the single input pulse is now applied to
Port 2 (�φ2). Dotted line: microwave output power of Port 2, when
a single input pulse is applied to Port 1 (right-hand vertical axis).
I = −0.35 A. The other simulation parameters are the same as for
Fig. 2.

This is the configuration of Fig. 3(b). Calculating the
differences eliminates phase accumulation by the signals on
their paths to and from the barrier. Again, this approach is
consistent with moving the ports to the edges of the barrier.

For convenience, we also show the simulated |S21|2 in the
same graph. One sees that both phase differences are very
close to π /2 within the pulses. This explains why phase differ-
ences of ±π /2 between the input pulses switch the direction
of the large-amplitude output pulse [Fig. 3(c)]. By adding
or subtracting π /2 to or from either �φ1 or �φ2, we create
conditions for constructive interference of scattered pulses
incident to one port (bright port in the following) and for
destructive interference for pulses traveling toward the other
port (dark port). Changing the sign of this extra phase shift
swaps the interference conditions for the ports and sends the
large-amplitude pulse in the opposite direction of axis x with
respect to the original one. (The dark port becomes bright and
vice versa.)

We may assign the phase �φ1 = �φ2 = π/2 either to the
diagonal (r) or antidiagonal (τ ) elements of the matrix, as
we are not interested in the absolute phase accumulation by
the signal while being scattered from the barrier but just in the
phase difference between the transmitted and reflected waves,
given the reciprocal character of the mirror. Assigning the
phases to the transmission coefficients yields a transfer matrix
as follows:

Ŝ = 1√
2

(
1 i
i 1

)
. (3)

The matrix has the same form as the transfer matrix for the
symmetric beam splitter of Loudon [3,17]. This finding im-
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plies that the formalism from Refs. [2,4] applies to our SW
mirror. It allows calculating the output quantum state of the
mirror for the case when single magnons are incident on ports
1 and 2.

Let us now discuss a potential SW HOME experiment.
The experiment can be organized in a way like one from
Ref. [4]. An electrically controlled qubit is connected to
each SW transducer. The qubits release single microwave
photons simultaneously. The transducers convert the primary
photons into single magnons. The magnons propagate to-
ward the barrier and interact there. The same transducers are
used to convert the scattered magnons into secondary pho-
tons. The secondary photons are captured by the same qubits
connected to the transducers. Employing the qubits as both
photon sources and photon detectors is possible because of
the presence of a delay time td in the system—it takes time td
for the magnons to arrive to the transducers once they have
been launched into the film and scattered from the barrier.
The delay time td = d/|Vg|. For our example of the SW car-
rier wave number k = 49 rad/cm, |Vg| = 2.2 × 106 cm/s. For
d = 7 mm, we then obtain td = 320 ns, and for d = 4mm,
td = 185 ns. If the primary photons released by the qubits are
shaped as 20-ns-long pulses, it will be ample time to prepare
the qubits for capturing the secondary photons.

If two bosons arrive simultaneously to two detectors,
they are called coincidence bosons. Consider coincidence
magnons. These magnons must be fully indistinguishable.
From Fig. 3(b), we clearly see that the output pulses of the
mirror overlap in time quite well. Hence, coincident arrival
of two single magnons, shaped as those pulses, to the two
ports is possible, provided they have been excited simultane-
ously. Hence, in Figs. 3(b) and 3(c), we deal with coincidence
magnons.

We assume that two single microwave photons are incident
simultaneously on ports 1 and 2 to create two coincident initial
magnons. We will denote this state |1, 1〉in. The reflected and
transmitted pulses from Fig. 3(b) have very similar shapes.
Therefore, for simplicity, we may assume that the respec-
tive single-photon-state spectral amplitude functions [2,4] are
identical. In addition, the pulses from Fig. 3(b) overlap very
well in time. Therefore, it is reasonable to assume that the
relative time delay of arrival of the pulses to the transducers
[4] vanishes. Under these assumptions, the last equation from
sec. A in the online supplemental material of Ref. [4] reduces
to simple formulas from table 1 in Ref. [3].

As follows from the third cell of the third column of the
table in Ref. [3], the probability P11 of the observation of
single microwave photons simultaneously exiting both ports
(the output state |1, 1〉out) is given by

P11 = (|τ |2 − |r|2)
2 = (1 − 2|r|2)

2 = (1 − R2)2

(1 + R2)2 , (4)

where R = |τ/r|. One sees that, for a perfectly semitranspar-
ent mirror (|τ |2 = |r|2 = 1

2 ), this formula reduces to P11 = 0.
This implies that the output state of the system is either
|0, 2〉out or |2, 0〉out. Each of these states is characterized by the
presence of both coincidence photons at the same port—either
Port 2 or Port 1, respectively. The probabilities P02 and P20 to
observe these states are given by the second and fourth cells of

the same column of the table. Both probabilities are the same
and are equal to 2|τ |2|r|2, which reduces to P02 = P20 = 1

2 for
the semitransparent mirror.

Note that Eqs. (3) and (4) are valid for a lossless medium.
Because of the very short length of the potential barrier, it is
acceptable to neglect magnetic losses in the mirror. However,
we cannot neglect propagation losses of a SW on its path
from an input port to an output one. Our simulation for I = 0
shows that, for d = 7 mm, the BVMSW propagation losses
are 18 dB, which makes 2.6 dB/mm. This signal attenua-
tion does not include transducer impedance mismatch loss
(see, e.g., Ref. [18]). In physical experiments, transducers
are not usually well impedance matched. Therefore, we may
expect 5–10 dB of loss of conversion of power of an input
microwave signal into a SW signal by an input transducer.
The same then applies to the back conversion by an out-
put transducer. In addition, the input transducer will lose an
extra 3 dB of energy for exciting a BVMSW pulse, which
travels in the −x direction. This loss is usually termed bidi-
rectionality loss. The bidirectionality loss also takes place
at the output transducer—only half of SW power incident
to the output transducer contributes to generating the out-
put microwave signal. Hence, the total insertion loss of our
device is 18 dB + (2 × 10 dB) + (2 × 3 dB) = 44 dB if we
use the conservative estimation of the transducer conversion
losses of 10 dB per transducer. Note that we did not have to
choose d = 7 mm. A smaller transducer separation of d = 4
mm usually works fine in SW experiments and technology.
For d = 4 mm, we will have (2.6 × 4) dB + (2 × 10
dB) + (2 × 3 dB) ≈ 36 dB. This implies that, for d = 4
mm and I = 0, we will have |τ |2 = 10−36/10 = 2.5 × 10−4.
Then from the energy conservation law, for a semitransparent
mirror (I = −0.35 A), we must have |τ |2 = |r|2 = 2.5×10−4

2 =
1.25 × 10−4.

In Ref. [19], it was shown that the formalism from Ref. [3]
remains valid in the presence of losses in a medium, provided
that τ and r remain orthogonal (τ = i r) in the presence of
a loss and we count coincidence output states only. As seen
from Fig. 4, the condition τ = i r is satisfied for the semi-
transparent BVMSW mirror (|τ |2 = |r|2). The theory from
Ref. [19] shows that, for the input state |1, 1〉in and |τ |2 = |r|2,
two boson detectors never click simultaneously—either one
of the detectors clicks and the other remains silent (nonco-
incident photon states |1, 0〉out and |0, 1〉out), or one detector
displays a signal of simultaneous arrival of two bosons, but
the other detector remains silent (states |0, 2〉out or |2, 0〉out).

Equation (3.12) from [19] expresses probabilities of ob-
serving the output states of a lossy mirror. Specifically
for the perfectly semitransparent lossy magnon mirror (I =
−0.35 A), τ = i r, and complete temporal overlap of output
pulses [Fig. 3(b)], the probability of one quasiparticle to
survive P10 = P01 ≈ 2|r|2 = 2 × 1.25 × 10−4 = 2.5 × 10−4.
The probability of observing no microwave photon at either
port (the output state |0, 0〉out) P00 = (1−2|r|2)

2 ≈ 1. Simi-
larly, the probabilities to observe one microwave photon at
each port P11 = 0 and for both photons to exit the same port
are P02 = P20 = 2|r|4 = 3.1 × 10−8.

Assume that we can apply single microwave photons to the
device with a repetition period of 10 µs. Then we may expect
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one detection of either state |0, 2〉out or |2, 0〉out every 300 s
or so. This will allow us to collect reliable statistics within a
couple of hours of running the experiment.

Note that we need to count coincidence photons only (we
will call this coincidence events in the following) and ignore
all |1, 0〉out and |0, 1〉out states. However, while acting as mi-
crowave photon detectors, some types of qubits may be able
to absorb just one microwave photon and unable to absorb two
photons [4]. Therefore, in this earlier work, the experimental-
ists had to rely on an indirect method of observing the |0, 2〉out

and |2, 0〉out states. They counted the |1, 1〉out states as a func-
tion of the degree of indistinguishability of the single photons
and saw that this dependence has a sharp minimum for the
highest degree of phonon indistinguishability. We believe that
the same method can also be used for the BVMSW magnons.
Furthermore, one can use the same way of controlling magnon
distinguishability—by delaying the launch of one of the single
magnons into the film. One expects to see a minimum in
the number of |1, 1〉out coincidence events for vanishing time
delay. The observation of the drop in P11 will evidence that
|2, 0〉out and |0, 2〉out states are created instead of |1, 1〉out
states.

Alternatively, one may exploit the electric control of trans-
parency of the SW mirror, which is unique for SWs. Set I
to 0 first and measure the P11 and P10 + P01. Then turn on
I, set the mirror transparency to 50% by properly adjusting
the current, and repeat the experiment. Observation of a de-
crease in P11/(P10 + P01) will then evidence the presence of the
magnonic HOME. (Because magnetic damping in the barrier
may be different from elsewhere, it may be worth normalizing
P11 by P10 + P01, as we did in the formula above, to account
for the small potential change in the overall level of magnetic
losses in the presence of the barrier.)

It may also be worth measuring P11 as a function of I.
Figure 5(b) shows the P11(I) dependence calculated with
Eq. (4) using the values of R(I) from Fig. 5(a) and assuming
that the phase difference between τ and r is π /2 for any I. We
checked the latter assumption with numerical simulations for
a range of I values from −1 to −0.1 Å. We found that it is
satisfied with good accuracy over the whole range. The graph
in Fig. 5(b) is characterized by three zeros of P11(I) corre-
sponding to three I values, for which R(I ) = 1 [see Fig. 5(a)].
Observation of the zeros (or potentially just minima in a real-
life experiment) will also evidence the presence of a magnonic
HOME.

It is worth explaining why we propose using the tunneling
regime (I < 0) of the BVMSW interaction with the energy
barrier for creating the semitransparent mirror. Our simu-
lations show that, in this regime, the shape of SW pulses
changes less during the process of scattering from the barrier.
As seen in fig. 4 from Ref. [11], the k dependence of the
efficiency of scattering of a CW SW signal from the barrier is
more significant for the scattering regime (I > 0); therefore,
the larger pulse shape distortion is expected for I > 0. Our
modeling shows that, for I > 0, the shapes of the transmitted
and reflected pulses differ more significantly than for I < 0.
This results in a weaker suppression of the SW pulse trav-
eling to the dark port [Port 2 for φ = −π/2 in notations of
Fig. 3(c)], which is a signature of larger distinguishability
of the interacting single magnons. Then the approximation

FIG. 5. (a) Ratio R of energy of the pulse received by Port 2 to
energy of the pulse received by Port 1 as a function of the current
I creating the potential barrier. The input microwave pulse is applied
to Port 1. (b) Probability to observe the quantum state |1, 1〉out if the
input quantum state of the device is |1, 1〉in as a function of I.

of the perfect indistinguishability of the incident magnons
is less justified for I > 0, and the full HOME theory in the
appendix from Ref. [4] needs to be employed for evaluating
the efficiency of HOME for I > 0. This is beyond the scope
of this paper. Here, we only mention that, due to this effect,
we may expect less perfect zeros of P11 for I > 0 than shown
in Fig. 5.

One more technical aspect of the proposed experiment
needs to be addressed. Like Ref. [4], the device needs to be
cooled down to millikelvin temperatures to suppress thermal
magnon noise and thus create a noise floor which is low
enough for observation of single traveling magnons. There
should be no significant difference between thermal phonons
from Ref. [4] and thermal magnons in YIG films in this
regard. Therefore, the successful excitation of single phonons
by releasing single microwave photons from superconducting
qubits and detection of the phonons with the qubits is a good
indicator that this process will potentially work for single
magnons too. In fig. S1(b) in appendix 1.4 from Ref. [4], one
sees that the transmission loss of the SAW device is 22 dB or
so, despite careful optimization of the transducers. If properly
optimized, the transmission loss of a SW device can be as
low as 5 dB [20]. For BVMSWs, we need to add 6 dB of
the antenna nondirectionality loss to this value, which makes
11 dB in total. Above, we assumed unoptimized BVMSW
transducers, as typical for physical experiments, which
yielded 36 dB of transmission loss. Despite this, our
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estimation above shows that detecting coincidence magnons
with a qubit will be possible within a realistic timeframe for
the observation.

Conversely, if through some effort of transducer optimiza-
tion, 5 dB of transduction losses per antenna are achieved
(which is still significantly larger than the benchmark result
from Ref. [20]), together with the 6 dB of the bidirectionality
loss and 10 dB of the SW attenuation over the distance of
4 mm, this will make 26 dB of total transmission loss. This
value is equivalent to just 1.5 times smaller transmitted power
than in Ref. [4] (26−22 dB = 4 dB = 1.5 times). This negli-
gible difference suggests a good chance to observe the HOME
for BVMSW magnons experimentally.

One important technical issue specific to traveling
magnons in YIG films must be resolved to make the exper-
iment possible though. Single-crystal YIG films are usually
grown epitaxially on gadolinium gallium garnet (GGG)
substrates. Unfortunately, GGG becomes paramagnetic at
cryogenic temperatures. This increases SW propagation loss
significantly [12]. However, as follows from literature, the
substrate can be etched away locally to form a suspended
bridge from a YIG film [21]. This may be a potential solu-
tion to this problem. Perhaps one can even etch the whole
substrate away after fixing the other surface of the film to
a solid diamagnetic slab having a similar thermal expansion
coefficient. An alternative solution to this problem may be
using a substrate-free YIG layer obtained by polishing down
a thick single-crystal YIG slab [6].

IV. CONCLUSIONS

Through numerical simulations employing an original for-
malism, we demonstrated that a potential barrier for magnons,
created by an Orsted field of a dc current flowing through
a wire sitting on top of a YIG film, can act as an electri-
cally controlled partly transparent mirror for the magnons.
We considered the BVMSW configuration specifically and
found that the mirror transparency can be set to 50% (R = 0.5)
by properly adjusting the current strength, thus creating a
semitransparent mirror. The strongest HOME is expected for
single magnons in the R = 0.5 configuration. The effect must
be seen as both coincidence magnons, launched into the film
from two transducers (ports) located from the opposite sides
of the mirror, simultaneously arriving to the same transducer
and creating a two-microwave-photon state at the transducer
output port. The probabilities of seeing those two-photon
states at either output port must be the same. This result
applies to coincidence magnons only. Due to significant trans-
mission loss of the device, most of detection events will be
detecting no output photons.

APPENDIX A: DERIVATION OF EQ. (1)

Following the idea from Ref. [11], we may write

χ−1(ω)m̃(x, ω) =
∫ ∞

−∞
Ĝ(x − x′)m̃(x′, ω)dx′

+ δh(I, x) + h̃dr (x, ω), (A1)

where

χ (ω) = ωHωM

ω2
H − ω2

, (A2)

and χ−1(ω) = (ω2
H−ω2)/(ωHωM ) accordingly, ωH = γ (H +

i�H ), H is a spatially homogeneous applied field, i is imag-
inary unit, ωM = γμ0M, μ0 is permeability of vacuum, M is
the saturation magnetization of the films, γ is gyromagnetic
ratio, δh(I,x) is a spatially localized Oersted field of a wire that
acts as a potential barrier for SWs, I is a dc current through the
wire that creates the Oersted field, and m̃(x, ω) and h̃dr (x, ω)
are the perpendicular-to-film-plane vector components of the
dynamic magnetization of BVMSWs and of the microwave
driving field, respectively. Both have been averaged over the
film thickness L and are assumed to be oscillating at a mi-
crowave frequency ω. To account for magnetic losses in the
YIG film, we add an imaginary part i�H to the applied field
H while calculating the parameter ωH [22]. Here, �H is the
magnetic loss parameter of the material.

Here, Ĝ is the Green’s function of the perpendicular-to-
plane dipole field of dynamic magnetization [15] averaged
over the film thickness L:

Ĝ(s) = 2

L
ln

[
s2

s2 + L2

]
, (A3)

where s is a dummy variable.
We now perform an inverse Fourier transform of both sides

of Eq. (A1) with respect to ω. We obtain∫ ∞

−∞
exp (iωt )h̃dr (x, ω)dω = h̃dr (x, t ),

and

−
∫ ∞

−∞
ω2 exp (iωt )m̃(x, ω)dω = ∂2m̃(x, t )

∂t2
,

where t is time. We then assume h̃dr (x, t )=hdr (x, t ) exp(iω0t ),
where hdr (x, t ) is a slow envelope of the waveform of the
driving field h̃dr (x, ω), and ω0 is its microwave carrier fre-
quency. Given the form of the driving term, we assume a
similar solution for the dynamic magnetization: m̃(x, t ) =
m(x, t ) exp(iωot ), where m(x, t ) is a slow envelope of the
waveform of m̃(x, ω). Upon substituting this solution into
the Fourier transformed Eq. (A1) and ignoring an emerg-
ing ∂2m(x, t )/∂t2 term as negligibly small with respect to
ω2

0m(x, t ), which also appears in the equation, we obtain
Eq. (1). In addition, while writing down Eq. (1), we consider
that hdr (x, t ) and δh(I, x) are highly localized and do not
overlap spatially.

APPENDIX B: EQUATION FOR δh(i,x)

We assume that the barrier δh(I,x) is created by the Oersted
field of a wire with a circular cross-section of a radius r.
The wire lies directly on the surface of the YIG film. We
are interested in the component of the Oersted field that is
in the plane of the film. Employing Ampere circuital law and
averaging the so-obtained in-plane component of the Oersted
field over the film thickness, we obtain

δh(I, x) = 1

4πL
ln

[
x2 + (r + L)2

x2 + r2

]
. (B1)
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APPENDIX C: SIMULATING MAGNON EXCITATION AND
DETECTION BY THE WIRE-LOOP TRANSDUCERS

BVMSWs couple to the perpendicular-to-plane component
of the microwave driving field. From the computational point
of view, it is more convenient to assume wire-loop transducers
in the form of one period of a meander line. This creates
a current loop. (In a real-world experiment, simpler single-
microstrip transducers will potentially be more convenient.)
The advantage of the wire-loop transducers for the simula-
tions is that the perpendicular component of their Oersted
field is symmetric with respect to the symmetry axis of the
transducer and strongly localized within the current loop. The
focus of this paper is not on BVMSW excitation and detection.
Therefore, for simplicity, we may assume that the driving field
hdr is uniform within the current loop (i.e., from x = 0 − wa/2
to 0 + wa/2, where wa is the width of the loop in the direction
x) and vanishes elsewhere. The same applies to the second
transducer located at x = 7 mm.

The same transducers may be used to receive the BVMSW
signals. The operation of a receiving transducer is based on
Faraday induction (see, e.g., Ref. [18]). Therefore, the output
microwave voltage of the transducer must scale as microwave
magnetic flux through the loop of the transducer. A good

proxy for the latter is the BVMSW amplitude m(x, t ) in-
tegrated over the width of the loop wa. The output power
of the transducer then scales as the square of the flux and
hence as the modulus square of the integral of m(x, t ) over
the transducer loop width. We use the latter quantity as a
proxy to output microwave power of the transducers. Energy
of the output pulse is then obtained by integrating the output
microwave power over the temporal width of the output pulse.

APPENDIX D: DEPENDENCE OF THE RATIO OF
TRANSMITTED ENERGY TO REFLECTED ENERGY

The dependence of the ratio of transmitted energy to re-
flected energy R(I) is obtained by solving Eq. (1) numerically,
specifically for 20-nm-long microwave input pulses. It is dis-
played in Fig. 5(a). The graph shows R as the ratio of energies
of pulses received by the respective ports. The dashed line
in the figure shows the level of R = 1. Figure 5(b) displays
the respective probability P11 to observe coincident single
photons exiting ports 1 and 2 simultaneously (state |1, 1〉out)
as a function of I, when the input state of the device is |1, 1〉in.
The three points, where P11 vanishes, correspond to R = 1. To
produce this graph, we used Eq. (4).
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[2] A. M. Brańczyk, arXiv:1711.00080 (2017).
[3] H. Fearn and R. Loudon, Opt. Comm. 64, 485 (1987).
[4] H. Qiao, E. Dumur, G. Andersson, H. Yan, M.-H. Chou, J.

Grebel, C. R. Conner, Y. J. Joshi, J. M. Miller, R. G. Povey
et al., Science 380, 1030 (2023).

[5] H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, Phys.
Rep. 965, 1 (2022).

[6] S. Kosen, A. F. van Loo, D. A. Bozhko, L. Mihalcean, and A.
D. Karenowska, APL Mater. 7, 101120 (2019).

[7] S. Knauer, K. Davidkova, D. Schmoll, R. O. Serha, A. Voronov,
Q. Wang, R. Verba, O. V. Dobrovolskiy, M. Lindner, T.
Reimann et al., J. Appl. Phys. 133, 143905 (2023).

[8] M. Kostylev and A. A. Stashkevich, J. Mag. Mag. Mat. 484, 329
(2019).

[9] M. Kostylev, A. B. Ustinov, A. V. Drozdovskii, B. A. Kalinikos,
and E. Ivanov, Phys. Rev. B 100, 020401(R) (2019).

[10] S. O. Demokritov, A. A. Serga, A. Andre, V. E. Demidov, M. P.
Kostylev, B. Hillebrands, and A. N. Slavin, Phys. Rev. Lett. 93,
047201 (2004).

[11] M. P. Kostylev, A. A. Serga, T. Schneider, T. Neumann, B.
Leven, B. Hillebrands, and R. L. Stamps, Phys. Rev. B 76,
184419 (2007).

[12] R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308
(1961).

[13] R. W. Damon and H. Vandevaa, J. Appl. Phys. 36, 3453
(1965).

[14] M. Chen, M. A. Tsankov, J. M. Nash, and C. E. Patton, Phys.
Rev. B 49, 12773 (1994).

[15] K. Y. Guslienko and A. N. Slavin, J. Mag. Mag. Mat. 323, 2418
(2011).

[16] A. K. Zvezdin and A. F. Popkov, Sov. Phys. JETP 57, 350
(1983).

[17] https://en.wikipedia.org/wiki/Beam_splitter.
[18] C. Weiss, M. Bailleul, and M. Kostylev, J. Mag. Mag. Mat. 565,

170103 (2023).
[19] S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, Phys. Rev. A

57, 2134 (1998).
[20] A. B. Ustinov, A. A. Nikitin, V. V. Lebedev, A. A.

Serebrennikov, A. V. Shamray, A. V. Kondrashov, and B. A.
Kalinikos, J. Phys. Conf. Ser. 1038, 012033 (2018).

[21] F. Heyroth, C. Hauser, P. Trempler, P. Geyer, F.
Syrowatka, R. Dreyer, S. G. Ebbinghaus, G. Woltersdorf,
and G. Schmidt, Phys. Rev. Appl. 12, 054031
(2019).

[22] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations
and Waves (CRS Press, London, 1996).

134416-9

https://doi.org/10.1103/PhysRevLett.59.2044
http://arxiv.org/abs/arXiv:1711.00080
https://doi.org/10.1016/0030-4018(87)90275-6
https://doi.org/10.1126/science.adg8715
https://doi.org/10.1016/j.physrep.2022.03.002
https://doi.org/10.1063/1.5115266
https://doi.org/10.1063/5.0137437
https://doi.org/10.1016/j.jmmm.2019.04.013
https://doi.org/10.1103/PhysRevB.100.020401
https://doi.org/10.1103/PhysRevLett.93.047201
https://doi.org/10.1103/PhysRevB.76.184419
https://doi.org/10.1016/0022-3697(61)90041-5
https://doi.org/10.1063/1.1703018
https://doi.org/10.1103/PhysRevB.49.12773
https://doi.org/10.1016/j.jmmm.2011.05.020
https://en.wikipedia.org/wiki/Beam_splitter
https://doi.org/10.1016/j.jmmm.2022.170103
https://doi.org/10.1103/PhysRevA.57.2134
https://doi.org/10.1088/1742-6596/1038/1/012033
https://doi.org/10.1103/PhysRevApplied.12.054031

