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Magnetocaloric effect in {Cu3}-type compounds using the Heisenberg antiferromagnetic
model in a triangular ring
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In this work we present a theoretical investigation into an antiferromagnetically coupled spin system, specifi-
cally, Cu3-X (X=As, Sb), which exhibits an isosceles triangular configuration or slightly distorted equilateral
triangular configuration, as previously identified by Choi et al. [Phys. Rev. Lett. 96, 107202 (2006)]. This
system can be effectively represented by the Heisenberg model on a triangular structure, taking into account the
exchange interaction, the Dzyaloshinskii-Moriya interaction, g factors, and external magnetic field, as delineated
in the previous work. By using a numerical approach we explore both zero-temperature and finite-temperature
behaviors of a Cu3-type antiferromagnetically coupled spin system. At zero temperature, the system displays
a 1/3 quasiplateau magnetization when the magnetic field is varied. Moreover, we place particular emphasis
on the magnetic properties, including magnetization, magnetic susceptibility, entropy, and specific heat at finite
temperatures. Furthermore, we investigate the magnetocaloric effect as a function of an externally imposed
magnetic field, oriented both parallel and perpendicular to the plane of the triangular structure. Interestingly,
these configurations demonstrate remarkably similar behavior for both orientations of the magnetic field. Our
investigation also includes an analysis of the adiabatic curve, the Grüneisen parameter, and the variation in
entropy when magnetic field is applied or removed. The magnetocaloric effect is found to be more prominent
in low the temperature region, typically at T ∼ 1 K, for both parallel and perpendicular magnetic fields at ∼4.5
and ∼5 T, respectively.
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I. INTRODUCTION

The study of spin systems with antiferromagnetic coupling
has drawn significant attention in the field of condensed matter
physics. These systems exhibit interesting features that arise
from the interplay of various factors that can be investigated
through their magnetic properties. Moreover, understanding
the characteristics of these systems helps to clarify their po-
tential applications in areas such as magnetocaloric materials
and spintronics.

The magnetocaloric effect (MCE) is a phenomenon that
has been studied extensively due to its potential applications
in magnetic refrigeration and cooling technologies. Initially
observed in the late 19th century, it refers to the change in
temperature that occurs when a magnetic material is sub-
jected to a varying magnetic field, a phenomenon resulting
from the intrinsic magnetic properties of the material [1,2].
The reversibility of this effect was confirmed in later studies,
sparking significant interest [2]. The MCE has been observed
in a variety of materials, such as rare earth alloys, magnetic
oxides, and transition metals, with notable instances of a giant
magnetocaloric effect (GMCE) driven by structural transitions
[3,4]. In 1951, Darby and colleagues made a pioneering step in
the field by designing a two-stage magnetocaloric regenerator
using materials with different Curie points, achieving temper-
ature down to final values as low as 3 mK at an induction of
0.42 T [5].

The concept of magnetic refrigeration at room tempera-
ture was introduced almost a century after the discovery of

MCE. In 1976, Brown developed an efficient refrigeration
system using gadolinium, marking a significant advancement
[6]. Following this, in the late 1990s, Pecharsky and Gschnei-
dner discovered GMCE at room temperature in gadolinium
germanium silicon alloys (Ga-Ge-Si) [7]. Around the same
time, Zimm proposed a prototype showcasing the feasibility
of magnetic refrigeration near room temperature [8]. These
developments led to substantial experimental and theoreti-
cal research on bulk (Mn, Fe)2(P, Si)-based GMCE materials
[7,9–12].

Nanoscale materials with GMCE have gained attention due
to their high surface-to-volume ratio, enhanced interactions,
and rapid thermal response. These characteristics make them
valuable for temperature control applications. Examples of
such applications include a room-temperature thermal diode
[13], a self-pumping magnetic cooling device using Mn-Zn
ferrite nanoparticles that achieves efficient energy conserva-
tion without external energy input [14], a magnetic cooling
device based on a ferrofluid thermomagnetic that can ef-
fectively transfer heat over large distances [15], control of
ferrofluid droplets in microfluidics [16], and a magnetostruc-
tural phase transition in Ni-Mn-Ga films showing a strong
MCE at low magnetic fields [17]. Other applications involve
thick gadolinium films for energy conversion mechanisms
[10,11] and biomedical applications like magnetic hyperther-
mia [18] and efficient drug delivery via nanocarriers [19].

Furthermore, the study of magnetic materials has attracted
significant attention due to their wide range of poten-
tial technological applications in fields such as spintronics,
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nanoscale engineering, and biomedicine. This has prompted
investigations of S = 1/2 antiferromagnetic triangular spin
rings, which might be ideal for observing peculiar quantum
magnetization due to two doublets. The compounds inves-
tigated include spin-frustrated (VO)3

6+-triangle-sandwiching
octadecatungstates as molecular magnets, displaying un-
usual magnetization jumps due to predicted half-step or
1/3-plateau magnetization [20]. Experiments on a Cu3 nano-
magnet revealed half-step magnetization, hysteresis loops,
and an asymmetric magnetization between negative and pos-
itive fields in a fast-sweeping external field, which can be
ascribed to an adiabatic change in magnetization [21]. Ref-
erence [22] investigated the spin-electric coupling. The S =
1/2 spin triangle clusters were also investigated, revealing
that the magnetization behavior and spin configurations are
significantly affected by the diamagnetic heteroatom (X =
As and Sb) [23]. These clusters show potential for imple-
menting spin-based quantum gates [24]. Bouammali et al.
[25] explored the antisymmetric exchange in a tri-copper II

complex, highlighting its origins, theoretical implications,
and potential for more advanced electronic structure calcu-
lations. A spin-frustrated trinuclear copper complex based
on triaminoguanidine demonstrates strong antiferromagnetic
interactions with negligible antisymmetric exchange [26].
Several other studies have also examined triangular copper
structures [27–31].

On the other hand, theoretical investigations to explore
various properties of nanomagnets or magnetic molecular
clusters, beyond experimental results, are highly significant.
For instance, Kowalewska and Szałowski conducted a the-
oretical study of the magnetocaloric properties of V6, a
polyoxovanadate molecular magnet. Their research, using
numerical diagonalization and field ensemble formalism, un-
covered highly tunable magnetocaloric effects [32]. Karľová
et al. studied the magnetization in antiferromagnetic spin-1/2
XXZ Heisenberg clusters, demonstrating additional magneti-
zation plateaus due to quantum interaction and an enhanced
magnetocaloric effect near magnetization shifts [33]. Ref-
erence [34] employed exact diagonalization to examine
the spin-1/2 Hamiltonian for coupled isosceles Heisenberg
triangles, yielding a zero-temperature quantum phase transi-
tion diagram and a magnetization profile. The authors also
analyzed the thermodynamic behavior and MCE. Another the-
oretical study was conducted on a Cu5 pentameric molecule
using a spin-1/2 Heisenberg model, which explored the ther-
modynamic properties, phase diagram, magnetization, and
magnetocaloric effects [35]. A theoretical study of the MCE
in paramagnetic PrNi2 revealed an unexpected inverse effect
due to an anomalous increase in magnetic entropy at low
temperatures [36]. Several other theoretical investigations can
be found in references therein [32–36].

In this context, a system of interest is Cu3-X (X=As, Sb),
which adopts an isosceles triangular or slightly distorted
equilateral triangular configuration. Previously, Choi et al.
[21,23,24] established that the behavior of this system can
be effectively described by the Heisenberg model on a tri-
angular structure, incorporating elements such as exchange
interaction, Dzyaloshinskii-Moriya interaction, g factors, and
external magnetic fields. Exploring the magnetic properties

and thermodynamic behavior of this Cu3-type spin system
is important because it helps us understand its fundamen-
tal characteristics and identify potential advantages for its
applications.

This paper is organized as follows: in Sec. II we present the
model and analyze some fundamental properties. In Sec. III
we explore the main thermodynamic properties. In Sec. IV we
discuss the magnetocaloric effect. Finally, in Sec. V we give
our conclusions.

II. MODEL

In this work, we aim to explore the thermodynam-
ics and magnetic properties of the triangular cluster
Na9[Cu3Na3(H2O)9(α-XW9O33)2] (where X=As and Sb),
hereinafter referred to as the {Cu3-X} system [21]. The com-
pound under consideration contains three copper atoms, each
of which loses two electrons to form a Cu II or Cu+2 ion. The
electron loss in Cu II ions occurs from both the 4s and one of
the 3d orbitals, resulting in a single unpaired electron and a
net magnetic moment with a spin of S = 1/2; this behavior
can be adequately described by the Heisenberg model within
the framework of an isosceles triangular spin ring [21,23,24].
Consequently, we adopt the Hamiltonian presented in previ-
ous works [21,23,24] that characterizes Cu3-type compounds
as follows:

H =
3∑

j=1

∑
α=x,y,z

Jα
j, j+1Sα

j Sα
j+1

+
3∑

j=1

[D j, j+1 · (S j × S j+1) + μBS j · g j · B j], (1)

where Sα
j denotes the spin-1/2 components of localized

Cu3-type spin with α = {x, y, z} and Jα
j, j+1 (simplified to

Jα
j ) represents the exchange interaction parameters between

sites j and j + 1 for each component (for a schematic
view see Refs. [21,23,24]). The second term refers to the
Dzyaloshinskii-Moriya interaction vector D j, j+1, denoted as
D j, j+1 = (Dx

j, j+1, Dy
j, j+1, Dz

j, j+1). The site-dependent g fac-
tors are defined as g j = (gx

j, gy
j, gz

j ), while the last term
corresponds to the magnetic field B, which we assume is
independent of the spin site on the triangle. Here, μB denotes
the Bohr magneton. The specific parameters were obtained
using electron spin resonance data [21,23,24], and these pa-
rameters are reproduced in Table I for both compounds. It
is worth mentioning that only D1,2 = (D, D, D) is isotropic,
while D2,3 and D3,1 contribute solely to the z component,
expressed as D2,3 = D3,1 = (0, 0, D). Other interactions, such
as the crystal field effect and magnetocrystalline anisotropy,
were disregarded in this study because their contributions are
not deemed highly relevant, as supported by Refs. [21,31].

For convenience, we express the Hamiltonian (1)
in kelvins. Hence, let us redefine μB as μ̂B = μB

kB
=

0.6717156644 K/T, where kB denotes the Boltzmann con-
stant. Therefore, the magnetic field B is conveniently mea-
sured in teslas. This is equivalent to setting the Boltzmann
constant as kB = 1, implying that, for the sake of simplicity,
all calculations will be expressed in units of kB.
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TABLE I. Magnetic parameters of the {Cu3-X} compounds,
where X denotes either As or Sb, as extracted from Ref. [23].

Magnetic parameters Notation {Cu3-As} {Cu3-Sb}

Jx
1,2 = Jy

1,2 J1 4.50 K 4.49 K
Jz

1,2 Jz
1 4.56 K 4.54 K

Jx
2,3 = Jy

2,3 = Jx
3,1 = Jy

3,1 J2 4.03 K 3.91 K
Jz

2,3 = Jz
3,1 Jz

2 4.06 K 3.96 K
Dz

1,2 = Dz
2,3 = Dz

3,1 D 0.529 K 0.517 K
Dx

1,2 = Dy
1,2 D 0.529 K 0.517 K

gx
1 = gy

1 g1 2.25 2.24
gx

2 = gy
2 g2 2.10 2.11

gx
3 = gy

3 g3 2.40 2.40
gz

1 = gz
2 = gz

3 gz 2.06 2.07

III. THERMODYNAMICS QUANTITIES

The eigenvalues of the above-mentioned Hamiltonian (1)
can be obtained by direct numerical diagonalization. More de-
tails about the energy spectra can be found in Refs. [21,23,24],
so let us assume that the eigenvalues can be expressed as
follows:

UHU−1 = E = diag(ε1, ε2, . . . , ε8), (2)

where U is an 8 × 8 matrix that diagonalizes the Hamiltonian
(1). It is important to note that this matrix, which naturally
depends on the Hamiltonian parameters, can be obtained only
numerically for a fixed magnetic field.

Thus, the partition function can symbolically be repre-
sented by

Z = tr(e−E/T ) =
8∑

i=1

e−εi/T . (3)

Here, the eigenvalues εi (in kelvins) depend on the Hamilto-
nian parameters provided in Table I, as well as the magnetic
field B (in teslas), while T represents the temperature of the
system (in kelvins). In theory, any physical quantity can be
derived from the partition function (3). However, as the eigen-
values can be obtained only numerically, physical quantities
that require derivatives, such as magnetization and magnetic
susceptibility, among others, must be calculated with caution.
Numerical derivatives may not always provide accurate re-
sults; hence, it is advisable to avoid them as much as possible.
Therefore, we will combine numerical and analytical calcula-
tions to safely obtain all physical quantities.

In this regard, the free energy can be denoted by the
expression

f = −T ln(Z ). (4)

It should be noted that the free energy is also represented in
units of kB.

A. Internal energy

The first quantity we will discuss is the internal energy, as
it directly influences the magnitude of the magnetocaloric ef-
fect. As previously stated, the eigenvalues of the Hamiltonian
can be obtained using the parameters listed in Table I and a
fixed magnetic field. Formally, the average internal energy can

(a)

(b) (c)

B

T (K)

U
(K
)

U
(K
)

U
(K
)

B (T) B⊥ (T)

T (K) T (K)

FIG. 1. (a) Internal energy U as a function of temperature; solid
lines correspond to B⊥, while dashed lines correspond to B‖. (b) and
(c) Internal energy U as a function of perpendicular and parallel
external magnetic field, respectively. These plots are specifically for
the Cu3-As compound.

be represented as

U = 〈H〉 = 1

Z tr{He−H/T } = 1

Z

8∑
i=1

εie
−εi/T . (5)

For the purposes of our discussion, we will focus on the
Cu3-As compound. The Cu3-Sb compound exhibits analogous
characteristics because the parameters given in Table I are
quite similar.

Figure 1(a) depicts the internal energy U as a function
of temperature, assuming a constant external magnetic field
parallel to the triangular plane (solid line) and perpendicular
to it (dashed line). The internal energy varies slightly between
the parallel and perpendicular magnetic fields. However, as
the magnetic field increases, the discrepancy becomes more
pronounced. In contrast, Figs. 1(b) and 1(c) show the internal
energy as a function of the parallel and perpendicular external
magnetic fields, respectively. These plots assume several fixed
temperatures, as specified inside the legend. At zero tem-
perature, we observe a significant change in internal energy
at B‖ ≈ 4.5 T. Above this magnetic field, the system aligns
entirely parallel to the magnetic field, while for B‖ � 4.5 T,
the configuration comprises two aligned spins and a third with
opposite alignment. We observe similar behavior when the
external magnetic field acts perpendicularly to the triangular
plane, but the shift occurs at a slightly higher magnetic field,
B⊥ ≈ 5 T. This similarity was previously observed in en-
ergy spectra and zero-temperature magnetization [21,23,24].
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FIG. 2. (a) Entropy S in the plane of temperature (in kelvins) and
parallel external magnetic field (teslas). (b) Entropy S in the plane of
temperature (in kelvins) and perpendicular external magnetic field
(teslas). These visualizations are based on the Cu3-As compound.

As temperature increases, this curvature smooths out. In the
absence of an external magnetic field, these spin moments
are oriented randomly, leading to a higher internal energy
state. When an external magnetic field is applied, the spins
align with the field, reducing the internal energy of the com-
pound. This variation of energy manifests as a change in the
compound temperature, representing the core of the magne-
tocaloric effect.

B. Entropy

Entropy calculation is relevant because it plays a crucial
role in the MCE, essentially serving as the “driving force” to
understand both the direct and inverse MCEs, which we will
discuss next. As such, entropy is fundamental to understand-
ing the mechanism of the MCE and is pertinent in applications
such as magnetic refrigeration. Consequently, entropy can be
derived from the internal energy with the following relation:

S = 〈H〉 − f

T
. (6)

In Fig. 2(a) the entropy is illustrated in the plane of temper-
ature (in kelvins) and parallel external magnetic field (teslas).
It is worth nothing that B‖ ≈ 4.5T, where the entropy in-
creases very fast in the low-temperature region; this is because
the region dominated by two spins aligned with the magnetic
field and one spin opposite it changes to a region with all spins
aligned with the magnetic field. Similarly, Fig. 2(b) illustrates
the entropy in the plane of temperature and perpendicular
external magnetic field. Although the plot is quite similar
to Fig. 2(a), there are some slight differences; for example,
a strong change occurs at a slightly higher magnetic field
B⊥ ≈ 5T. It is also worth mentioning that in the absence of
external magnetic field the system is twofold degenerate, so
the entropy leads to S → ln(2).

C. Specific heat

Specific heat is of significant importance to the MCE be-
cause it fundamentally influences the amount of heat absorbed
or released during the application or removal of a magnetic
field. It quantifies the amount of heat required to change a
compound temperature by a certain amount. Therefore, we

C
C

(b)(a)

T
(K

)

B⊥ (T)
B

(T)

T
(K

)

FIG. 3. (a) Specific heat C as a function of temperature and
parallel external magnetic field. (b) Specific heat C as a function
of temperature and perpendicular external magnetic field. For the
Cu3-As compound.

can use the following relation to obtain the specific heat:

C = 〈H2〉 − 〈H〉2

T 2
, (7)

where

〈H2〉 = 1

Z

8∑
i=1

ε2
i e−εi/T . (8)

It is worth mentioning that the specific heat can depend analyt-
ically on temperature, after eigenvalues are found numerically.

Figure 3(a) presents the specific heat as a function of
temperature and the parallel external magnetic field B‖. An
anomalous behavior is noticeable at B‖ ≈ 4.5 T, which man-
ifests as an unusual peak in the low-temperature region.
Additionally, two peculiar peaks appear at B‖ ∼ 2 T, whereas
other regions with a fixed magnetic field exhibit only one
anomalous peak. Figure 3(b) illustrates an analogous plot,
albeit with the perpendicular magnetic field B⊥. The spe-
cific heat plots mainly resemble those in Fig. 3(a), with the
exception of the absence of a minimum at B⊥ ∼ 2 T. The
low-temperature anomaly occurs at B‖ ≈ 5 T. For a system
with temperature around T ∼ 1 K, the specific heat exhibits
unusual behavior, absorbing or releasing heat more efficiently
for a given temperature change. High specific heat is a benefi-
cial property because it can enhance the overall efficiency and
effectiveness of the triangular system. From the perspective of
the MCE, this translates into more efficient magnetic cooling
or heating.

D. Magnetization

We will now discuss magnetization, which plays a key role
in the MCE. The strength of the MCE is directly related to
the change in magnetization of the compound in response
to variation in temperature and the applied magnetic field.
In our case, the magnetization can be derived without taking
numerical derivatives through the following relation:〈(

∂H
∂Bk

)〉
= 1

Z
tr
{
HBk e−H/T

} = 1

Z
tr
{
H̃Bk e−E/T

}
, (9)
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(a) (b)

(c) (d)
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M
⊥

M
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T (K) T (K)

B⊥ (T)B (T)

B (T)
B⊥ (T)

T (K)T (K)

FIG. 4. (a) Magnetization versus parallel magnetic field at vari-
ous temperatures. (b) Magnetization versus perpendicular magnetic
field at the same temperatures. (c) Temperature-dependent magne-
tization for different parallel magnetic fields for several parallel
magnetic fields. (d) Analogously, temperature-dependent magnetiza-
tion for a set of perpendicular magnetic fields. The study considers
the Cu3-As compound.

where H̃Bk = U( ∂H
∂Bk

)U−1 and k = {‖,⊥}. This method is
a typical procedure to avoid numerical derivatives, as the
Hamiltonian can be derived in relation to Bk analytically.
Therefore, the magnetization becomes

Mk = − 1

gk

〈(
∂H
∂Bk

)〉
, (10)

where gk is a constant normalization chosen for convenience,
defined as follows: gk = 1

3

∑3
i=1 gk

i . The values of g‖ are 2.25
for both compounds, while the values of g⊥ are 2.06 and 2.07
for As and Sb, respectively.

Figure 4(a) presents the magnetization as a function of
the parallel magnetic field B‖ at various temperature val-
ues, including zero temperature. Note that a 1/3 quasiplateau
feature appears, fading as temperature increases to around
1 K. Similarly, Fig. 4(b) reports magnetization as a function
of a perpendicular external magnetic field. Here, the 1/3
quasiplateau becomes more noticeable, with effects largely
mirroring those in Fig. 4(a). Conversely, Fig. 4(c) displays
magnetization as a function of temperature, considering mul-
tiple external magnetic fields parallel to the triangular plane.
In this panel, the quasiplateau region converges to M ∼ 0.5,
with a saturated region at M → 1.5. A significant curvature
change occurs at around 1 K. Last, Fig. 4(d) illustrates the
magnetization as a function of temperature for an external

(a) (b)

Tχ Tχ⊥

B
(T)

T
(K

)

B
⊥ (T)

T
(K

)

FIG. 5. (a) Magnetic susceptibility times temperature T χ‖ in
the plane of temperature and parallel external magnetic field.
(b) Magnetic susceptibility T χ⊥ in the plane of temperature and
perpendicular external magnetic field.

magnetic field perpendicular to the triangular plane. The mag-
netization behavior closely resembles that in Fig. 4(c), but
with a more noticeable convergence to the 1/3 quasiplateau
in low-temperature regions. Here again, the main curvature
change happens approximately at 1 K.

E. Magnetic susceptibility

Magnetic susceptibility is another relevant quantity for
studying the MCE because it determines how easily a material
can be magnetized or demagnetized. To obtain this quantity,
we can follow a procedure similar to the previous one. Thus,
the magnetic susceptibility can be written as

χk = 1

g2
kT

{〈(
∂H
∂Bk

)2
〉

−
〈(

∂H
∂Bk

)〉2
}

. (11)

Figure 5(a) illustrates the magnetic susceptibility times
temperature T χ‖ for the Cu3-As compound, plotted against
temperature (in kelvins) and parallel external magnetic field
(teslas). It is noteworthy that at B‖ ≈ 4.5 T, T χ‖ maintains
a constant value of around T χ‖ ≈ 0.3. This means that the
magnetic susceptibility inversely depends on the temperature
in the low-temperature region. A similar finite value is ob-
served for the null magnetic field. This is due to the shift
from regions dominated by two aligned spins and one oppo-
sitely aligned spin, leading to complete alignment with the
external magnetic field. The Cu3-X compound, with higher
magnetic susceptibility, can be magnetized or demagnetized
more readily, resulting in greater thermal energy transfer and
a more significant temperature change, roughly at T � 1 K.
Similarly, Fig. 5(b) depicts the product of magnetic suscepti-
bility and temperature T χ⊥ in the plane of temperature and
perpendicular external magnetic field. Although the behavior
is quite similar to that in Fig. 5(a), there are slight differences,
such as the pronounced change occurring at a slightly higher
magnetic field, B⊥ ≈ 5 T. Therefore, magnetic susceptibility
affects the magnitude of the temperature change observed
during the MCE and could play a crucial part in enhancing
magnetic refrigeration systems.
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(a) (b)

10−4
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(K

)

T
(K
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B (T) B⊥ (T)

FIG. 6. (a) Plot of isentropic S (in units of kB ) curve temperature
T (K) versus a parallel magnetic field B‖ (T). (b) Plot of isentropic
curve temperature T (K) as a function of magnetic field B⊥ (T). Both
plots are for the Cu3-As compound.

IV. MAGNETOCALORIC EFFECT

The magnetocaloric effect refers to the thermal response of
a material to the change in an external magnetic field. It holds
potential for practical applications such as energy-efficient
cooling technologies. Accordingly, we will discuss aspects
such as the isentropic curve and Grüneisen parameter.

A. Isentropic curve

In magnetic systems, isentropic curves or adiabatic temper-
ature curves provide a useful tool to visualize and understand
the MCE. In the context of the MCE, an isentropic curve
represents a process that occurs at constant entropy in a
magnetic-field-temperature phase diagram.

In Fig. 6(a), the isentropic curve for {Cu3-As} is illustrated
for a parallel magnetic field. Between null magnetic field and
B‖ ≈ 4.5 T, the system exhibits the first step of magnetiza-
tion, with two spins aligned parallel to the magnetic field
while the third one is aligned antiparallel. For B‖ � 4.5 T, all
spins become aligned with the magnetic field. The isentropic
curve shows high sensitivity at relatively low entropy, and
as temperature increases, the crossover region between these
two states manifests as a minimum. This minimum gradually
disappears around T ∼ 1 K. Notably, strong slopes of the
isentropic curves occur around the minimum, indicating a
large MCE in this region. Similarly, in Fig. 6(b), the isentropic
curve for {Cu3-As} is depicted for a perpendicular magnetic
field. The behavior of the isentropic curve is largely analogous
to the previous case, with the only difference being that the
minimum occurs at approximately B⊥ ≈ 5 T. These curves
provide insight into the temperature changes in a system in
response to the application or removal of an external mag-
netic field. Additionally, the shape of the isentropic curve can
provide valuable information about possible zero-temperature
magnetic phase transitions in the {Cu3-As} compound.

B. Grüneisen parameters

The Grüneisen parameter plays an essential role in
understanding the MCE, which refers to the change in tem-
perature of a material resulting from variations in an applied

Γ

Γ

(a)

Γ⊥

(b)

(c)

Γ⊥

(d)

T (K)T (K)

B (T)

B⊥ (T)

B (T) B⊥ (T)

T (K) T (K)

FIG. 7. (a) Grüneisen parameter �‖ as a function of parallel mag-
netic field B‖ for a range of temperatures. (b) Grüneisen parameter
�⊥ as a function of perpendicular magnetic field. (c) �‖ as a function
of temperature for a set of parallel magnetic fields. (d) �⊥ as a
function of temperature for a number of perpendicular magnetic
fields. The magnetic field is in teslas, while temperature is measured
in kelvins. For the Cu3-As compound.

magnetic field. This effect has significant applications in
magnetic cooling technologies. The Grüneisen parameter
quantifies the relationship between the change in tempera-
ture of the compound and the magnetic field under constant
entropy conditions. Specifically, the Grüneisen parameter �

is defined as the ratio of the temperature derivative of the
magnetization per mole to the molar specific heat,

�k = − 1

C

(
∂M

∂T

)
Bk

= −
(

∂S
∂Bk

)
T

T
(

∂S
∂T

)
Bk

= 1

T

(
∂T

∂Bk

)
S
. (12)

To avoid numerical derivatives, an equivalent expression for
the Grüneisen parameter can be derived:

�k = 1

gk

〈HBk H〉 − 〈HBk 〉〈H〉
〈H2〉 − 〈H〉2

. (13)

Other research has explored these phenomena by analyz-
ing the adiabatic temperature change, which demonstrates a
strong correlation with the magnetic entropy change [37].

In Fig. 7(a), the Grüneisen parameter is illustrated as
a function of the parallel magnetic field B‖ for various
fixed temperatures. The Grüneisen parameter shows signifi-
cant changes in response to an applied magnetic field, with
the most notable variations occurring at B‖ ∼ 1 T for tem-
peratures around T ∼ 1 K. As the temperature increases,
the magnitude of these changes decreases. Another region
where the Grüneisen parameter becomes relevant is around
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B‖ ≈ 4.5 T, exhibiting a strong variation. However, as the
temperature increases, the magnitude of the Grüneisen param-
eter at this field strength decreases, eventually diminishing.
Figure 7(b) presents an equivalent quantity obtained by ap-
plying a perpendicular magnetic field B⊥, yielding results
equivalent to the previous case. Additionally, in Fig. 7(c),
we depict the variation of � as a function of temperature
for different external parallel magnetic fields. A significant
change in the Grüneisen parameter �‖ is observed for temper-
atures below T ∼ 2 K. When the magnetic field is lower than
B‖ ∼ 2 T, �‖ is positive, whereas for B‖ � 2 T, this parameter
becomes negative. Moreover, for temperatures T � 2 K, the
Grüneisen parameter decreases significantly. Figure 7(d) is
similar to Fig. 7(c), but for a perpendicular magnetic field.
Some differences arise, such as a stronger �⊥ compared to
the parallel case for low magnetic fields (B⊥ ∼ 0.5 T) and the
low-temperature region. Conversely, for large magnetic fields
(B⊥ ∼ 4.0 T), the Grüneisen parameter �⊥ is weaker than in
the parallel case. In conclusion, the study of Cu3-As reveals a
significant Grüneisen parameter at around B ∼ 5 T, indicating
a prominent MCE. This finding holds crucial implications for
the selection and design of magnetic refrigeration systems.

Last, but not least, the MCE can also be analyzed through
the variation in entropy, �S = S (0, T ) − S (B, T ), associated
with the magnetic phase. This variation occurs due to the
alignment or realignment of spins, resulting in changes in the
disorder and order of the Cu3-X compound and leading to a
temperature change. Therefore, �S is an important quantity
for exploring the magnetocaloric performance.

In Fig. 8(a), we illustrate �S as a function of the paral-
lel external magnetic field B‖ for several fixed temperatures.
We observe that at a temperature of T ∼ 0.1 K, the entropy
remains almost constant [�S ∼ ln(2) ≈ 0.7]. This is due to
the system being roughly doubly degenerate at null magnetic
field, and the degeneracy is broken by the presence of a
magnetic field. There is a slight depression at T ≈ 4.5 K,
indicating a change in the dominant phases at this magnetic
field. This behavior changes significantly as the temperature
increases. For B‖ � 4.5 T, �S decreases significantly, while
for B‖ � 4.5 T, it becomes larger. Figure 8(b) shows analo-
gous behavior, but for the perpendicular external magnetic
field B⊥. The only difference is that the depression occurs
at B⊥ � 5.0 T. Furthermore, in Fig. 8(c), we present �S as
a function of temperature for several fixed parallel magnetic
fields B‖. For magnetic fields below B‖ � 4.5 T, �S de-
creases monotonically. However, for stronger magnetic fields
B‖ � 4.5 T, a maximum appears, indicating a peak in �S .
Similarly, Fig. 8(d) depicts �S as a function of temperature,
assuming a fixed perpendicular magnetic field. The behavior
is very similar to Fig. 8(c), although �S does not decrease
monotonically. Additionally, for strong magnetic fields, it also
exhibits a maximum, as observed in Fig. 8(c).

V. CONCLUSIONS

In this paper, we conducted a theoretical exploration of
the Cu3-X antiferromagnetic spin system (where X=As, Sb),
which is identified by its isosceles or slightly distorted equilat-
eral triangular configurations, as detailed in Refs. [21,23,24].
This system can be accurately depicted using the Heisenberg

(b)(a)

(c) (d)

Δ
S

Δ
S

Δ
S

Δ
S

T (K)T (K)

T (K) T (K)

B⊥ (T)B (T)

B (T)
B (T)

FIG. 8. (a) Entropy variation �S as a function of parallel mag-
netic field B‖ for a set of fixed temperatures. (b) Entropy variation
�S as a function of perpendicular magnetic field. (c) �S as a func-
tion of temperature for a variety of parallel magnetic fields. (d) �S as
a function of temperature for different perpendicular magnetic fields.

model on a triangular structure, incorporating factors like
the exchange interaction, Dzyaloshinskii-Moriya interaction,
g factors, and external magnetic fields.

Recently, Cu3-X has garnered significant attention due
to its fundamental properties [21,23,24]. Furthermore, the
scientific community has shown a growing interest in the
exploration of several magnetic compounds [25–31] due to
their diverse possibilities in areas such as spintronics, nan-
otechnology, and biomedicine.

Our investigation used a numerical approach to analyze
both zero-temperature and finite-temperature behaviors of the
Cu3-type spin system. At zero temperature, the system ex-
hibits twofold degenerate energy in the absence of a magnetic
field and a 1/3 quasiplateau magnetization when the magnetic
field is varied. At finite temperatures, our focus was primarily
on analyzing magnetic properties such as magnetization, mag-
netic susceptibility, entropy, and specific heat.

In addition, we examined the MCE in relation to an ex-
ternally applied magnetic field, oriented both parallel and
perpendicular to the plane of the triangular structure. Cu3-X
displays remarkably consistent behavior for both orientations
of the magnetic field. We also extended our study to include
an evaluation of the isentropic curve, the Grüneisen parameter,
and the variation in entropy during the application or removal
of the magnetic field. Therefore, in the low-temperature re-
gion below T ∼ 1 K and for approximately 4.5 and 5 T for
parallel and perpendicular magnetic fields, respectively, our
results confirm that the MCE is more prominent in this region.
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This study could contribute to the research and development
of nanocompounds with triangular structures, potentially im-
proving the performance of the magnetocaloric effect. Such
advancements may be especially intriguing for applications
in the cryogenic temperature range that utilize moderate
magnetic fields.
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