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Measurements performed on quantum systems are too specific. Unlike their classical counterparts, quantum
measurements can be invasive and destroy the state of interest. Besides, quantumness limits the accuracy of
measurements performed on quantum systems. Uncertainty relations define the universal accuracy limit of
the quantum measurements. Relatively recently, it was discovered that quantum correlations and quantum
memory might reduce the uncertainty of quantum measurements. In this paper, we study two different types
of measurements performed on the topological system. Namely, we discuss measurements performed on the
spin operators and measurements performed on the canonical pair of operators: momentum and coordinate.
We quantify the spin operator’s measurements through the entropic measures of uncertainty and exploit the
concept of quantum memory. In contrast, for the momentum and coordinate operators, we exploit the improved
uncertainty relations. We discover that quantum memory reduces the uncertainties of spin measurements. On
the other hand, we prove that the uncertainties in the measurements of the coordinate and momentum operators
depend on the value of the momentum and are substantially enhanced at small distances between itinerant and
localized electrons (the large-momentum limit). We note that the topological nature of the system leads to
the spin-momentum locking. The momentum of the electron depends on the spin, and vice versa. Therefore
we suggest an indirect measurement scheme for the momentum and coordinate operators through the spin
operator. Due to the factor of quantum memory, such indirect measurements in topological insulators have
smaller uncertainties than direct measurements.

DOI: 10.1103/PhysRevB.108.134411

I. INTRODUCTION

Heisenberg’s uncertainty principle limits the precision of
measurements performed on momentum p̂ and coordinate x̂ of
a quantum particle; that is, pinpoint measurement of one of the
variables enhances uncertainty about the second variable, and
vice versa: �x�p � h̄, where h̄ is Planck’s constant [1]. Note
that from the point of view of classical mechanics, the mo-
mentum and coordinate are a pair of canonical variables. From
the point of view of quantum mechanics, momentum and
coordinate operators violate commutativity [p̂, x̂] �= 0, i.e.,
the property of two operators considered together. Commuta-
tivity applies also to a broader class of Hermitian operators
which are not canonically conjugate. The generalization of
Heisenberg’s uncertainty principle by Robertson applies to
two arbitrary operators Â and B̂ and has the form [2]

�A · �B � 1
2 | 〈ψ | [Â, B̂] |ψ〉 |, (1)

where �O =
√

〈Ô2〉 − 〈Ô〉2. While Eq. (1) is more general
than Heisenberg’s relation, it still depends on the choice of
the state over which averaging is performed. Consequently,
when the state |ψ〉 is the eigenfunction of one of the operators
Â or B̂, Eq. (1) takes a trivial form. Maccone and Pati tried
to avoid this problem and quantified uncertainty through two
orthogonal states as follows [3]:

�A2 + �B2 � i 〈ψ | [Â, B̂] |ψ〉 + | 〈ψ | Â + iB̂ |ψ⊥〉 |2. (2)

Here, |ψ⊥〉 is the state orthogonal to |ψ〉. The early at-
tempts at studying quantum uncertainty relations concerned
a proper choice of quantum states. However, remarkable re-
cent progress was achieved through reforming the uncertainty
paradigm to the entropic measures and entropic uncertainty
relations. We admit a celebrated work [4]. The core concepts
of entropic uncertainty relations are viable for quantum guess-
ing games and quantum memory [5–14].

In what follows, we study a guessing game between two
parties Alice (A) and Bob (B). We implement tools of quantum
metrology to the experimentally feasible condensed matter
system: a quantum dot placed on the surface of a topological
insulator (TI). The model of interest is described in the next
section in detail. Here we specify the rules of the quantum
game that has to be played. In the quantum game, Bob rep-
resents a quantum dot (QD) placed on the surface of a TI.
Bob selects a single electron A from the surface of the TI
and scatters electron A on the electron B localized in the QD.
Bob shares the scattered electron A with Alice and lets her
perform two consecutive measurements on A. Alice performs
two measurements on the spin A. In the first measurement,
Alice measures the Z component of the spin, and in the second
measurement she measures the X component. Alice denotes
a set of measurements performed on A by R ≡ {Z, X } and
stores measurement results in L. The aim of Bob is to guess
the results of the measurements R ≡ {Z, X }. Bob’s uncertainty
about the measurements’ result can be reduced by quantum
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memory. We note that these types of measurements are quite
important for spintronics [15,16]. In this paper, we analyze
two types of measurements performed on the system: mea-
surements performed on the momentum and coordinate of the
itinerant electron and spin projections of the itinerant electron.
To explore uncertainties of the measurements performed on
the momentum and coordinate, we follow Maccone and Pati
[3]. When quantifying uncertainties of the spin measurements,
we exploit the quantum memory. In the first case, we show that
uncertainty increases with the momentum k (i.e., at the shorter
distances between localized and itinerant electrons). On the
other hand, the spin measurements’ uncertainty is reduced
by the quantum memory and is independent of k. The paper
is organized as follows: In Sec. II, we describe the model.
In Sec. III, we describe uncertainties of the momentum and
coordinate measurements. In Sec. IV, we analyze entropic
measures of spin measurements and quantum memory. In
Sec. V we conclude the work.

II. MODEL

The system in which we are interested consists of a two-
dimensional (2D) surface itinerant electron in a topological
insulator ĤI , a localized electron in a quantum dot placed on
the surface of the topological insulator ĤD, and the exchange
interaction V̂ between itinerant and localized electrons:

Ĥtot = ĤI + ĤD + V̂ . (3)

The Hamiltonian of the surface electron explicitly reads
as follows [17]: ĤI = −iv σ̂A · ∇, where σ̂A = (σ̂x, σ̂y, 0)
and σ̂x, σ̂y are Pauli matrices and v is the velocity of the
surface electron. The eigenstates and eigenenergies of the
surface electrons can be found easily: ψT,σ (r) = eik·r√

2
( 1
±k+/k),

E = ±vk, where k+ = kx + iky, k =
√

k2
x + k2

y , and r =
(x, y). The Hamiltonian of the electron localized in the quan-
tum dot (QD) has the form

ĤD = −Bσ̂ z
B − h̄2

2m
�∇2 + 1

2
mω2

0r2, (4)

where ω0 is the frequency of electron oscillation in the QD.
Through the external magnetic field applied locally to the
quantum dot (e.g., through spin-polarized scanning tunneling
microscopy (SP-STM) [18,19]), we can freeze (strong field)
or relax the spin of the localized electron σ̂ z

B depending on the
value of Zeeman splitting B ≡ h̄γeB (e.g., the direction of the

spin is not rigorously fixed, and it is possible to perform gate
operations on the spin). The lowest eigenstate of the localized
electron has the form

ψD(r) = 1

lB
√

π
exp

(
−x2 + y2

2l2
B

)
,

l2
B = l2

0 /

√
1 + B2e2l4

0 /4h̄2. (5)

Here, l0 = (h̄/mω0)1/2 is the confinement length [20]. The
last term in Eq. (3) describes the interaction between lo-
calized and surface electrons V̂ = J σ̂A · σ̂B δ(r1 − r2). The
origin of the exchange interaction and exchange constant J
is described in Ref. [21]. In what follows, E ≡ 〈E〉 = 〈vk〉,
and we set the dimensionless parameters through Ĥtot →
Ĥtot/J . Following the recent work [22], we consider the
spin-dependent formulation of the scattering problem and
exploit the Lippmann-Schwinger integral equation. When
studying the scattering of the itinerant electron on the mag-
netic impurity, the impurity magnetic moment, in many
cases, is assumed to be fixed. In contrast to that, we
consider a case where both spins (itinerant electron and
quantum dot) can flip. Therefore the postscattering wave
function in our case should contain both projections of both
spins. Considering conservation of the total spin, we ap-
ply the Lippmann-Schwinger approach formulated for the
spin-dependent scattering problem [23]. The initial wave
function is a product state ψT,σ (rA) = ψ (rA)(α|0〉A + β|1〉A)
and ψD,σ (rB) = ψ (rB)|0〉B, and for brevity, in what follows
rA ≡ r1 and rB ≡ r2. Two states of the localized elec-
tron ψD,0(r) = ψD(r)|0〉 (spin up, |0〉 ≡ |↑〉) and ψD,1(r) =
ψD(r)|1〉 (spin down, |1〉 ≡ |↓〉) with the respective energies
ε0 and ε1 = ε0 + 2B (hereinafter, we set ε0 = 0) contribute to
the postscattering state. The postscattering wave function of
the two-electron system reads as follows [22]: �σ1σ2 (r1, r2) =
ψ

(+)
T,0 (r1)ψD,0(r2) + ψ

(+)
T,1 (r1)ψD,1(r2). In particular, we con-

sider the following initial state of the itinerant electron:
ψT,σ (rA) = ψ (rA)|0〉A. Then the spinor ψ

(+)
T,0 (r) quantifies

the contribution to the scattering process without flipping
the spin, while the spinor ψ

(+)
T,1 (r) quantifies the contribution

of the spin-flipping process. Both spinors ψ
(+)
T,0 (r) = (φ0(r)

χ0(r))

and ψ
(+)
T,1 (r) = (φ1(r)

χ1(r)) are found from the coupled integral
equations

(
φ0(r)
χ0(r)

)
= eikr

√
2

(
1

k+/k

)
+

∫
d2r′ Ĝ(+)(r, r′; E )V̂00(r′)

(
φ0(r′)
χ0(r′)

)
+

∫
d2r′ Ĝ(+)(r, r′; E )V̂01(r′)

(
φ1(r′)
χ1(r′)

)
,

(
φ1(r)
χ1(r)

)
=

∫
d2r′ Ĝ(+)(r, r′; E − 2B)V̂10(r′)

(
φ0(r′)
χ0(r′)

)
+

∫
d2r′ Ĝ(+)(r, r′; E − 2B)V̂11(r′)

(
φ1(r′)
χ1(r′)

)
, (6)

where E = vk is the energy of the itinerant electron,
the Green’s function is given by Ĝ(+)(r, r′; E ) = − E

2πv2

[K0(−iE |r − r′|/v)Î + K1(−iE |r − r′|/v)σ̂ x], and K0,1 are
the modified Bessel functions (the Macdonald functions). We
skip cumbersome details [22] of the solution of Eq. (6) and

present the final result:

|ψ〉 = C1 |0〉A |0〉B +C2 |0〉A |1〉B +C3 |1〉A |0〉B +C4 |1〉A |1〉B .

(7)
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Here, we introduced the following notations:

C1(ρ, ϕ) = ψD(ρ ′)

2π
√

2C0

(2πeikρ cos ϕ + kJk(A0(ρ, ϕ)

+ eiθ A1(ρ, ϕ))),

C2(ρ, ϕ) = − ψD(ρ ′)

2π
√

2C0

(2kJ (k − 2kB)A0B(ρ, ϕ))eiθ ,

C3(ρ, ϕ) = ψD(ρ ′)

2π
√

2C0

(2πeikρ cos(ϕ) + kJk(A0(ρ, ϕ)

+ e−iθ A1(ρ, ϕ)))eiθ ,

C4(ρ, ϕ) = − ψD(ρ ′)

2π
√

2C0

(2kJ (k − 2kB)A1B(ρ, ϕ))eiθ , (8)

where C0 is chosen from the normalization condition√
|C1|2 + |C2|2 + |C3|2 + |C4|2 = 1, �, ϕ are polar coordi-

nates, and coefficients A are defined in Appendix A.
Dimensionless parameters are introduced through the follow-
ing notations: k+/k = eiθ , J/v = kJ , E ≡ E/J , EB = E − 2B,
E/v = k, EB/v = k − 2kB, kB ≡ B/v, and l = 0, 1. In the
coefficients AlB(r), indices l = 0, 1 define the zeroth- and
first-order modified Bessel functions and B = 0, 1 indicate the
zero and nonzero magnetic field problems.

III. MOMENTUM AND COORDINATE UNCERTAINTIES

We apply the improved uncertainty relations by Maccone
and Pati, Eq. (2), to our system. Following Refs. [1,24], we
define the operators for the TI and QD as p̂ρ = −ih̄( d

dρ
+ 1

ρ
)

and p̂ρ ′ = −ih̄( d
dρ ′ + 1

ρ ′ ) and obtain commutation relations

[ρ, p̂ρ] = ih̄, [ρ ′, p̂ρ ′ ] = ih̄, [ρ2, p̂2
ρ] = 4h̄2(ρ d

dρ
+ 3

2 ), and

[ρ ′2, p̂2
ρ ′ ] = 4h̄2(ρ ′ d

dρ ′ + 3
2 ). The operator p̂ϕ = −i ∂

∂ϕ
leads to

the complications. It is Hermitian in the space of functions
with a period of 2π . However, if we restrict discussion to
this range, then commutation relations should be modified
following Ref. [25], meaning that one has to include a series
of δ functions:

[ p̂ϕ, ϕ] = i

{
1 − 2π

+∞∑
n=−∞

δ[ϕ − (2n + 1)π ]

}
. (9)

In order to avoid complications with Eq. (9) we consider
two cases [26,27] of the commutator [sin ϕ, p̂ϕ] = i cos ϕ and
consider the operators Ŝ = eiϕ , P̂ = Ŝ ∂

∂ Ŝ
, [P̂, Ŝ] = Ŝ. We note

that unlike the operator p̂ϕ , the operator P̂ is Hermitian in the
whole range of Ŝ. Taking into account Eqs. (2), (7), and (8),
after cumbersome calculations we deduce

�P2 + �S2 � i 〈ψ | [P̂, Ŝ] |ψ〉 + | 〈ψ | P̂ + iŜ |ψ⊥〉 |2,
�(sin ϕ)2 + �p2

ϕ � i 〈ψ | [sin ϕ, p̂ϕ] |ψ〉
+ | 〈ψ | sin ϕ + i p̂ϕ |ψ⊥〉 |2,

�p2
ρ + �ρ2 � i 〈ψ | [ p̂ρ, ρ̂] |ψ〉 + | 〈ψ | p̂ρ + iρ̂ |ψ⊥〉 |2.

(10)

Applying Eq. (10) to realistic physical systems of interest
technically is rather demanding. Therefore we calculate only

one particular relation (hereinafter h̄ = 1):

�p2
ρ + �ρ2 � 1 +

∣∣∣∣ 〈ψ | ρ −
(

d

dρ
+ 1

ρ

)
|ψ⊥〉

∣∣∣∣
2

. (11)

The set of the states C = {�⊥} orthogonal to |ψ〉 we express
in terms of the coefficients from Eq. (8) as follows:

�⊥
1 = {C2,−C1,C4,−C3}, (12)

�⊥
2 = {C3,−C4,−C1,C2}, (13)

�⊥
3 = {C4,−C3,C2,−C1}. (14)

The general orthogonal wave function reads

|ψ⊥〉 =
3∑

i=b

αb |�⊥
b〉 , (15)

where |α1|2 + |α2|2 + |α3|2 = 1. Then we rewrite the general
orthogonal function in the computational basis of Eq. (7):

ψ⊥ =
∑

C⊥
i |ψ〉AB . (16)

The coefficients C⊥
i are expressed through the coefficients {Ci}

and parameters {α}:
C⊥

1 = α1C2 + α2C3 + α3C4, (17)

C⊥
2 = −α1C1 − α2C4 − α3C3, (18)

C⊥
3 = α1C4 − α2C1 + α3C2, (19)

C⊥
4 = −α1C3 + α2C2 − α3C1. (20)

Let R̂ be an arbitrary operator and Rik = ∫
C∗

i R̂Ckρdρdϕ be
its matrix element. Then

〈ψ | R |ψ⊥〉 = α1[R12 − R21 + R34 − R43]

+ α2[R13 − R31 − R24 + R42]

+ α3[R14 − R41 − R23 + R32]. (21)

Comparing Eq. (21) with Eq. (11), we can see that the right-
hand side of Eq. (11) is larger than 1 only if Rik �= Rki.
Therefore the nonzero 〈ψ | ρ − (dρ + 1/ρ) |ψ〉⊥ is granted
by the non-Hermitian part in the operator R̂. As shown in
Appendix B, the functions Aib in the expressions for the co-
efficients Ci(ρ, ϕ) can be written as a product of functions of
ρ and ϕ:

Alb(ρ, ϕ) = fλb(ρ)gb(ϕ). (22)

The first index, l = 0, 1, arises from the expansion of the
Bessel-Macdonald functions. In the following we use λ =
1 − 4l2, which is equal to either 1 or −3. The parameter of
the angular function, b, takes the values 0 and B for zero and
nonzero magnetic field, respectively. We set lB = 1 and obtain

fbλ(ρ) = π

8k2
b

eikbρ

(
λ

ρ3
+ 8ikb

ρ2

)
, (23)

gb(ϕ) = a0b + a1b cos ϕ + a2b cos2 ϕ, (24)

where λ = 1 − 4l2, a0b = 1 − (k2
(b)/2) − (i

√
π/2)k(b), a1b =

[k(b) + i
√

π/2]k, a2b = k2/2, and kb is either k or k − 2kB
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depending on the absence or presence of the magnetic field.
The integrals of the uncertainty relation have the form∫

ρdρdϕA∗
l1b1

(ρ, ϕ)
∂

∂ρ
Al2b2 (ρ, ϕ)

=
∫

dϕgb1 (ϕ)gb2 (ϕ)
∫

ρdρ fλ1b1 (ρ)
d

dρ
fλ2b2 (ρ)

= Iϕ

b1b2
IR
λ1λ2,b1b2

. (25)

The integration over the angular variable is rather straightfor-
ward and yields

Iϕ

b1b2
=

∫ 2π

0
dϕg∗

b1(ϕ)gb2(ϕ) = 2πa∗
0b1

a0b2

+ π (a∗
1b1

a1b2 + a∗
0b1

a2b1 + a∗
2b1

a0b2 ) + 3π

4
a∗

2b2
a2b2 .

(26)

In Appendix C we write explicitly the form of these integrals
for all possible values of the magnetic field. The result of the
radial integrations reads

IR
λ1λ2b1b2

=
∫ ∞

1
ρdρ f ∗

λ1b1
(ρ)

d

dρ
fλ2b2 (ρ)

=
[

π

kb1kb2

]2 5∑
n=2

Fnin(−i�kb)n�(−n,−i�kb), (27)

where k1,2b = k − 2kb1,2 = (E − 2b1,2)/v, �k(b) =
k1b − k2b = 2(b2 − b1)/v, b1,2 = 0, B, and the coefficients Fn

are

F2 = k1bk2
2b, (28)

F3 = 1

8
λ1k2

2b − 1

8
λ2k1bk2b + 2k1bk2b, (29)

F4 = 1

64
λ1λ2k2b, (30)

F5 = λ1λ2

32
. (31)

λ0,1 = 1 − 4l2
0,1 can take on values of either 1 (l = 0) or −3

(l = 1).
The incomplete gamma functions with a negative integer

index, �(−n, x), satisfy the following condition in the limit
x → ∞:

lim
x→0

xn�(−n, x) = 1

n
. (32)

In Appendix D, we also calculate the sum of squares of the ab-
solute values of the coefficients Ci truncating the contribution
from the plane waves. We proceed to the uncertainty relation
in Eq. (21). The simplest case corresponds to α1 = 0, α2 = 1,
α3 = 0. Then, we calculate the differences between matrix
elements R13 − R31 and R24 − R42, where R̂ corresponds to
the differentiation by ρ. Then antisymmetric combinations of
the matrix elements read

R13 − R31 =
∫

ρdρdϕ

[
C∗

1
d

dρ
C3 − C∗

3
d

dρ
C1

]

= −2iA13
(
IR
11,00 sin 2θ + sin θ

[
IR
10,00 + IR

01,00

])
Iϕ
00,

(33)

R24 − R42 = 4A24
(
IR
01,BB − IR

10,BB

)
Iϕ
BB, (34)

where

A13 = |ψD(ρ ′)|2k2
J k2

8π2|C0|2 , (35)

A24 = |ψD(ρ ′)|2k2
J (k − 2kB)2

8π2|C0|2 . (36)

We write down the integrals from Eqs. (33) and (34). The
results of the angular integrations Iϕ

00 and Iϕ
BB are presented

in Eqs. (C1) and (C2) of Appendix C. For radial integrals, we
have

IR
11,00 = −π2

k2

[
k

2

(
k2 − 1

128

)
+ i

(
2

3
k2 − 1

160

)]
, (37)

IR
10,00 + IR

01,00 = − π2

k2

[
k

(
k2 + 1

128

)
+ i

(
k2

3
+ 3

80

)]
,

(38)

IR
10,BB − IR

01,BB = 0. (39)

We see that for the transverse wave function of our choice,
only the term R13 − R31 given by Eq. (33) contributes to the
uncertainty relation. Summarizing the obtained results, the
entire expression of the uncertainty reads

�p2
ρ + �ρ2 � 1 +

∣∣∣∣ 〈ψ | d

dρ
|ψ⊥〉

∣∣∣∣
2

= 1 +
∣∣∣∣
∫

ρdρdϕ

[
C∗

1
d

dρ
C3 − C∗

3
d

dρ
C1

+ C∗
2

d

dρ
C4 − C∗

4
d

dρ
C2

]∣∣∣∣
2

. (40)

The coefficients Ci are similar to those given in Eq. (7) without
the contribution from the plane-wave components (the first
terms inside the parentheses in the expressions for C1 and C3).
In this case, C0 is normalized by means of integration over
the entire space, as discussed in Appendix D. The coefficient
|C0|2 is equal to

|C0|2 = |ψD(ρ ′)|2
4

k2
J

×
[

Iϕ
00

k2

(
k2(1 + cos θ ) − 1

32
(1 + 2 cos θ )

)

+ Iϕ
BB

(k − 2kB)2

(
(k − 2kB)2 − 1

32

)]
. (41)

The coefficients Iϕ
00 and Iϕ

BB arise from the angular integration
of Alb(ρ, ϕ) and are written explicitly in Eqs. (C1) and (C2).
The integrals of the radial part are expressed in terms of
incomplete gamma functions, and it can be proved that in
Eq. (40) only the first two terms, C∗

1
d

dρ
C3 and C∗

3
d

dρ
C1, con-

tribute to the uncertainty. Without the normalization factors,
those terms are equal to the sum of two terms proportional to
sin 2θ and sin θ , respectively [see Eq. (33)], and the values
of the coefficients are given in Eqs. (37) and (38). In this
approximation, dependence on the magnetic field in the form
of kB remains only in one of the normalization constants, C0.
To express our results in graphical form, we consider the
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FIG. 1. Dependencies of the minimum value of the uncertainty
relation as calculated from Eq. (40) for different coefficients of
proportionality between kB and k at fixed kJ = k and three different
values of θ .

center of the localized electron ρ ′ = 0, and |ψD(ρ ′)|2 = 1. In
Fig. 1, we plot the right-hand side of Eq. (40). Values above
1 are related to the contribution from the term | ∫ [C∗

1
d

dρ
C3 −

C∗
3

d
dρ

C1 + C∗
2

d
dρ

C4 − C∗
4

d
dρ

C2]|2. As we see, the uncertainty
depends on the scattering angle and magnetic field. In the case

of a strong magnetic field, kB = 1.5k, uncertainty is smaller.
On the other hand, uncertainty increases with the momentum
p = h̄k (uncertainty is stronger at smaller distances). In what
follows, we show that this is not the case for the quantum
memory and entropic measures of the uncertainty.

IV. QUANTUM GUESSING GAME

Before starting the quantum guessing game between Alice
and Bob, sharing the system of the TI and QD, we define
quantities of interest and tools. Taking into account the wave
function of the system |ψ〉AB, we construct the density matrix
�̂AB = |ψ〉 〈ψ |AB. Then, the reduced density matrices of the
TI and QD subsystems are defined as follows: �̂A = TrB(�̂AB)
and �̂B = TrA(�̂AB). The von Neumann entropy of the entire
system is given by S(AB) = −Tr(�̂AB log2 �̂AB). The condi-
tional quantum entropy has the form S(A|B) = S(AB) − S(B).
After Alice performs two measurements and measures the z
and x components of her qubit A, the subsequent postmea-
surement density matrices are given through

�̂Z,AB =
∑

n

|ψn〉 〈ψn|A ⊗ TrA{(|ψn〉 〈ψn|A ⊗ ÎB)�̂AB}, (42)

�̂X,AB =
∑

n

|φn〉 〈φn|A ⊗ TrA{(|φn〉 〈φn|A ⊗ ÎB)�̂AB}. (43)

Here, |ψ1,2〉 ≡ |0〉A , |1〉A and |φ1,2〉 = 1√
2
(|0〉A ± |1〉A) are

eigenfunctions of the z and x components of the qubit A.
Through the scattering process, Bob entangles the particle

B QD with the particle A TI. Alice performs two measure-
ments on her particle A and broadcasts her measurement
choice to Bob. Bob wants to guess Alice’s outcome precisely
by measuring his particle B with the help of the received clas-
sical information (i.e., Alice’s choice of measurement). Bob’s
ignorance about Alice’s measurements is given by [4,28]

S(X |B) + S(Z|B) � log2(1/c) + S(A|B), (44)

ci j = max{| 〈ψi| |φ j〉 |2}. (45)

c is a measure of complimentarity.
In essence, this scheme allows one to read out information

about the quantum dot through the measurements performed
on the itinerant electron from the topological insulator, or vice
versa, depending on the experimental feasibility and conve-
nience. We briefly explain the meaning of Eqs. (44) and (45).
The left-hand side of Eq. (44) defines the uncertainty about
the measurement results (two measurements performed on the
x and z spin components of the particle A). The right-hand
side of Eq. (44) defines the lower bound of this uncertainty.
The first term on the right-hand side, log2(1/c), is positive.
However, the conditional quantum entropy S(A|B) can be neg-
ative for entangled states, and when it is negative, it reduces
the lower bound of uncertainty. Negative conditional quantum
entropy S(A|B) means that the state �̂AB for sure is entangled,
but the converse is not always true. As an example, one can
consider the maximally entangled Bell state ρ̂AB = |�〉 〈�|,
|�〉 = 1√

2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B). Then it is easy to see

that log2(1/c) = 1, S(A|B) = −1, and the uncertainty is zero:
S(X |B) + S(Z|B) = 0.
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The density operator of our system �̂AB we present in the
form

�̂AB =
∑
iklm

ρiklm

∣∣ψA
i ψB

k

〉 〈
ψA

l ψB
m

∣∣ . (46)

The indices {iklm} run over the components of the basis states
of the spins belonging to Alice and Bob meaning that each
|ψA

i 〉 ≡ |0〉A , |1〉A and the same for B. The matrix elements
ρiklm are obtained from the coefficients Ci in Eq. (7):

ρiklm = C2i+k+1C
∗
2l+m+1 = cikc∗

lm, (47)

where c00 = C1, c01 = C2, c10 = C3, and c11 = C4. After in-
serting Eq. (46) into Eqs. (42) and (43), we deduce

�̂Z,AB =
∑
ikm

ρikim

∣∣ψA
i ψB

k

〉 〈
ψA

i ψB
m

∣∣ , (48)

�̂X,AB =
∑
ikm

ρ
(�)
ikim

∣∣φA
i φB

k

〉 〈
φA

i φB
m

∣∣ , (49)

where ρ�
{i} are the matrix coefficients in the basis {φ1, φ2}. In

order to calculate ρ�
{i} we exploited Eqs. (7) and (47) and the

coefficients C(�)
i in the X basis. The details of the derivations

are given in Appendix E.
We write down the explicit expressions of the reduced

density operators:

�̂A =
∑

ik

ρik

∣∣ψA
i

〉 〈
ψA

k

∣∣ , ρik =
∑

m

cimc∗
km, (50)

�̂B =
∑

ik

ρik

∣∣ψB
i

〉 〈
ψB

k

∣∣ , ρik =
∑

m

cmic
∗
mk, (51)

�̂Z,A =
∑

i

ρii

∣∣ψA
i

〉 〈
ψA

i

∣∣ , ρii =
∑

m

cmic
∗
mi, (52)

�̂Z,B =
∑

ik

ρik

∣∣ψB
i

〉 〈
ψB

k

∣∣ , ρik =
∑

m

cmic
∗
mk . (53)

The characteristic equation for the matrix in Eq. (47) is

λ3(λ − |C1|2 − |C2|2 − |C3| − |C4|) = 0, (54)

and the eigenvalues λ1,2 = 0, 1. For the projected matrix
�̂Z,AB,

λ2(λ − |C1|2 − |C2|2)(λ − |C3|2 − |C4|2) = 0, (55)

we deduce λ1,2 = 0, λ3 = |C1|2 + |C2|2, and λ4 = |C3|2 +
|C4|2. We apply a similar procedure to the other postmea-
surement density matrices �̂X,AB and transformed coefficients
C(�).

For the reduced matrices in Eqs. (50), (51), and (53) the
solutions are given by

λ1,2 = 1
2 [1 ±

√
1 − 4|C1C4 − C2C3|2], (56)

and for the density matrix equation (52),

λ1 = |C1|2 + |C2|2, λ2 = |C3|2 + |C4|2. (57)

We introduce the function

h(x) = −x log2 x − (1 − x) log2(1 − x). (58)

The pairs of distinct roots of the characteristic polynomials of
the entire and reduced density matrices satisfy the condition
λ1 + λ2 = 1. It is easy to see that h(x) = h(1 − x); therefore

h(λ1) = h(λ2), and we can use either of them to calculate the
entropy.

The entropies corresponding to the bipartite and reduced
density operators read

S(�̂AB) = h(0) = 0, (59)

S(�̂A) = S(�̂B) = h(λ), (60)

S(A|B) = −h(λ). (61)

The entropy corresponding to the bipartite density opera-
tor is zero meaning that the system is in the pure state.
According to Eq. (54), λ = 1

2 [1 ±
√

1 − 4|C1C4 − C2C3|2].
For postmeasurement operators, after measuring the z
projection of the spin A, expressions of the entropies
read

S(�̂Z,AB) = h(μ), (62)

S(�̂Z,B) = h(λ), (63)

S(Z|B) = h(μ) − h(λ), (64)

where

μ = |C1|2 + |C2|2, (65)

λ = 1
2 [1 +

√
1 − 4|C1C4 − C2C3|2]. (66)

After measuring the X component of the spin A, the en-
tropies of the postmeasurement density operators read

S(�̂X,AB) = h(ξ ), (67)

S(�̂X,B) = h(ζ ), (68)

S(X |B) = h(ξ ) − h(ζ ). (69)

Here, we introduced notations

ξ = |C(�)
1 |2 + |C(�)

2 |2, (70)

ζ = 1
2

[
1 +

√
1 − 4

∣∣C(�)
1 C(�)

4 − C(�)
2 C(�)

3

∣∣2]
. (71)

The coefficients C(�)
i are given by Eqs. (E2)–(E5), and

the eigenvalues ξ and ζ are found through the original
coefficient Ci. For more details we refer the reader to
Appendix E [see Eqs. (E6)–(E8)]. Inserting all these expres-
sions into Eq. (44), we obtain the following form of the
inequality:

h(ξ ) − h(ζ ) + h(μ) � log2(1/c), (72)

or

− ξ log2 ξ − (1 − ξ ) log2(1 − ξ )

+ζ log2 ζ + (1 − ζ ) log2(1 − ζ )

−μ log2 μ − (1 − μ) log2(1 − μ) � log2(1/c). (73)

The spatial inversion R2: (x′ = −x, y′ = −y) in the polar
coordinates (x = ρ cos ϕ, y = ρ sin ϕ) is equivalent to the
translation on the angle π , i.e., (x′ = ρ cos(ϕ + π ), y′ =
ρ sin(ϕ + π )) and is equivalent to ρ → −ρ. Because of the
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FIG. 2. The eigenvalues μ, ξ , and ζ of the postmeasurement
density matrices �Z,AB, �X,AB, and �X,B, respectively, expressed by
Eqs. (65), (70), and (71). The asymmetry between −ρ and ρ re-
sults is related to the SO coupling, broken inversion symmetry, and
ϕ = π/4.

spin-orbit (SO) coupling and broken inversion symmetry,
we expect to see the difference between the results plotted
for ρ and −ρ. We calculate the eigenvalues μ, ζ , and ξ

numerically for different values of k, kB, and kJ . Figure 2
represents the dependence of μ, ζ , and ξ on ρ for k = 1,
kB = 1, kJ = 1, ϕ = π/4, and different values of θ . These
eigenvalues are important for the effect of quantum memory.
In Fig. 3 we plotted the left-hand side, S(X |B) + S(Z|B) (solid
lines), and the right-hand side, log2(1/c) + S(A|B) (dotted
lines), of Eq. (44) for different values of the angle θ [k =
(k cos θ, k sin θ, 0)] and kB = 0, kJ = 1.0, and ϕ = π/4. We
note that the left-hand side of Eq. (44) quantifies the uncer-
tainty of measurements, and the right-hand side quantifies the

FIG. 3. The left-hand side (solid lines) and right-hand side (dot-
ted lines) of Eq. (44) as a function of the distance between electrons
ρ for kB = 0 and different values of θ . The same color corresponds to
the same set of parameters. The results for negative −ρ are equivalent
to the spatial inversion ϕ → ϕ + π . The distance between electrons
is calculated in units of the confinement length ρ = |r|/lB (where lB

is the magnetic confinement length).

minimal possible threshold value of the uncertainty. When
the right-hand side is reduced because of the negative con-
ditional quantum entropy S(A|B) < 0, the left-hand side also
can be reduced without violation of the inequality in Eq. (44).
We see in Fig. 3 that the right-hand side’s minimum always
coincides with the left-hand side’s minimum. The left-hand
side (solid lines) is always larger than the right-hand side,
meaning that Eq. (44) holds. Reduction of the measurement
uncertainty S(X |B) + S(Z|B) is the essence of the quantum
memory. As we see in the case θ = 0 the right-hand side
almost coincides with the left-hand side meaning that the
measurement uncertainty is minimal and the effect of the
quantum memory is most efficient in this case. The same
tendency is even more pronounced in the case of a nonzero
applied magnetic field kB = B/v = 1; see Figs. 4 and 5. We

FIG. 4. The left-hand side (solid lines) and right-hand side (dot-
ted lines) of Eq. (44) as a function of the distance between electrons
ρ for kB = 1. The same color corresponds to the same set of pa-
rameters. The results for negative −ρ are equivalent to the spatial
inversion ϕ → ϕ + π . The distance between electrons is calculated
in units of the confinement length ρ = |r|/lB (where lB is the mag-
netic confinement length).
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FIG. 5. The left-hand side (solid lines) and right-hand side (dot-
ted lines) of Eq. (44) as a function of the distance between electrons
ρ for kB = 1 and θ = π/2. The same color corresponds to the same
set of parameters. The results for negative −ρ are equivalent to
the spatial inversion ϕ → ϕ + π . The distance between electrons is
calculated in units of the confinement length ρ = |r|/lB (where lB is
the magnetic confinement length).

see that the quantum memory decays sharply for ρ > 2lB.
On the other hand, the conditional quantum entropy S(A|B)
tends to zero asymptotically for large values of ρ � lB. The
asymmetry between −ρ and ρ results is related to the SO
coupling and broken inversion symmetry. In order to an-
alyze the slow decay of the conditional quantum entropy,
we exploit the definition of concurrence [29], C = | 〈ψ | σ̂y ⊗
σ̂y |ψ∗〉 |, where σ̂y ⊗ σ̂y is the direct product of Pauli matrices,
and calculate the entanglement between two electrons after
scattering:

C = 2

C2
0

|C∗
2 (ρ, ϕ)C∗

3 (ρ, ϕ) − C∗
1 (ρ, ϕ)C∗

4 (ρ, ϕ)|. (74)

As we see from Eq. (74), entanglement in the system is zero if
at least two coefficients Cn(ρ, ϕ) are zero. The same applies to
S(A|B). The conditional quantum entropy of the disentangled
state is zero too. For further insights we rewrite Eq. (8) in the
following equivalent form:

αβ

⎛
⎜⎜⎝

C1(ρ, ϕ)
C2(ρ, ϕ)
C3(ρ, ϕ)
C4(ρ, ϕ)

⎞
⎟⎟⎠ = kJ

⎛
⎜⎜⎝

e−iθ 0 1 0
0 −2 0 0
1 0 e−iθ 0
0 0 0 −2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A′
0(ρ, ϕ)

A′
1(ρ, ϕ)

A′
0B(ρ, ϕ)

A′
1B(ρ, ϕ)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

2πe−iθ

0
2π

0

⎞
⎟⎟⎠. (75)

Here, we introduced the notations α = C0e−iθ , β =
e−ikρ cos ϕ , A′

0(ρ, ϕ) = βkA0(ρ, ϕ), A′
1(ρ, ϕ) = βkA1(ρ, ϕ),

A′
0B(ρ, ϕ) = β(k − 2kB)A0B(ρ, ϕ), and A′

1B(ρ, ϕ) =
β(k − 2kB)A1B(ρ, ϕ). As we see from Eqs. (74) and (75),
when all A coefficients are zero, ρ � |r|/lB, only two
coefficients, C1(ρ, ϕ) and C3(ρ, ϕ), are nonzero. Concurrence
is zero, meaning that we have the trivial disentangled state.
The numerical calculation results of coefficients A are
shown in Fig. 6. We see that the values of coefficients A
are finite even at distances of the order of ρ = 10. Thus the
entanglement in the system is quite robust, and the system
becomes disentangled only in the ρ � 1 limit. On the other

hand, the effect of the quantum memory is more subtle and
is pronounced only on distances not larger than 2lB. The
dependence of the quantum memory on the distance between
the itinerant and localized electrons is distinct compared
with the improved uncertainty relations for the momentum
and coordinate operators. The distance between the incident
(itinerant) electron and target (localized in the quantum dot)
electron in the experiment is smaller for larger momentum
p = h̄k of the itinerant electron. However, the momentum
and coordinate operators’ uncertainty increases with k.
Quantum memory substantially reduces the uncertainties of
spin measurements at the short distance between electrons.

FIG. 6. The grayscale xy plots of real (upper row) and imaginary (lower row) parts of the coefficients: (a) A′
0, (b) A′

1, (c) A′
0B for kB = 0,

(d) A′
0B for kB = 0, (e) A′

1B for kB = 0, and (f) A′
1B for kB = 1. The plots include the region of ρ = |r|/lB � 10 around the center of the quantum

dot, where lB is the magnetic confinement length. Black and white correspond to the minimal and maximal values, respectively. The coefficients
decay to zero for ρ � 1 (not shown).
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V. CONCLUSIONS

It is well known that measurements performed on quantum
systems are specific and may be invasive and destroy the state
of interest. Beyond that, quantumness limits the accuracy of
measurements due to the fundamental uncertainty relations.
On the other hand, quantum correlations and memory might
reduce quantum measurements’ uncertainty. We studied two
types of measurements performed on a topological system:
(a) measurements performed on the spin operators and (b)
measurements of the canonical pair of operators, namely,
the momentum and the coordinate. We quantified the spin
operator’s measurements through the entropic measures of
uncertainty and exploited the concept of quantum memory.
For the momentum and coordinate operators, we exploited the
improved uncertainty relations. We showed that the depen-
dence of the quantum memory on the distance between the
itinerant and localized electrons is distinct compared with the
improved uncertainty relations for momentum and coordinate
operators. While the momentum and coordinate operators’
uncertainty increases with the momentum of the itinerant
electron, the quantum memory reduces the uncertainty of spin
measurements when the distance between electrons is not
larger than several confinement lengths lB. Therefore, based
on the discovered effect, we propose an indirect measurement

scheme for the momentum and coordinate operators through
the spin operator. Due to the factor of quantum memory,
such indirect measurements in topological insulators lead to
smaller uncertainties than one has with direct measurements.

APPENDIX A: COEFFICIENTS OF THE WAVE FUNCTION

A0(r) =
∫

ρ ′dρ ′dϕ′ K0(−iE |r − r′|/v)|ψD(ρ ′)|2eikρ ′ cos ϕ′
,

(A1)

A1(r) =
∫

ρ ′dρ ′dϕ′ K1(−iE |r − r′|/v)|ψD(ρ ′)|2eikρ ′ cos ϕ′
,

(A2)

A0B(r) =
∫

ρ ′dρ ′dϕ′ K0( − i(E − 2B)|r − r′|/v)

× |ψD(ρ ′)|2eikρ ′ cos ϕ′
, (A3)

A1B(r) =
∫

ρ ′dρ ′dϕ′ K1( − i(E − 2B)|r − r′|/v)

× |ψD(ρ ′)|2eikρ ′ cos ϕ′
. (A4)

The explicit forms of the matrix elements are

V̂00(rA) = 〈ψD,0(rB)|V̂ |ψD,0(rB)〉 = 〈ψD,0(rB)|Jσ̂Aσ̂Bδ(rA − rB)|ψD,0(rB)〉 = J|ψD(rA)|2σ̂ z
A,

V̂01(rA) = 〈ψD,0(rB)|V̂ |ψD,1(rB)〉 = 〈ψD,0(rB)|Jσ̂Aσ̂Bδ(rA − rB)|ψD,1(rB)〉 = J|ψD(rA)|2(σ̂ x
A − iσ̂ y

A

)
,

V̂10(rA) = 〈ψD,1(rB)|V̂ |ψD,0(rB)〉 = 〈ψD,1(rB)|Jσ̂Aσ̂Bδ(rA − rB)|ψD,0(rB)〉 = J|ψD(rA)|2(σ̂ x
A + iσ̂ y

A

)
,

V̂11(rA) = 〈ψD,1(rB)|V̂ |ψD,1(rB)〉 = 〈ψD,1(rB)|Jσ̂Aσ̂Bδ(rA − rB)|ψD,1(rB)〉 = −J|ψD(rA)|2σ̂ z
A. (A5)

APPENDIX B: APPROXIMATING INTEGRALS

We utilize the following asymptotic expressions for the Bessel functions at z � 1:

Kl=0,1(z) = π

2z
e−z

{
1 + 4l2 − 1

8z

}
, (B1)

z = −ik(B)|r − r′| = −ik(B)

√
ρ2 + ρ ′2 − 2ρρ ′ cos(ϕ − ϕ′), and k(B) = E−(2B)

v
= k − (2B/v). We apply these asymptotic expres-

sions to Eqs. (A1) and (A2):

Al=0,1(B)(�r) ≈
∫

ρ ′dρ ′dγ |ψD(ρ ′)|2eikρ ′ cos(γ+ϕ) π

2z
e−z

(
1 + 4l2 − 1

8z

)
, (B2)

where γ = ϕ′ − ϕ is the scattering angle. We express z as z = −ik(B)a
√

1 − b cos γ , where a =
√

ρ2 + ρ ′2 and b = 2ρρ ′/a2.
Assuming that b is a small parameter, we expand the square root into a power series and retain only the leading-order terms.
Performing an integration over the angle γ , we calculate the following integral:

Iγ = −
∫ 2π

0
dγ exp

[
ikρ ′ cos(γ + ϕ) + ik(B)a

(
1 − b

2
cos γ

)][
1

ik(B)a

1

(1 − b
2 cos γ )

+ 4l2 − 1

8k2
(B)a

2

1

(1 − b cos γ )

]
. (B3)

Both integrals in this expression can be transformed into contour integrals along a circle of unit radius around the origin:
Assuming z = eiγ , dγ = (1/i)dz/z, and cos γ = (1/2)(z + 1/z), we deduce∫

|z|=1
dz

f (z)

2z − cz2 − c
. (B4)
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Here, c is either b or b/2. The square polynomial in the denominator has two real roots:

z1,2 = 1

c
[1 ±

√
1 − c2]. (B5)

Only the root with the minus sign is located inside the unit circle at z0 ≈ c/2e and arg z0 = 0, and both residuals are equal to
−1. The final form of Eq. (B3) reads

Iγ = π
−8ik(B)a + 4l2 − 1

4k2
(B)a

2
exp[ikρ ′ cos ϕ + ik(B)a(1 − b/2)], (B6)

and

Al=0,1(B)(�r) = π

4l2
B

∫
ρ ′dρ ′ −8ik(B)

√
ρ2 + ρ ′2 + 4l2 − 1

k2
(B)(ρ

2 + ρ ′2)
exp

[
−ρ ′2

l2
B

+ ikρ ′ cos ϕ + ik(B)
ρ2 + ρ ′2 − ρρ ′√

ρ2 + ρ ′2

]
. (B7)

Introducing the notation x = ρ ′/ρ, we rewrite the expression as follows:

Al=0,1(B)(�r) = π

4l2
B

∫
xdx

−8ik(B)ρ
√

1 + x2 + 4l2 − 1

k2
(B)ρ

2(1 + x2)
exp

[
−

(
ρ

lB

)2

x2 + ikρx cos ϕ + ik(B)ρ
1 − x + x2

√
1 + x2

]

≈ π

4l2
B

1

k2
(B)ρ

2

∫
xdx[(4ik(B)ρ − 4l2 + 1)x2 − (8ik(B)ρ − 4l2 + 1)]

× exp

[
−

(
ρ2

l2
B

+ 3i

2

)
x2 + i(k cos ϕ − k(B) )ρx + ik(B)ρ

]
. (B8)

In the next step we analyze the term proportional to x3. Considering that ρ2/l2
B � 1, we perform the integration over x and obtain

Al=0,1(�r) ≈ π

8(k(B)lB)

8ik(B)ρ − 4l2 + 1

(k(B)ρ)3
k2

(B)e
ik(B)ρ

[
1 + √

π iκ(B)lB[1 + erf (iκ(B)lB)]e−κ2l2
B
]
, (B9)

where κ(B) = (k cos ϕ − kB)/2. Noting that the last line in Eq. (B9) is a function of ϕ, we expand it in terms of the small parameter
lBκ(B) � 1:

1 + √
π iκ(B)lB[1 + erf (iκ(B)lB)]e−κ2l2

B ≈ 1 + i
√

πκ(B)lB − 2(κ(B)lB)2 = 1 − k2
(B)l

2
B

2

− i
√

π

2
k(B)lB +

(
i
√

π

2
+ k(B)lB

)
klB cos ϕ − 1

2
k2l2

B cos2 ϕ. (B10)

APPENDIX C: EXPRESSIONS OF INTEGRALS
INTEGRATED OVER THE ANGLE

After integration over the angular variable ϕ, from Eq. (26)
we deduce

Iϕ
00 = 19π

16
k4 +

(
3

4
π − 1

)
πk2 + 2π, (C1)

Iϕ
BB = Iϕ

00 + 8πk4
B − 16πkk3

B + (14k2 + 2π − 8)πk2
B

+[(8 − 2π )k − 6k3]πkB, (C2)

Iϕ
0B = Iϕ

00 − (4 − k2)πk2
B − [3k2 + (π − 4)]πkkB

−2iπ
√

π

[
kk2

B −
(

5

4
k2 − 1

)
kB

]
, (C3)

Iϕ
B0 = (

Iϕ
0B

)∗
. (C4)

The difference between Eqs. (C1) and (C2) vanishes when
kB = 0, k, and the expressions become symmetric with respect
to kB = 0.5k (Fig. 7).

APPENDIX D: NORMALIZATION OF THE WAVE
FUNCTION

We calculate integrals for the products of the functions fλb

used in the normalization of the wave function:

IN
λ1λ2b1b2

=
∫ ∞

1
ρdρ f ∗

λ1b1
(ρ) fλ2b2 (ρ) =

[
π

kb1 kb2

]2

×
4∑

n=2

Gnin−1(−i�k(b) )
n�(−n,−i�k(b) ), (D1)

where

G2 = kb1 kb2 , (D2)

G3 = 1

8

(
λ1kb2 − λ2kb1

)
, (D3)

G4 = λ1λ2

64
. (D4)
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FIG. 7. Difference Iϕ
BB − Iϕ

00 as a function of k for different pro-
portionality coefficients of kB relative to k.

Expressions for all possible combinations of the parame-
ters read

IN
00,00 = π2

2k4

(
k2 + 1

128

)
, (D5)

IN
11,00 = π2

2k4

(
k2 + 9

128

)
, (D6)

IN
00,BB = π2

(k − 2kB)4

(
(k − 2kB)2 + 1

128

)
, (D7)

IN
11,BB = π2

(k − 2kB)4

(
(k − 2kB)2 + 9

128

)
, (D8)

IN
10,00 = π2

2k4

(
k2 − 3

128
+ 1

3
ik

)
, (D9)

IN
01,00 = (

IN
10,00

)∗
, (D10)

IN
10,BB = π2

2(k − 2kB)4

(
(k − 2kB)2 − 3

128
+ 1

3
i(k − 2kB)

)
,

(D11)

IN
01,BB = π2

2(k − 2kB)4

(
(k − 2kB)2 − 3

128
− 1

3
i(k − 2kB)

)
.

(D12)

FIG. 8. The dependence of |C0|2 on k given in Eq. (D14) and
plotted for several values of kB and θ for kJ = k. The function has a
singularity when kB approaches 0.5k.

Squares of the modules of the coefficients are as follows:∫
|C1|2 = A(kJk)2Iϕ

00

(
IN
00,00 + IN

11,00 + IN
01,00eiθ

+IN
10,00e−iθ

) = AIϕ
00

(πkJ )2

k2

[
k2(1 + cos θ )

+ 1

128
(10 − 3 cos θ ) + 1

3
sin θ

]
, (D13)
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where A = |ψD(ρ ′)|2/(8π2) includes the rest of the normal-
ization terms in front of the parentheses. The calculation of
|C2|2 and |C4|2 is rather straightforward. The expression for
|C3|2 is different from Eq. (D13) only in terms of the sign in
front of the sin θ term. Finally, the normalization coefficient
reads

|C0|2 =
∫ 4∑

i=1

|Ci|2 = 2A(πkJ )2

×
[

Iϕ
00

k2

(
k2(1 + cos θ ) + 1

128
(10 − 3 cos θ )

)

+ Iϕ
BB

(k − 2kB)2

(
(k − 2kB)2 + 5

64

)]
. (D14)

One can see that the norm diverges at k = 0 and kB = 0.5k.
The dependence of |C0|2 on k is plotted in Fig. 8.

APPENDIX E: COEFFICIENTS IN THE NEW BASIS

The coefficients of the alternative representation
of the wave function in the basis {φ1, φ2} are as

follows:

|�〉AB = C(�)
1

∣∣φA
1 φB

1

〉 + C(�)
2

∣∣φA
1 φB

2

〉
+C(�)

3

∣∣φA
2 φB

1

〉 + C(�)
4

∣∣φA
2 φB

2

〉
, (E1)

where

C(�)
1 = 1

2 (C1 + C2 + C3 + C4), (E2)

C(�)
2 = 1

2 (C1 − C2 + C3 − C4), (E3)

C(�)
3 = 1

2 (C1 + C2 − C3 − C4), (E4)

C(�)
4 = 1

2 (C1 − C2 − C3 + C4). (E5)

One can show that∣∣C(�)
1

∣∣2 + ∣∣C(�)
2

∣∣2 = 1
2 [1 + (C1C

∗
3 + C∗

1C3)

+(C2C
∗
4 + C∗

2C4)], (E6)∣∣C(�)
3

∣∣2 + ∣∣C(�)
4

∣∣2 = 1
2 [1 − (C1C

∗
3 + C∗

1C3)

−(C2C
∗
4 + C∗

2C4)], (E7)

C(�)
1 C(�)

4 − C(�)
2 C(�)

3 = C1C4 − C2C3. (E8)
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