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Periodic photon-magnon blockade in an optomagnonic system with chiral exceptional points

Zhong-Hui Yuan,1 Yong-Jian Chen,1 Jin-Xuan Han,1 Jin-Lei Wu,2 Wei-Qi Li,1 Yan Xia,3

Yong-Yuan Jiang,1 and Jie Song 1,4,5,6,*

1School of Physics, Harbin Institute of Technology, Harbin 150001, China
2School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China

3Department of Physics, Fuzhou University, Fuzhou 350002, China
4Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Harbin 150001, China
5Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China

6Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China

(Received 17 May 2023; revised 8 September 2023; accepted 21 September 2023; published 9 October 2023)

We present a straightforward approach for achieving periodic photon-magnon blockade in a hybrid opto-
magnonics system, wherein a single optomagnonic resonator is connected to two nanotips via chiral exceptional
points (EPs). In non-Hermitian systems, the eigenvalues of the cavity optomagnonics system coalesce at the EPs.
We explore the controllable generation of the photon-magnon antibunching effect by modulating the relative
angle between the nanotips. Furthermore, we demonstrate that concurrent photon-magnon blockade can be
realized without necessitating operation in the strong-coupling regime. In the weak-driving regime, our findings
indicate that the photon-magnon blockade is more resilient to the Kerr nonlinearity of both the photon and
magnon modes. Additionally, we reveal the versatile tunability of photon-magnon statistics by manipulating
the system towards or away from EPs. These characteristics suggest a potential technique for adjustable single
photon-magnon sources and a transition from antibunching to bunching in light switches.
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I. INTRODUCTION

Recently, the study of hybrid optomagnonics system
has played a crucial role in advancing quantum technolo-
gies [1–9]. By integrating optical photons with spin waves
(magnons), hybrid optomagnonics system can offer multitask-
ing capabilities beyond the reach of individual components
[10–14]. Owing to recent advancements in ferromagnetic
materials, yttrium iron garnet (YIG) spheres have found
applications in diverse systems across various disciplines
[15,16]. Specifically, YIG spheres can function as essential
components of hybrid optomagnonic systems when inter-
faced with superconducting qubits or photons [17]. These
hybrid optomagnonic systems leverage the high spin den-
sity and low dissipation rate of YIG spheres [18–23], with
the YIG sphere hosting magnetic excitations and, through
whispering-gallery-modes (WGMs) [24], functioning as the
optical cavity. The optomagnonic coupling mechanism relies
on the Faraday effect, in which the angle of light polarization
changes as it propagates through a magnetic material. Over
the past decades, numerous investigations have demonstrated
the promise of this approach by showcasing coupling between
optical modes and magnons.

The study of magneto-optical effect setups also enables
in-depth examination of quantum phenomena in hybrid op-
tomagnonic systems, allowing for the observation of rich
quantum effects [25–30]. Photon-magnon blockade (PMB), a
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typical pure quantum phenomenon, has been investigated in
analogy with Coulomb blockade [31] and phonon blockade
[32–39]. PMB has emerged as a vital aspect in explor-
ing quantum properties of hybrid optomagnonic systems
[40–46]. Photon blockade in a PT -symmetric optomechan-
ical system [47], as well as in an optomagnonic system,
has been separately investigated. Magnon blockade via a hy-
brid ferromagnet-superconductor system with two qubits was
studied in Ref. [29]. In quantum devices employing hybrid op-
tomechanical systems, single excitation levels are crucial, and
the simultaneous blockade of photons and magnons warrants
further investigation.

As a key step toward implementing periodic photon-
magnon blockade, unique features of non-Hermitian systems
have been achieved in various experimental settings [48–52].
Concurrently, the properties and applications of exceptional
points (EPs) have garnered significant interest in recent years
[53–56]. The periodic emergence of EPs has been observed by
coupling WGM microresonators with two external nanotips
[57–59]. Building on these experiments, periodic photon-
magnon blockade can be achieved by adjusting the relative
positions of nanotips along the resonator’s circumference
[60–63]. Furthermore, exceptional photon blockade via
chiral exceptional points has been explored in Ref. [64],
presenting unique opportunities for creating and utilizing
various single-photon quantum EP devices. By tuning the
relative angle of the two nanotips, quantum correlations of
photons can be effectively controlled, transitioning from
antibunching to bunching regimes or vice versa.
Simultaneously, we demonstrate that concurrent photon-
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magnon blockade can be achieved in optomagnonic
systems.

In this work, we introduce an experimentally feasible
approach to achieving simultaneous photon-magnon block-
ade in hybrid optomagnonic systems without the need for
strong-coupling regimes [65]. Our proposal is based on a
meticulously designed hybrid device, where a YIG resonator,
coupled to two nanotips, is coherently driven by an input
field. Distinct from the microwave regime, where the in-
teraction occurs between microwave photons and magnons,
the optomagnonic coupling in the optical case is a three-
particle process. Due to the optical photon frequency being
in the terahertz range and magnons in the gigahertz range,
the optomagnonic coupling in the optical case stems from
the Faraday effect, a magneto-optical phenomenon. By care-
fully positioning the nanotips, the periodic emergence of EPs
can be implemented in this system. The relative angle of
the nanotips induces asymmetric backscattering, leading to
a periodic photon-magnon antibunching effect. Notably, we
demonstrate that the PMB is tunable by simply adjusting the
relative angle of the nanotips. We also show that EPs not
only result in perfect spectral overlap between resonances
but force the two corresponding modes to become identical.
Our findings confirm that applying two external nanotips to
a single YIG sphere, along with the destructive interference
between different excitation paths, suppresses two photon-
magnon excitation, resulting in the photon-magnon blockade
effect. Significantly, we examine the impact of photon and
magnon Kerr-nonlinear strength on the antibunching char-
acteristics of the hybrid optomagnonic system in both weak
and strong magnon Kerr-nonlinear scenarios. We demonstrate
that introducing asymmetric coupling enables a more robust
PMB compared with cases without non-Hermitian terms. Our
scheme does not necessitate any optical gain or loss or com-
plex refractive index modulation and is well within current
experimental capabilities. Consequently, our approach serves
as a guideline for hybrid optomagnonic systems to achieve
robust PMB, ensuring the development of high-quality and
efficient single photon-magnon sources.

II. SYSTEM AND HAMILTONIAN

A. System and Hamiltonian

We consider a system comprising a YIG microresonator
coupled to two silica nanotips, fabricated by wet etching a ta-
pered fiber (see Fig. 1). The system is driven by a weak pump
field with frequency ωl . Consequently, both the homogeneous
Kittel spin-wave (magnon) mode and the optical WGMs can
be excited in the YIG resonator. The associated coupling
dynamics rely on the Faraday effect, where the polarization
direction of light changes as it propagates through magnetic
material. The nanotips are positioned in the evanescent field of
the YIG resonator, and their locations can be adjusted using a
nanopositioner. We assume that both optical clockwise (CW)
and counterclockwise (CCW) modes are simultaneously ex-
cited in the resonator, where they couple with the spin. The
Hamiltonian of an ideal hybrid cavity optomagnonics system
is given by

H = Hm + Ho + Han
b + Hmo. (1)

(b)

CW

CCW

S1

S2

(a)

FIG. 1. Schematic diagram of the cavity optomagnonic system
consisting of a YIG sphere coupled with two nanotips. An external
magnetic field M is applied along the z direction. The homogeneous
magnon mode couples to the optical modes with strength gj . The
relative angle between the two nanotips S1,2 is denoted β, and the
scattering rate of backscattering from the CW (CCW) to CCW (CW)
mode is characterized by J12,21.

Hm represents the free Hamiltonian of the YIG sphere, while
Ho denotes the free Hamiltonian of the counterclockwise
(CCW) and clockwise (CW) modes. Han

b is the anisotropy
magnetic field. Hmo is the interaction Hamiltonian between
the CCW (CW) mode and the magnon mode. The free
Hamiltonian of the magnon mode, which includes the Zeeman
energy and the magnetocrystalline anisotropy energy, can be
expressed as follows [15]:

Hm = −
∫

Mb · B0dτ − μ0

2

∫
Mb · Han

b dτ, (2)

where B0 = B0ez represents the static magnetic field in the
z direction, which is used for magnetizing the YIG sphere.
Here, ei=x,y,z are the three orthogonal unit vectors, and Mb =
h̄γgSb/VYIG ≡ (Mb

x , Mb
y , Mb

z ) denotes the magnetization of the
Kittel mode in the YIG sphere. When the bias magnetic field
is applied along the YIG sphere’s crystal axis, the anisotropic
field can be described as

Han
b = 2h̄γgSb

z Kb
an

μ0M2
s VYIG

ez, (3)

where Kb
an represents the dominant first-order anisotropy co-

efficient, Ms is the saturation magnetization, γg refers to the
gyromagnetic ratio, VYIG is the volume of the YIG sphere,
and Sb ≡ (Sb

x, Sb
y, Sb

z ) denotes the collective spin operator of
the Kittel mode. The Holstein-Primakoff transformations for
the two modes are provided by [66]

Sz = S − m†m,

S† = m
√

2S − m†m,

S− = m†
√

2S − m†m, (4)
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where S is the total spin the number of the YIG sphere, and
S±

o ≡ Sx
o ± Sy

o. In this case, the macroscopic spin operator
can be related to the creation operator m† and annihilation
operator m of the magnon at frequency ωm. The Hamiltonian
of the Hm can be written as

Hm = ωmm†m + χmm†m†mm, (5)

where ωm = γgB0 denotes the angular frequency of the
magnon mode and the Kerr-nonlinear strength of the magnon
mode is χm = −2h̄γ 2

g Kb
an/M2VYIG.

The free Hamiltonian of the optical WGMs can be ex-
pressed as follows [67,68]:

Ho =
∫

dr

⎡
⎣∑

i j

εo(Ms)

2
E i(r, t )E∗

j (r, t ) + 1

2μ0
|BL|2

⎤
⎦. (6)

The electric field is easily quantized, E i(r, t ) →∑
i E i(r)ai(t ), where E i(r) indicates the ith eigenmode

of the electric field and BL is the ac contribution due to light
at optical frequencies, and εo(μ0) represents the vacuum
permittivity (permeability). By neglecting the constant term,
the single-mode electromagnetic field can be quantized
as Ho = h̄ω ja

†
j a j ( j = 1, 2), with a j (a†

j ) signifying the
annihilation (creation) operators of the jth optical mode with
frequency ω j .

In a Faraday active material, the electromagnetic energy
is altered by the coupling between the electric field and the
magnetization [69]:

Hmo = −i
θF λn

2π

εoε

2

∫
drMb(r, t ) · [E i(r, t ) × E∗

j (r, t )], (7)

where Mb(r, t ) denotes the local magnetization in units of
the saturation magnetization Ms, and we have used the com-
plex representation of the electric field, θF = ω f Ms/2c

√
ε,

depends on the frequency ω, the vacuum speed of light c,
and the constant f , which is related to the Faraday rotation
coefficient in the material [70]. Here, ε represents the relative
permittivity, and n = √

ε/εo refers to the refractive index.
Equation (7) couples the spin density in the magnetic material
with the optical spin density (OSD), which embodies the
spin angular-momentum density conveyed by the light field.
Quantizing Eq. (7) results in the optomagnonic Hamiltonian.
This coupling is parametric, linking one local spin operator to
two photon operators.

We consider the coupling of the optical fields (optical
mode) to spin-wave excitations (magnon mode). The mag-
netization requires more careful consideration, since Mb(r, t )
depends on the local spin operator which, in general, cannot
be written as a linear combination of bosonic modes. Based
on the low-temperature approximation that makes this prob-
lem solvable [71–74]. Specifically, we assume that the total
number of flipped spins in the system is small compared with
the total number of spins. In this case〈 ∑

i(a
†
i ai )

〉
2S

� 1,

where S is the total spin. For small deviations |δM| � 1 [66],
we can express these in terms of harmonic oscillators (magnon
modes). Quantizing E i(r, t ) → ∑

i E i(r)ai(t ), from Eq. (7)

we obtain the coupling Hamiltonian [67,68]

Hmo = h̄
∑
i jγ

SbGγ

i ja
†
i a j + H.c., (8)

with

Gγ

i j = − i

4
εo f

Ms

2
[E∗

j (r) × E i(r)] (9)

being the local optomagnonic coupling. The Greek subindices
indicate the respective magnon and photon modes that are
coupled. For two degenerate modes at frequency ω j , using
Eq. (8), we observe that the frequency dependence cancels
out, resulting in a simplified form for the optomagnonic
Hamiltonian [67]:

Hmo = h̄GŜx(a†
1a1 + a†

2a2), (10)

where G = 1
S

cθF

4
√

ε
. We can represent the spin as a harmonic os-

cillator in the usual manner, with Ŝx ≈ √
S/2(m + m†). Using

Eq. (9), we evaluate the coupling between optical WGMs and
magnon modes in a YIG sphere containing a magnetic vortex,
specifically focusing on magnonic modes localized at the vor-
tex. Such a model of the hybrid cavity optomagnonical system
can be described by a non-Hermitian interaction Hamiltonian

H1 = ω1a†
1a1 + ω2a†

2a2 + ωmm†m + χmm†m†mm

+χ1a†
1a†

1a1a1 + χ2a†
2a†

2a2a2 + g1a†
1a1(m† + m)

+ g2a†
2a2(m† + m) + J12a†

1a2 + J21a1a†
2

+(a†
1e−iωl t + a1eiωl t ). (11)

Then, in the rotating frame with respect to the driving laser
field V = exp[−iωl t (a†

1a1 + a†
2a2)], the total Hamiltonian of

the system can be reduced to [75]

H
′ = �1a†

1a1 + �2a†
2a2 + ωmm†m + χmm†m†mm

+χ1a†
1a†

1a1a1 + χ2a†
2a†

2a2a2 + g1a†
1a1(m† + m)

+ g2a†
2a2(m† + m) + J12a†

1a2 + J21a1a†
2

+(a†
1 + a1). (12)

Specifically, there is coherent coupling between the CW
(CCW) mode a1 (a2) and the magnon mode m, corresponding
to coupling strengths gj = G

√
S/2 and the detuning of the op-

tical mode is given by � j = ω j − ωl ( j = 1, 2). Meanwhile,
the scattering rate of backscattering from the CW (CCW) to
CCW (CW) mode results in non-Hermitian coupling, with
coupling strengths J12 (J21). The Kerr-nonlinear strength of
the photon modes is χ j = 3h̄ω2χ (3)/4ε0ε

2
r Veff .

III. ENERGY AND TRANSMISSION SPECTRA

The non-Hermitian optical coupling between a1 and a2 can
be described by the scattering from the clockwise (CW) to the
counterclockwise (CCW) mode, and vice versa, with

J12(21) = ε1 + ε2e±iσβ . (13)

Assuming the frequency of the CW mode is equal to the
CCW mode, i.e., ω1 = ω2 = ω, the detuning of the optical
mode is given by � j = ω j − ωl , and the effective detuning
is � = � j + Re(ε1 + ε2). ε1 (ε2) represents the perturbation
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FIG. 2. The eigenvalue splitting varies with the angle β. Re (Im)
denotes the real (imaginary) part of the eigenvalues.

introduced by the nanotip 1 (2), which can be adjusted by
controlling the distance between the nanotip and the resonator.
σ and β denote the azimuthal mode number and the relative
angle of the nanoscatterers, respectively. Steering of the angle
β can bring the system to EPs, as already observed experi-
mentally [48,76]. The purpose of our work here is to show
the role of EPs achieved by tuning β in the photon-magnon
blockade process [48,76]. For J12 = J21 = 0, i.e., when the
two nanoscatterers are absent, the Hamiltonian H

′
has two

orthogonal eigenstates with the same frequency. For J12 = 0
or J21 = 0, H

′
has only one eigenvalue and one eigenvector,

indicating the emergence of an EP. In this case, when J12 = 0,
we have

βEPs = lπ

2σ
± arg (ε1) − arg (ε2)

2σ
, l = ±1,±3, . . . , (14)

where ε1/ε
∗
1 	= ε2/ε

∗
2 can be achieved in experiments by tun-

ing the distance between the resonator and the particles, and
± corresponds to J12 = 0 or J21 = 0.

As depicted in Figs. 2(a)–2(c), the special effect
Hamiltonian H

′
demonstrates that the positions of the Hamil-

tonian EPs (HEPs) coincide with the values of β. By
modulating β, the split eigenspectra gradually approach and
merge into a single point at β = nπ/2 (n = 1, 3), revealing
the position of the Liouville singularity. Furthermore, due to
the circular structure of the WGM cavity, the system’s singu-
larity appears periodically as the relative angular position is
adjusted. We plot the energy spectrum vs the relative phase
angle β and the frequency detuning of the optical mode � in
Figs. 2(b)–2(d). The EPs also exhibit a completely asymmet-
ric coupling between the CW and CCW modes, meaning that
light can only scatter from the CCW mode to the CW mode
when J12 = 0 and J21 	= 0, or from the CW mode to the CCW
mode when J12 	= 0 and J21 = 0. Since the coupling between
optical modes is dependent on the relative angular position β

of the two nanoscatterers, adjusting β allows the system to be
placed at EPs.

The characteristics of EPs can also be clearly observed in
the transmission spectra shown in Fig. 3, where two spectrally

0

0.5
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1

1.2

1.4

1.5

1.6

1.8

606-
2

0.3

0.4

FIG. 3. Transmission spectra of the CW mode as the relative
phase angle β between the nanotips was varied frequency detuning
�. β increased continuously from top to bottom.

separated resonance modes start to overlap. Additionally,
under weak-driving conditions, the occurrence of PMB is
intimately related to the resonance mode in the excitation
spectrum. An EP not only results in a perfect spectral overlap
between resonances but also forces the two corresponding
modes to become identical. Owing to asymmetric backscatter-
ing near an EP, the two modes become chiral, i.e., both modes
possess a dominant contribution (CW or CCW). Moreover,
they are primarily copropagating, meaning that the domi-
nant contribution is the same for both modes. For instance,
both modes can have a large CCW component and only a
small CW component. As the system approaches the EP, the
CW component decreases even further. At the EP, the CW
component vanishes due to destructive interference, and both
modes, considered as two-dimensional vectors (CCW or CW
= 0), become collinear. Consequently, only one independent
eigenvector exists at the EPs.

On the other hand, the photon antibunching of the CW
mode is linked to the quantum interference between multiple

transition paths, as shown in Fig. 4: |0, 0, 0〉 −→ |1, 0, 0〉 −→
|2, 0, 0〉 and |1, 0, 0〉 J12−→ |0, 1, 0〉 −→ |1, 1, 0〉

√
2J21−−−→ |2, 0, 0〉.

Due to destructive interference, the two-photon state |2, 0, 0〉
cannot be occupied. Therefore, the ideal photon blockade
effect can be achieved in the hybrid optomagnonics system.

IV. ANALYTICAL SOLUTION AND MASTER EQUATION
NUMERICAL SIMULATION

In this section, we investigate the photon-magnon blockade
effect in a non-Hermitian cavity optomagnonics system by
both analytically and numerically calculating the equal-time
second-order correlation function.

A. Analytical solution

To determine the specific conditions for photon-magnon
antibunching, we conveniently employ the probability
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FIG. 4. The energy levels of the system within the few-photon
subspace can be represented by states labeled as |na1 , na2 , nm〉, where
na1 and na2 denote the photon numbers of the CW and CCW modes,
and nm indicates the magnon mode. The optomagnonic coupling
between the optical modes and the Kittel mode, as well as the
non-Hermitian coupling between the CCW optical mode and the
CW mode, contribute to the destructive interference within the sys-
tem. Consequently, the path of quantum destructive interference is
expanded.

amplitude method for analytically calculating the second-
order correlation functions. By considering the dissipation
of the two cavities and the magnon mode, we utilize an ef-
fective non-Hermitian Hamiltonian to describe the system’s
evolution.

Heff = H
′ − i

κ1

2
a†

1a1 − i
κ2

2
a†

2a2 − i
κm

2
m†m. (15)

In this context, κ1, κ2, and κm denote the decay rates of the
photons and the magnon mode. To streamline calculations,
we set �1 = �2 = � and κ1 = κ2 = κm = κ , and assume the
system is initially in its ground state. For a sufficiently weak
pumping field, only a few photons can be excited, constraining
the total photon number within the low-excitation subspace
up to two. The dynamic evolution of the optical components
is computed using the Schrödinger equation i∂|ψ (t )〉/∂t =
Heff |ψ (t )〉, where |ψ (t )〉 represents the time-dependent pho-
ton and magnon state. Consequently, a general wave function
for the system can be expanded within the few-photon sub-
space as follows:

|ψ (t )〉 = C000|0, 0, 0〉 + C010|0, 1, 0〉 + C001|0, 0, 1〉
+C100|1, 0, 0〉 + C002|0, 0, 2〉 + C110|1, 1, 0〉
+C101|1, 0, 1〉 + C011|0, 1, 1〉. (16)

Here, Cn1,n2,nm represents the probability amplitude, and
|Cn1,n2,nm |2 indicates the occupation probability of state
|n1, n2, nm〉, with n1, n2, nm denoting the number of photons
and magnons, respectively. This formulation leads to a set of
linear differential equations for the probability amplitudes:

iĊ000 = C100,

iĊ100 =
(

�1 − i
κ1

2

)
C100 +

√
2g1C001 + J21C010 + 

+
√

2C200,

iĊ010 =
(
�2 − i

κ2

2

)
C010 + g2C001 + J12C100 + C110,

iĊ001 =
(
�m − i

κm

2

)
C001 + g1C100 + g2C010 + C101,

iĊ200 = 2

(
�1 − i

κ1

2
+ 2K

)
C200 +

√
2g1C101 +

√
2J12C110

+
√

2C100,

iĊ101 =
(

�1 + �m − i
κ1

2
− i

κm

2

)
C101 +

√
2g1C200 + g2C110

+ J21C011 + C001,

iĊ011 =
(

�1 + �2 − i
κ1

2
− i

κ2

2

)
C011 + g1C110 + J12C101,

iĊ110 =
(

�1 + �2 − i
κ1

2
− i

κ2

2

)
C110 +

√
2J21C200 + g1C011

+ g2C110 + C010. (17)

Under the weak driving condition, we observe that
{|C200|, |C101|, |C011|, |C110|}�{|C100|, |C010|, |C001|}�|C000|,
allowing us to approximate C000 ≈ 1. By neglecting
higher-order terms with respect to , we can approximate the
probability amplitudes for the steady state. Consequently, the
self-correlation function of the photon-magnon blockade
in the steady state can be analytically derived using
Eqs. (15)–(17):

g(2)
a1

(0) = 〈a†
1a†

1a1a1〉
〈a†

1a1〉2

= 2|C200|2
(|C100|2 + |C101|2 + 2|C110|2)2 . (18)

Specifically, a perfect photon-magnon blockade effect in the
cavity optomagnonics system can be characterized by the
condition |C200| = 0.

B. Master equation numerical simulation

To move forward, it is crucial to understand how to
describe the hybrid system within the framework of open
quantum mechanics. We concentrate on the generation of
blockade among the magnon and photon modes at chiral ex-
ceptional points. First, the evolution of the hybrid system can
be assessed using the master equation [52,77–79]

∂ρ

∂t
= −i[H1, ρ] − i{H2, ρ} + 2i〈H2〉ρ +

∑
j

D(ρ, Â j ).

(19)
In this equation, ρ represents the system’s density matrix,
while H1 (H2) is a Hermitian (non-Hermitian) operator ob-
tained by recasting the effective Hamiltonian as H1 ≡ (H

′ +
H

′†)/2 [H2 ≡ (H
′ − H

′†)/2] and
∑

j D(ρ, Â j ) = Â jρÂ†
j −

Â†
j Â jρ/2 − ρÂ†

j Â j/2 represents the Lindblad operator for the

system operator Â j = √
κo(o = a j, m). Furthermore, 〈H2〉 =

tr(ρH2), and the brackets [·] and · denote the commuta-
tor and anticommutator, respectively. Notably, the resulting
equation is nonlinear in the quantum state ρ due to the
addition of the third term, which ensures that tr(ρ) = 1.
In this section, we discuss the robustness of the cavity
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FIG. 5. The equal-time second-order correlation functions
g(2)

a1
(0) versus the relative phase angle β. The parameters are set

as κ1 = κ2 = κm, � j = ωm = 0.5κ1, g1 = g2 = 0.3κ1, χ1 = 10κ1,
χm = 0.1κ1, and  = 0.1κ1.

optomagnonics system’s photon or magnon blockade against
the phase angle β. Two dominant influencing factors are con-
sidered: (i) unexpected magnon-photon coupling gj/κ1; (ii)
the Kerr-nonlinear strength of the CW mode, CCW mode, and
magnon mode. In the long-time limit, the steady-state density
matrix ρs of the system can be obtained. Simultaneously, the
steady-state second-order correlation functions of the CW,
CCW, and magnon modes are given by

g(2)
m (0) = Tr(m†m†mmρs)

[Tr(m†m)ρs]
2 ,

g(2)
a j

(0) = Tr(a†
j a

†
j a ja jρs)

[Tr(a†
j a j )ρs]2

. (20)

To validate our analysis, we compare the equal-time second-
order correlation function of the CW mode as a function
of the relative phase angle β using both analytical and nu-
merical methods, as shown in Fig. 5. The analytic solution
corresponds to Eq. (18) and the numerical simulation corre-
sponds to Eq. (20). The analytical and numerical results are
in strong agreement, confirming the accuracy of our findings.
Moreover, we also compare the equal-time second-order cor-
relation function of the CW mode as a function of the relative
phase angle β using both semiclassical simulation and full
quantum simulation methods. The full quantum master equa-
tion is expressed as ∂ρ/∂t = −i[H1, ρ] + ∑

j D(ρ, Â j ) +
D(ρ, �̂), where �̂ = √−2iH2 is the additional jump operator
[78,80]. When considering the quantum noise caused by non-
Hermitian coupling, the second-order correlation function of
the CW is most significantly affected by quantum noise when
far away from the exceptional points and is not affected by
quantum noise at the EPs (Fig. 5). When the system is located
at exceptional points, the two optical modes are merged into
a single mode. The light field energy is mainly limited in
the CW mode, and the quantum correlation is mainly influ-
enced by the CW mode. At this time, the CW mode has
good robustness to the quantum noise, so the quantum noise
does not influence the quantum correlation at the EPs. The

FIG. 6. The equal-time second-order correlation functions of
the CW, CCW, and magnon modes are plotted as a function of
the relative phase angle β. On the left, the blue lines represent the
numerical results of (a) g(2)

a1
(0), while the purple line and the yellow

line correspond to (c) g(2)
a2

(0) and (e) g(2)
m (0), respectively. On the

right, the blue lines depict the photon number (b) na1 , and the purple
line and the yellow line represent the photon numbers of (d) na2

and (f) nm, respectively. The parameters are set as κ1 = κ2 = κm,
� j = ωm = 0.5κ1, g1 = g2 = 0.3κ1, χ1 = 10κ1, χm = 1 × 10−10κ1,
and  = 0.1κ1.

second-order correlation function of the CW mode exhibits
the lowest values of g(2)

a1
(0) ≈ 0.001. When the system is far

away from the exceptional points, the quantum correlation is
influenced by two optical modes, and the CW mode is sensi-
tive to quantum noise, so the quantum noise has a significant
influence on the quantum correlation at the distance from the
exceptional points.

V. PHOTON-MAGNON BLOCKADE WITH CHIRAL
EXCEPTIONAL POINTS

A. Photon-magnon blockade in the weak-driving regime

In this section, we examine the characteristics of the
antibunching effect for photons and magnons in a hybrid
cavity optomagnonics system operating in the weak-driving
regime ( � κ1). We set the dissipation parameters for pho-
tons and magnon as κ1 = κ2 = κm, and the photon driving
strength as  = 0.1κ1. In the weak-driving limit, where  �
{g1, g2, κ1, κ2, κm}, the total excitation number is limited to
N � 2. To ensure the accuracy of our numerical results, we
truncate the largest number of Hilbert space at three.

To demonstrate the simultaneous photon-magnon blockade
in the hybrid optomagnonics system, we plot the second-
order correlation function g(2)

j (0) against the relative angle
β, as depicted in Figs. 6(a), 6(c), and 6(e). We observe that
at ω = ωl , the antibunching effect periodically varies with
β, and the value of g(2)

a1
(0) can reach ≈0.001 at exceptional

points (EPs). Moreover, the blockade of the counterclockwise
(CCW) and magnon modes can also be detected when β =
π/2 or β = 3π/2, with g(2)

a2
(0) ≈ 0.001 and g(2)

m (0) ≈ 0.06.
Simultaneously, the average number nj ( j = a1, a2, m) reach
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a local maximum value at EPs, as shown in Figs. 6(b), 6(d),
and 6(f). We find that the maximum average photons number
of the steady state na1 and na2 can reach ≈0.25 and ≈0.16 and
the maximum average magnon number of the steady state nm

can reach ≈0.06. Thus, the system can work as an efficient
single photon and magnon source device with a large output
of photons and magnons.

As illustrated in Fig. 6, we investigate by modulating
the phase angle β, the second-order correlation function
exhibits the highest values of g(2)

m (0) ≈ 0.1, g(2)
a1

(0) ≈ 3.16,
and g(2)

a2
(0) ≈ 0.1 and the lowest values of g(2)

m (0) ≈ 0.06,
g(2)

a1
(0) ≈ 0.001, and g(2)

a2
(0) ≈ 0.003. “In Fig. 6(e) we ob-

serve an interesting phenomenon: in contrast with the true
minimum, this local minimum value represents a magnon
blockade region. The results indicate the second-order cor-
relation function of magnon blockade when β = 0.45π and
β = 0.55π is always larger than the one when EPs are at the
β = 0.5π . Meanwhile, we can see that the system reaches a
steady state after a long evolution time. The magnon blockade
effect can also be understood through the theory of uncon-
ventional magnon blockade (UMB), which involves quantum

interference between multiple transition paths: |0, 0, 0〉 −→
|1, 0, 0〉 g1−→ |0, 0, 1〉 and |0, 0, 0〉 −→ |1, 0, 0〉 J12−→ |0, 1, 0〉 g2−→
|0, 0, 1〉. We find that magnon blockade is facilitated by
optomagnonic coupling gj , external driving field , and non-
Hermitian coupling J12 and J21. However, the realization of
photon blockade mainly depends on the external driving field
 and non-Hermitian coupling J12 and J21. Non-Hermitian
coupling plays a distinct role in magnon blockade because it is
first employed to transition to the |0, 1, 0〉 state. Subsequently,
magnon needs to couple to photons using optomagnonic cou-
pling gj to drive the transition |0, 1, 0〉 → |0, 0, 1〉.” This
result implies that a coherent laser with a fixed frequency
can be transformed into concentrated light with a super-
Poissonian distribution by adjusting β. This behavior differs
from the quantum correlation change achieved by modifying
the driving frequency in conventional photon blockade effects.
Thus, phase angle modulation plays a crucial role. Quan-
tum correlation changes spanning three orders of magnitude
can be realized at a fixed frequency, making it a promis-
ing candidate for novel artificial quantum devices, such as
classical-quantum light source converters and antibeam all-
optical switches.

To comprehend the physical mechanism underlying this
counterintuitive effect and the distinction from the Hermitian
case, we examine the excitation pathways illustrated in Fig. 7.
At the exceptional points (EPs) of the system, the coun-
terclockwise (CCW) mode couples to the clockwise (CW)
mode and vice versa, i.e., J12 = 0 and J21 	= 0 (J12 	= 0 and
J21 = 0), resulting in a predominantly CW (CCW) propagat-
ing mode. We deduce that at ω = ωl , a photon blockade (PB)
with strong antibunched single photons arises at EPs, while
a bunched stream appears in the Hermitian case, as depicted
in Fig. 7(a). Simultaneously, the average number na1 also
shows this feature, as depicted in Fig. 7(b). The value of na1

can reach ≈0.03 at exceptional points (EPs), while the lower
panel shows photon-induced tunneling (PIT) in the Hermitian
case for J12 = J21 = 2κ1, the average number values can reach
≈0.003. Figure 7(c), confirming that the system reaches a

0 10 20 30 40 50
10-3

10-2.5

10-2

10-1.5

10-1
-1 0 1

10-2.5

10-1.5

10-0.5

0 0.5 1 1.5 2
10-3

10-2

10-1

-1 0 1

10-2

10-1

100

(a) (b)

)d()c(

PB at EPs

PIT PB at EPs

PIT

FIG. 7. (a) The equal-time second-order correlation functions
g(2)

a1
(0) versus the detuning �/κ1 for the non-Hermitian (blue star)

and Hermitian (red rhombus) cases. (b) The photon numbers of
na1 versus the detuning �/κ1 for the non-Hermitian (blue star) and
Hermitian (red rhombus) cases. (c) The dynamical evolution of the
equal-time second-order correlation function with the CW and CCW
modes. (d) In the non-Hermitian case, the photon numbers na1 and
na2 versus the relative phase angle β. The parameters are set as
κ1 = κ2 = κm, ωm = 0.5κ1, g1 = g2 = 0.3κ1, χ1 = 10κ1, χm = 1 ×
10−10κ1, and  = 0.1κ1.

steady state after an extended evolution time, and optimal
system parameters yield perfect PB. However, the transition
to the |2, 0, 0〉 state is governed by J21, which is negligible in
a system with CCW drive and in a predominantly CCW mode
[see na1 � na2 ≈ 0 in Fig. 7(d)].

Moreover, we also study the effect of parameter fluctua-
tions on the equal-time second-order correlation function and
show those results in Fig. 8. To further clarify whether the per-
fect PMB can be achieved periodically by tuning the relative
angle of nanotips, we analyze the optimal antibunching effect
of the photon and magnon (solid white line in Fig. 8). The
minimal value of the g(2)

a1
(0) and g(2)

m (0) occurs at β = π/2 and
β = 3π/2. And the detuning of optical modes satisfies ω =
ωl , i.e., � = 0. Consequently, the system can absorb only
one photon and magnon, leading to photon blockade (PB)
[magnon blockade (MB)] and antibunched single photon-
magnon pairs with g(2)

a1
(0) � 1 and g(2)

m (0) � 1. The interplay
of EPs and the detuning creates a new type of single-photon
blockade effect that takes place at two-photon resonance. This
property can be used to construct single-photon devices with
frequency-tunable.

B. Photon-magnon blockade in the weak optomagnonic
coupling regime

In this section, we explore the impact of optomagnonic
coupling strength on the photon (magnon) blockade (PMB)
by numerically investigating the evolution of the second-order
correlation functions g(2)

a1
(0) and g(2)

a2
(0) for various relative

phase angles β. To more intuitively represent the relationship
between the optomagnonic coupling strength, relative phase
angle, and the correlation functions of the counterclockwise
(CCW) and clockwise (CW) modes, we present the results
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FIG. 8. The equal-time second-order correlation functions
(a) g(2)

a1
(0) and (b) g(2)

m (0) versus the detuning � and the relative
phase angle β. The parameters are set as κ1 = κ2 = κm, ωm = 0.5κ1,
g1 = g2 = 0.3κ1, χ1 = 10κ1, χm = 1 × 10−10κ1, and  = 0.1κ1.

in Fig. 9. As observed, the photon-magnon antibunching ef-
fect can periodically appear under the conditions β = π/2 or
β = 3π/2. We find that the second-order correlation functions
of the CCW and CW modes reach their minimum values at the
exceptional points (EPs). Consequently, the EPs at β = π/2
and β = 3π/2 serve as critical points for determining whether
the PMB can undergo periodic variations.

As demonstrated, the photon-magnon antibunching effect
can periodically arise by adjusting the relative phase angle
β for light with ω = ωl . Modulation of the relative phase
angle β can induce nearly three orders of magnitude periodic
change in the second-order correlation function of the light
field. Based on our analysis and discussion, we discover that
perfect PMB can be achieved even with weak optomagnonic
coupling strength (e.g., g j � κ). This finding indicates that

FIG. 9. The equal-time second-order correlation functions
(a) g(2)

a1
(0) and (b) g(2)

a2
(0) versus the optomagnonics coupling strength

gj and the relative phase angle β. The parameters are set as κ1 =
κ2 = κm, � j = ωm = 0.5κ1, g1 = g2 = 0.3κ1, χ1 = 10κ1, χm = 1 ×
10−10κ1, and  = 0.1κ1.

the PMB in hybrid optomagnonic systems is more robust to
variations in optomagnonic coupling strength.

C. The robustness of the Kerr-nonlinear strength

In this section, we focus on the characteristics of the
antibunching effect of photon-magnon interactions in a hy-
brid optomagnonics quantum system with photon-magnon
resonance detuning, i.e., � j = ωm. The system exhibits non-
Hermitian coupling between the counterclockwise (CCW)
and clockwise (CW) modes. We investigate the influence
of photon and magnon Kerr-nonlinear strengths on the anti-
bunching characteristics of the system under weak magnon
Kerr-nonlinear strength regimes.
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FIG. 10. (upper) The equal-time second-order correlation functions of the CW, CCW, and magnon modes versus the relative phase angle
β with different the Kerr-nonlinear strength. (lower) The equal-time second-order correlation functions of the CW, CCW, and magnon modes
versus the relative phase angle β and the Kerr-nonlinear strength χ1,2,m. The parameters are set as κ1 = κ2 = κm, � j = ωm = 0.5κ1, g1 = g2 =
0.3κ1, and  = 0.1κ1.

In the weak magnon Kerr-nonlinear strength regime, we fix
the weak optomagnonic coupling regime (g j/κ = 0.3) and the
magnon Kerr-nonlinear strength (χm/κ = 10−10). To further
elucidate whether the perfect photon-magnon blockade can
be achieved by the CW mode, CCW mode, and magnon
mode, we examine Fig. 10(a), which plots the second-order
correlation function g(2)

a1
(0) as a function of β/π for different

Kerr-nonlinear strengths χ1. The perfect photon blockade can
be observed with the increase of Kerr nonlinear strength, e.g.,
χ1/κ = 10 (the pink line). More intuitively, Fig. 10(d) reveals
that, in the presence of the relative angular position difference
between the CCW and CW modes, two dips occur; the white
lines satisfy the optimal conditions. When the relative angular
positions of the CCW and CW modes differ, two additional
dips gradually emerge at EPs occurring at β = π/2 or β =
3π/2. Thus, the photon Kerr-nonlinear strength plays a crucial
role in controlling the antibunching effect of the CCW mode,
providing a method for the preparation of a single-photon
source.

Furthermore, in the weak magnon Kerr-nonlinear strength
regime, i.e., (χm/κ = 10−10), we plot the logarithmic
scale of the equal-time second-order correlation function
log10[g(2)

a2
(0)] as a function of the relative angular position

β with different photon Kerr-nonlinear strengths of the CW
mode in Fig. 10(b). We find that the equal-time second-order
correlation function g(2)

a2
(0) exhibits a prominent antibunching

effect at β = π/2 or β = 3π/2. For different photon Kerr-
nonlinear strengths, it varies monotonically as χ2/κ increases.
To enhance the understanding of this situation, we plot the
second-order correlation function g(2)

a2
(0) as a function of β/π

and the Kerr-nonlinear strength χ2 in Fig. 10(e). We observe
that the strong photon antibunching effect g(2)

a1
(0) � 1 appears

in the curved dark blue areas and has minimal values at excep-
tional points (EPs). By tuning the relative angle β, periodic
photon blockade (PB) can be implemented. Additionally, we
find that the robustness of the Kerr-nonlinear strength of the
CW mode is enhanced. Similarly, the antibunching effect of
the CCW mode and magnon mode appear in the curved dark
blue areas, and the EPs emerge periodically. These results
offer a potential approach to achieve an antibunching-to-
bunching light switch by harnessing the chiral exceptional
points.

VI. IMPLEMENTATION IN YIG MICRORESONATOR

Recent groundbreaking experiments have demonstrated
that a hybrid optomagnonics system, which simultaneously
supports magnon resonances and whispering gallery modes
(WGMs) can be realized [67]. While the Kittel mode (the
homogeneous magnetic mode) is the simplest one to probe
and externally tune, its status as a bulk mode results in subop-
timal overlap with optical WGMs that reside near the surface.
Furthermore, nanotips can be fabricated through wet etching
of tapered fibers, and their relative position and effective size
can be controlled by the nanotips themselves [81].

In our current proposal, the photon-magnon blockade ef-
fect is achieved under the condition g j � κ j , which reduces
the experimental requirements typically associated with op-
tomagnonics systems. The unique properties of the cavity
enable more effective utilization of the YIG crystal’s high
spin density for cavity optomagnonics experiments. Sup-
ported by current experimental technology, YIG spheres can
be highly polished with diameters as small as 250 µm, and
the quality factor of the WGMs optical mode can reach
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3 × 106 [5]. Therefore, for YIG with characteristic frequen-
cies ωm ≈ 1–10 GHz, the condition on the coupling is easily
fulfilled ωm/GS � 1, whereas κ j can be estimated to be
≈1010Hz and the coupling G gives the magnon preces-
sion frequency shift per photon [67]. It decreases for larger
magnon mode volume, in contrast to GS, which describes
the overall optical shift for saturated spin S [67]. More-
over, the perturbations induced by the nanotips are chosen
as ε1/κ = 1.5 − i0.1, ε2/κ = 1.485 − i0.14, which have been
experimentally achieved [48,76]. Consequently, our scheme
can be implemented under practical experimental conditions.
We have demonstrated chiral modes in YIG microcavities
via geometry-induced non-Hermitian mode couplings. The
underlying physical mechanism that enables chirality and di-
rectional emission is the strong asymmetric backscattering
in the vicinity of an EP that universally occurs in all open
physical systems.

VII. CONCLUSION

In summary, we propose a periodic photon-magnon
blockade in a hybrid optomagnonics system where a YIG
microresonator coupled to two silica nanotips. By adjust-
ing the relative angle of two nanotips, quantum correlations

between magnons and photons can be finely tuned, transition-
ing between antibunching and bunching regimes or vice versa.
The exceptional points also reveal a completely asymmetric
coupling between the CW and CCW modes. Additionally, we
demonstrate the feasibility of achieving simultaneous photon-
magnon blockade in the weak optomagnonic coupling regime.
As a result, the robustness of the Kerr-nonlinear strength for
the CW, CCW, and magnon modes, where the strong kerr
nonlinearity of magnon mode is not required. By steering
the system towards or away from an exceptional point, we
enable chiral control and allow asymmetric coupling. This
feature suggests a potential method for developing tunable
single photon-magnon sources and antibunching-to-bunching
light switches.
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