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Dominance of the phonon drag mechanism in the spin Seebeck effect at low temperatures
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The spin Seebeck effect (SSE) consists of the generation of a spin current in a magnetic insulator under
a temperature gradient that is converted into a charge current in an attached thin metallic layer with strong
spin-orbit interaction. The theoretical models proposed to explain the experimental observations of the SSE in the
so-called longitudinal configuration consider that the spin current is entirely produced by the thermal excitation
of magnons in the magnetic material. Here we show that actually, at low temperatures, the SSE is entirely
dominated by a phonon drag mechanism, in which phonons in the heat current generate a spin current by means
of magnon-phonon interaction. The theory explains quantitatively quite well the experimental observations of
Iguchi et al. [Iguchi et al., Phys. Rev. B 95, 174401 (2017)], demonstrating that the SSE in yttrium iron garnet
(YIG)/platinum structures has a pronounced peak at low temperatures following the behavior of the thermal
conductivity in YIG.
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I. INTRODUCTION

The spin Seebeck effect (SSE) consists of the generation
of a spin current by a temperature gradient in a magnetic
material, that is usually detected electrically by means of the
inverse spin Hall effect in attached metallic contacts. Initially
observed in a Permalloy film with a temperature gradient
applied along the film, in the so-called transverse configu-
ration [1], the SSE was subsequently demonstrated in the
ferrimagnetic insulator Y3Fe5O12 (yttrium iron garnet-YIG)
in the same configuration [2]. Shortly after, the SSE was
observed in a YIG slab with an attached platinum strip with
the temperature difference applied across the bilayer structure,
in the so-called longitudinal configuration [3], which became
the standard structure to study the effect. Since then, intensive
studies have been conducted on the SSE to investigate its
detailed properties and elucidate the mechanisms involved
in the generation of the spin currents [4–29], to observe the
effect in other ferro- and ferrimagnetic materials [30–36], to
investigate the effect and explain the mechanisms in antifer-
romagnetic insulators [37–50] and in paramagnets [51–55],
and to develop thermoelectric applications [28,29,31], among
others.

Most experiments for the study of the SSE have been
performed using a junction made of a magnetic insulator and
a paramagnetic metallic layer such as Pt, Pd, W, and Ta, that
is used to convert the spin current generated by the thermal
gradient into an electric current by means of the inverse spin
Hall effect (ISHE). Since YIG/Pt enables driving and efficient
electric detection of spin-current effects, the YIG/Pt junction
is now recognized as a model system for SSE studies. Note
that the theories proposed so far for the SSE in this and
other systems are mainly based on the thermal generation of
magnons at the interface of the junction or in the bulk of the
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magnetic layer, and despite the fact that there is mounting
evidence that phonons may also play an important role in the
SSE [56–61], insufficient effort has been made to present a
full quantitative theory for the effect considering the direct
participation of phonons. However, it is important to call
attention to the fact that the strong enhancement of the SSE
observed in the longitudinal configuration in LaY3Fe5O12 at
low temperatures was explained qualitatively in Ref. [56]
by a phonon drag mechanism. That paper has served as an
inspiration for the current work.

In this paper, we present a full quantitative theory for the
SSE in a bilayer made of a ferro- or ferrimagnetic insulator
(FMI) and a nonmagnetic metallic (NM) layer under a perpen-
dicular temperature gradient. We show that the phonon current
produced by the thermal gradient generates a magnonic spin
current by means of a phonon drag mechanism mediated by
the magnon-phonon interaction that, at low temperatures, is
orders of magnitude larger than the pure magnonic current.
The theory provides results for the temperature dependence
of the SSE that are in quite good agreement with the experi-
mental data of Iguchi et al. [60]. In Sec. II we review the basic
properties of magnons, phonons, and the magnon-phonon in-
teraction. Section III is devoted to a review of the theory for
the pure bulk magnonic mechanism for the SSE. In Sec. IV,
we develop the theory for the phonon drag contribution to
the spin current and show that it explains quite well the ex-
perimentally measured temperature dependence of the SSE in
gadolinium gallium garnet (GGG)/Pt/YIG/Pt devices. Finally,
Sec. V is devoted to the conclusions.

II. MAGNONS, PHONONS, AND THEIR INTERACTION
IN FERROMAGNETS

In a ferromagnetic insulator, the relevant elementary exci-
tations are magnons and phonons, the quanta of, respectively,
spin waves and elastic lattice vibrations. Actually, YIG is a
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ferrimagnet, but at low temperatures the magnetic properties
are dominated by magnons in the acoustic branch that behave
as ferromagnetic excitations. Here we present some basic
properties of free magnons and phonons, and also of their in-
teraction. We consider a ferromagnetic medium described by a
Hamiltonian containing magnetic, elastic, and magnetoelastic
contributions. The magnetic part consists of the interactions
between individual spins �Si at site i with the magnetic field �H
(Zeeman interaction), and the exchange interaction between
neighboring spins, that can be represented by the Hamiltonian
[62–66]

Hmag = −gμB

∑
i

�H · �Si − 2J
∑
i,δ

�Si · �Si+δ, (1)

where μB is the Bohr magneton, g is the spectroscopic split-
ting factor, and J is the nearest neighbor exchange interaction
parameter between the spin �Si and its neighbor at i + δ.
Since the magnons involved in the SSE are away from the
Brillouin zone center, we neglect the long-range dipolar inter-
action between the spins. We treat the quantized excitations
of the magnetic system with the Holstein-Primakoff approach,
which consists of transformations that express the components
of the spin operator in terms of boson operators that create or
destroy magnons [62–66].

In the first transformation, the components of the local spin
operator are related to the creation and annihilation operators
of spin deviation at site i, denoted, respectively, by a†

i and
ai, which satisfy the boson commutation rules [ai, a†

j ] = δi j

and [ai, a j] = 0. Using a coordinate system with ẑ along the
equilibrium direction of the spins, defining S+

i = Sx
i + iSy

i and
S−

i = Sx
i −iSy

i , it can be shown that in first order the relations
between the components of the spin operators and the opera-
tors of spin deviation are S+

i
∼= (2S)1/2ai, S−

i
∼= (2S)1/2a†

i , and
Sz

i = S−a†
i ai. The next step consists of introducing a trans-

formation from the local field operators to collective boson
operators by means of ai = N−1/2 ∑

k ei�k.�ri ak , where N is the
number of spins in the system, �k is the wave vector, and a†

k
and ak are the creation and annihilation operators of magnons,
which satisfy the boson commutation rules [ak, a†

k′ ] = δkk′ and
[ak, ak′ ] = 0.

Using the transformations described in the spin Hamilto-
nian one can show that it can be written in a diagonal form
representing noninteracting boson particles [62–66]

Hm =
∑

k

h̄ωka†
kak, (2)

where ωk is the frequency of magnons with wave vector �k. For
YIG, it has been shown [66] that the dispersion relation in a
spherical Brillouin zone is given by the approximate equation

ωk = γ H + ωZB

(
1 − cos

πk

2km

)
, (3)

where γ = gμB/h̄ is the gyromagnetic ratio, ωZB is the zone
boundary frequency, and km is the value of the maximum wave
number.

To treat the elastic system, we consider that the ferro-
magnetic crystal is a continuous solid, elastically isotropic,
with average mass density ρ. We also assume that it is a

cubic crystal so that, within the linear approximation, the
relation between the stress tensor and the strain tensor in-
volves only two different elastic constants, c12 and c44. The
elastic deformations of the solid are expressed in terms of
the vector displacement �u = �r − �r′, where �r is the initial
position of an atom or of a volume element, and �r′ is the
position after deformation. The contributions of the elastic
system to the Hamiltonian arise from the kinetic and potential
energies. Introducing the momentum density conjugate to the
displacement, ρ∂ui/∂t , in the linear approximation, the elastic
Hamiltonian can be written as [62–67]

He =
∫

d3r

(
ρ

2

∂ui

∂t

∂ui

∂t
+ α

2

∂ui

∂xi

∂u j

∂x j
+ β

2

∂ui

∂x j

∂ui

∂x j

)
, (4)

where the elastic constants are written as α = c12 + c44, β =
c44, for a Cartesian coordinate system chosen with axes lying
along the 〈100〉 crystallographic directions. In order to obtain
the collective excitation operators for the elastic system, we
use the canonical transformation,

ui(�r, t ) =
(

h̄

V

)1/2 ∑
k,μ

εiμ(�k)Qμ

k (t )ei�k·�r, (5)

ρu̇i(�r, t ) =
(

h̄

V

)1/2 ∑
k,μ

εiμ(�k)Pμ

k (t )e−i�k·�r, (6)

where εiμ = x̂i · ε̂(�k, μ) and ε̂(�k, μ) are unitary polarization
vectors. We will denote by μ = 1, 2 the two polarizations
transverse to the wave vector �k, and μ = 3 the longitudinal
one. Notice that from Hermiticity it follows that Qμ

k = Qμ+
−k

and Pμ

k = Pμ +
−k . The quantization of the elastic vibrations

is made through the commutation relations involving ui(�r)
and its conjugate momentum density ρ ∂ �u/∂t . The only non-
commuting pair is such that [ui(�r), ρu̇ j (�r′)] = ih̄δi jδ(�r − �r′),
which leads to [Qμ

k , Pν
k′ ] = ih̄δkk′δμν .

In order to diagonalize the elastic Hamiltonian it is neces-
sary to introduce the canonical transformations,

Qμ

k =
[

h̄

2ρωpμ(k)

]1/2

(b†
μ−k + bμk ), (7)

Pμ

k = i

[
ρ h̄ωpμ(k)

2

]1/2

(b†
μk − bμ−k ), (8)

where the new operators satisfy the boson commutation rela-
tions [bμk, bνk′ ] = 0, [bμk, b†

νk′ ] = δμνδkk′ , and are interpreted
as creation and annihilation operators of lattice vibrations,
whose quanta are the phonons, and

ωpμ(k) = k[(β + αδμ3)/ρ]1/2 (9)

is the frequency of phonons with wave number k and polar-
ization μ. With transformations (5)–(8), the Hamiltonian in
Eq. (4) becomes

He =
∑
k,μ

h̄ωpμ(k)(b†
μkbμk + 1/2), (10)
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which represents a system of noninteracting bosons. In terms
of the operators in Eqs. (7) and (8), the displacement and the
momentum density operators become

ui =
(

h̄

2ρV

)1/2 ∑
k,μ

εiμ(�k)ω−1/2
pμ (b†

μke−i�k·�r + bμkei�k·�r ), (11)

ρu̇i =
(

ρ h̄

2V

)1/2 ∑
k,μ

iεiμ(�k)ω1/2
pμ (b†

μkei �k·�r − bμke−i �k·�r ). (12)

Due to the spin-orbit interaction, the elastic displacements
in a magnetic medium are coupled to the spin excitations.
This is what ultimately relaxes the magnetization dynamics
in any magnetic material, gives rise to the magnetostrictive
properties, and also produces the coupling between spin and
elastic waves.

Note that if a spin wave and an elastic wave have frequency
and wave vector close to each other, they become strongly
coupled giving rise to hybrid excitations, called magnetoe-
lastic waves, or magnon-phonon hybrid excitations [62–67].
Magnetoelastic waves with frequency in the microwave region
were first observed experimentally in 1963 in YIG [68] and
soon attracted interest for the study of their properties and
possible applications in microwave devices [68–71]. In recent
years they gained renewed interest with the advent of the field
of spintronics [72–88]. Since in a fixed magnetic field the
crossing of the magnon and phonon dispersion relations oc-
cupies a very small region in the Brillouin zone, the influence
of magnetoelastic waves in the spin Seebeck effect is quite
small and is relevant only in a few experiments [59]. For this
reason, we do not explore here the detailed properties of the
magnetoelastic wave. Instead, as we shall show, the phonon
drag process that dominates the SSE at low temperatures relies
on one-phonon–two-magnon interaction.

The magnetoelastic interaction can be expressed by a phe-
nomenological Hamiltonian, which is a function of the spin �S
and the displacement �u. For a cubic crystal, with the static field
applied along one of the [100] directions, the lowest-order
term of the interaction Hamiltonian is given by [62–67]

Hme =
∫

d3r
b1

S2

(
S2

x exx + S2
y eyy + S2

z ezz
)

+ 2b2

S2

(
SxSyexy + SySzeyz + SzSxezx

)
, (13)

where

ei j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(14)

is the strain, and b1 and b2 are the magnetoelastic interaction
constants. Considering the magnetic field applied in the FMI
film plane in the z direction and the temperature gradient
applied in the y direction, the phonons in the thermal current
have a wave vector in the y direction, so that only strain
components with ∂ui/∂y are nonzero. Thus the only terms in
the magnetoelastic that contribute to the one-phonon—two-
magnon interaction is

Hme =
∫

d3r

[
b1

2S2

(
S2

y

∂uy

∂y

)
+ b2

S2

(
SxSy

∂ux

∂y

)]
. (15)

FIG. 1. Illustration of the ferromagnetic insulator (FMI)/normal
metal (NM) bilayer and coordinate axes used to formulate the the-
oretical model for the generation of spin current by the temperature
gradient in the spin Seebeck effect.

The first term in this equation contains the contribution
from longitudinal phonons, while the second one is due to
transverse phonons. Using the transformations from the spin
operators into magnon creation and annihilation operators,
one can show that the second term only leads to the creation
or annihilation of two magnons, which are not of interest here.
Considering only the first term in Eq. (15), corresponding to
longitudinal phonons, the Hamiltonian for one-phonon–two-
magnon interaction gives, after the transformations from the
spin and displacement operators into magnon and phonon
operators,

Hm−p=
∑

k1,k,q

(Vm−pbqpak1 a†
k+V ∗

m−pb†
qpa†

k1ak )�(�k1+�qp − �k),

(16)

where

Vm−p = b1

4SN

(
h̄V

2ρ

)1/2

qpω
−1/2
qp . (17)

The Hamiltonian (16) represents a process in which a
magnon with wave vector �k1 (in thermal equilibrium) interacts
with a phonon of wave vector �qp in the thermal bath to gener-
ate another magnon �k by a three-boson process that conserves
momentum and energy. As we shall show in Sec. IV, this is
the process responsible for the generation of a spin current
mediated by phonons.

III. MAGNONIC THEORY FOR THE SPIN SEEBECK
EFFECT IN FERROMAGNETIC INSULATORS

In this section we review the theory for the spin Seebeck ef-
fect considering only the spin current transported by magnons
in a FMI in contact with a NM layer, under a temperature
gradient normal to the plane and with a static magnetic field
H applied in the plane, as illustrated in Fig. 1. We assume
that the FMI has one spin per unit cell, so that there is
only one magnon mode. Note that we consider only the bulk
magnon theory [13,19,44] because it has been shown [89] that
in YIG/Pt, at room temperature, this mechanism completely
dominates the SSE in YIG films with thickness larger than
100 nm.

Our goal here is to calculate the spin current created by
the thermal gradient in the FMI and injected into the NM
layer. The spin current flows into and diffuses in the NM
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layer where it is partially converted into a transverse charge
current by the ISHE [90–92] producing a DC voltage that is
a signature of the SSE. The magnon spin current due to the
thermal gradient across the thickness can be calculated with
Boltzmann and diffusion equations imposing the appropriate
boundary conditions. We choose a coordinate system with the
z axis parallel to the magnetic field H applied in the easy plane
along the easy axis of the bilayer, and the y axis perpendicular
to the plane, as in Fig. 1.

Considering z the equilibrium direction of the spins, the
spin-current density with polarization z carried by magnons
with wave vector �k and energy εk = h̄ωk is [7,8,13,19,44]

�Jz
S = h̄

(2π )3

∫
d3k�vk

[
nk (�r) − n0

k

]
, (18)

where �vk is the magnon velocity, nk (�r) is the number of
magnons with wave vector �k at a position �r, and n0

k is
the number in thermal equilibrium, given by the Bose-
Einstein distribution with zero chemical potential n0

k (εk ) =
[eεk/kBT − 1]

−1
. We consider that the temperature T of the

magnon system is the same as that of the lattice, since there
is no experimental evidence that they are significantly dif-
ferent [12,93]. Under the influence of external perturbations,
such as thermal gradients, the magnon number nk (�r) becomes
nonuniform, and its distribution can be calculated with the
Boltzmann transport and the diffusion equations subject to the
boundary conditions. One approach to this problem consists
of using the concept of magnon accumulation δnm(�r), intro-
duced by Zhang and Zhang [7,8], defined as the density of
magnons in excess of equilibrium,

δnm(�r) = 1

(2π )3

∫
d3k

[
nk (εk, �r) − n0

k

]
, (19)

and finding the evolution of δnm(�r). The distribution of the
magnon number under the influence of a thermal gradient
can be calculated with the Boltzmann transport equation.
In the absence of external forces and in the relaxation ap-
proximation, in steady state the Boltzmann equation gives
[13,19,44,66]

nk (�r) − n0
k = −τk�vk · ∇nk (�r), (20)

where τk is the k-magnon relaxation time. In the spirit of linear
response theory, we write the excess magnon number as the
sum of the equilibrium distribution plus a small deviation in
the form [94]

nk (�r) = n0
k + n0

kλkg(�r), (21)

where g(�r) is a spatial distribution to be determined by the so-
lution of the boundary value problem and λk (εk ) is a function
of the magnon energy. Following [19], we use an expansion
for λk (εk ) that in lowest order of energy is chosen to eliminate
the singularity at εk = 0, namely,

nk (�r) = n0
k + n0

kεkg(�r). (22)

Using Eqs. (20) and (22) in Eq. (18), one obtains a
magnonic spin current with two components, �Jz

S∇T due to the
thermal gradient, and �Jz

S∇n due to the spatial gradient. The
total spin-current density is [19]

�Jz
S = −Sz

S∇T − h̄Dm∇δnm(�r), (23)

where

Sz
S = h̄

(2π )3T

∫
d3kτkv

2
ky

exx

(ex − 1)2 , (24)

where T is the average temperature, x = εk/kBT is the nor-
malized magnon energy, the integral is evaluated over the first
Brillouin zone,

Dm = 1

(2π )3 I0

∫
d3 kτk v2

ky n0
kεk (25)

is the magnon diffusion coefficient, and

I0 = 1

(2π )3

∫
d3kn0

kεk . (26)

As shown in Ref. [44], the magnon accumulation is pro-
portional to the magnon chemical potential μm(�r), used to
characterize the nonequilibrium magnon Bose-Einstein dis-
tribution. This explains why Eq. (23) is the same as the one
obtained in the formulation of the theory for the SSE in terms
of the magnon chemical potential [21].

Considering that the magnon accumulation relaxes into
the lattice with a magnon-phonon relaxation time τmp, con-
servation of angular momentum implies that ∇ · �Jz

S∇nm
=

−h̄δnm/τmp. Using this relation in Eq. (23) leads to a diffusion
equation for the magnon accumulation,

∇2δnm = δnm

l2
m

, (27)

where lm = (Dmτmp)1/2 is the magnon diffusion length. Con-
sidering the spatial variation only in the y direction, solution
of Eq. (27) gives, for the magnon accumulation,

δnm(y) = A cosh [(y + tFMI)/lm] + B sinh [(y + tFMI)/lm],

(28)

and the corresponding spin-current density calculated with
Eq. (23) is

J∇n(y) = − h̄Dm

lm
{A sinh [(y + tFMI)/lm]

+ B cosh [(y + tFMI)/lm]}. (29)

Thus the total spin-current density in the FMI (−tFMI �
y � 0) is

JS (y) = −SS∇yT − h̄Dm

lm
A sinh [(y + tFMI)/lm]

− h̄Dm

lm
B cosh [(y + tFMI)/lm], (30)

where the coefficients A and B are obtained imposing the
boundary conditions at y = −tFMI and y = 0, determined by
conservation of the angular momentum flow that requires
continuity of the spin currents at the interfaces. As shown
in Refs. [19,44], the precessing spins associated with the
magnon accumulation at the FMI/NM interface inject a spin
current into the NM layer by the spin-pumping process given
by

JS (0+) = −CS∇yT, (31)
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where the coefficients are

CS = b
SSlm
h̄Dm

ρg↑↓
eff , (32)

b = γ h̄

2πMI0

1

(2π )3

∫
d3kn0

kε
2
k , (33)

while g↑↓
eff is the effective spin-mixing conductance, that takes

into account the spin-pumped and back-flow spin currents
[95], and

ρ = cosh(tFMI/lm) − 1

sinh(tFMI/lm)
(34)

is a thickness factor, such that ρ ≈ 1 for tFMI � lm and ρ ≈ 0
for tFMI  lm.

Equations (31) and (32) show that the magnonic spin cur-
rent at the FMI/NM interface generated by a thermal gradient
perpendicular to the bilayer plane is proportional to the tem-
perature gradient and to the spin-mixing conductance of the
interface. The spin current �JS flowing into the NM layer dif-
fuses with diffusion length λN , and generates a charge current
density �JC = θSH(2e/h̄) �JS × σ̂ by the ISHE [90–92] that pro-
duces a SSE voltage at the ends of the NM layer. The voltage
at the ends of the NM layer is obtained by integrating the
charge current density along x and y and is given by [13,19,44]

VSSE = RNwλN
2e

h̄
θSH tanh

(
tN

2λN

)
JS (0), (35)

where RN , tN and w are, respectively, the resistance, thickness,
and width of the NM layer and JS (0) is given by Eqs. (31)–
(34).

The spin Seebeck coefficient is often defined with refer-
ence to the voltage measured in the NM. One disadvantage
of this definition is that the voltage varies with the resistance,
so that two samples made with the same material but with
different NM layer thicknesses have different spin Seebeck
voltage coefficients. As in Ref. [44], we quantify the SSE by
the current spin Seebeck coefficient, SSSE = ISSE/∇yT , where
ISSE = VSSE/RN is the charge current in the NM layer pro-
duced by the temperature gradient ∇yT . Thus, with Eqs. (31)
and (35), we obtain

SSSE = wλN
2e

h̄
θSH tanh

(
tN

2λN

)
CS. (36)

In order to compare the model for the SSE with experimen-
tal results for a specific FMI, one needs detailed information
on the dispersion relations and relaxation rates for the magnon
modes. They are used to calculate the integrals over the Bril-
louin zone that appear in the relevant parameters, such as the
magnon drift parameter in Eq. (24), the diffusion coefficient
in Eq. (25), and the spin-pumping parameter in Eq. (33).

Yttrium iron garnet is a ferrimagnet with 20 spins per unit
cell, so it has a complicated magnon dispersion relation with
one acoustic mode and 19 optical modes [96]. Since the lowest
magnon optical branch lies above the zone-boundary value,
the calculation of the thermal properties in the presence of
an applied field H at temperatures up to 300 K can be done
approximately considering only the acoustic branch, with a

magnon dispersion given by [93]

ωk = γ H + ωZB

(
1 − cos

πk

2km

)
, (37)

where γ = gμB/h̄ is the gyromagnetic ratio, g is the spectro-
scopic splitting factor, μB the Bohr magneton, ωZB the zone
boundary frequency, and km is the value of the maximum
wave number assuming a spherical Brillouin zone. Using the
magnon group velocity obtained from Eq. (37), one can show
[19,44] that the coefficient CS in Eq. (32) becomes

CS = FFMI
B1BS

(B0B2)1/2 ρg↑↓
eff , (38)

where the factor FFMI depends on material parameters and
universal constants,

FFMI = γ h̄kBτ 1/2
mp τ

1/2
0 k2

mωZB

4πMπ2
√

3
, (39)

and the parameters B in Eq. (38) are given by the integrals

BS =
∫ 1

0
dqq2sin2

(
πq

2

)
exx

ηq(ex − 1)2 ,

B1 =
∫ 1

0
dqq2 x2

ex − 1
, (40)

B0 =
∫ 1

0
dqq2 x

ex − 1
,

B2 =
∫ 1

0
dqq2sin2

(
πq

2

)
x

ηq(ex − 1)
. (41)

In Eqs. (40) and (41) q = k/km is a normalized wave
number and ηq = ηk/η0 is an adimensional relaxation rate,
related to the magnon lifetime by ηq = τ0/τk , where τ0 is the
lifetime of magnons near the zone center (k ≈ 0). Following
Refs. [13,19,44,66] we use for the magnon relaxation rate an
expression obtained from fits to the calculated rates due to
three- and four-magnon scattering processes,

ηq = 1.0 + (7.5 × 102q)

(
T

300

)

+ 103 × (7.6q2 − 4.9q3)

(
T

300

)2

, (42)

where the relaxation time of the k = 0 mode was taken to be
τ0 = 1/η0 = 5 × 10−8 s at T = 300 K. The magnon-phonon
relaxation time τmp that enters in Eq. (39) has been estimated
in Refs. [13,19,44] to be τmp ≈ 10−12 s based on the value of
the magnon diffusion length lm ≈ 70 nm obtained from the
fit of Eq. (34) to the measured [18] thickness dependence
of the SSE. Note that the value of the magnon diffusion
length varies with the quality of the sample because it depends
strongly on the magnon relaxation rate. Numerical evaluation
of the integrals in Eqs. (40) and (41), using Eqs. (37) and
(42), gives for 300 K the values BS = 2.0 × 10−4, B0 = 0.23,
B1 = 0.16, and B2 = 6.9 × 10−5. Using these values, and
the following parameters for YIG, 4πM = 1.76 kG, γ =
1.76 × 107 s−1 Oe−1, H = 1 kOe, ωZB/2π = 7.0 THz, and
km = 1.7 × 107 cm−1, considering ρ = 1 for tFMI � lm and
the spin-mixing conductance for the YIG/Pt interface [18,19],
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FIG. 2. (a) Calculated temperature dependence of the spin See-
beck coefficient in YIG/Pt for various YIG film thicknesses tFMI

relative to the magnon diffusion length lm (300) at 300 K.

g↑↓
eff = 1014 cm−2, we obtain for the coefficient CS in Eq. (38)

CS = 2.9 × 10−10 erg/(K cm). With this value and the param-
eters for the Pt layer, λN = 3.7 nm, θSH = 0.05 [91,92], w =
0.2 cm, and tN = 4 nm, we obtain the current spin Seebeck co-
efficient SSSE = ISSE/∇yT , where ISSE = VSSE/RN , for YIG/Pt
at room temperature, SSSE = 0.17 nA cm/K. Using this value,
we find for the spin Seebeck voltage in YIG/Pt under a tem-
perature gradient of ∇yT = 200 K/cm and a Pt layer with
typical resistance RN = 200 �, VSSE = 6.8 µV, which is in
good quantitative agreement with values reported for YIG/Pt
[13,97].

An important signature of a theoretical model for transport
phenomena is the temperature dependence of physical quan-
tities of interest. We have used Eqs. (36)–(42) to calculate
the temperature dependence of the spin Seebeck coefficient in
YIG/Pt under a magnetic field of H = 1 kOe to compare with
experimental data. We neglect the variation with temperature
of the spin-Hall angle θSH and the spin diffusion length λN

of the Pt layer and consider for the magnon relaxation rate
in YIG the dependence given in Eq. (42). Figure 2 shows the
calculated temperature dependence of SSSE for several YIG
film thicknesses relative to the magnon diffusion relaxation
rate decreases faster, so that the voltage increases. At low T
the exponential decrease in the magnon population dominates
so that the overall behavior exhibits the bump at ∼100 K,
which is a characteristic feature of our model. This behavior
is in good agreement with the experimental data reported in
Ref. [13].

However, it turns out that, as recently realized, the ex-
perimental result for the temperature dependence of the SSE
in Ref. [13] is incorrect. As pointed out in Ref. [60], the
temperature difference �T across the YIG/GGG sample is
smaller than the temperature difference �Tset measured by
the two thermometers, because the temperature drop in inter-
mediate layers introduced for any purpose can be very large
at low temperatures. In the case of the experiments reported
in Ref. [13], very thin GE-varnish layers were used to glue
the YIG sample on the heat bath and on the Peltier module
used to apply the temperature difference. Surprisingly, even
though the thickness of each varnish layer is three orders
of magnitude smaller than the one of the YIG/GGG sample,
the fact that the thermal conductivity of the sample increases
sharply at low temperatures results in the large drop in the

1
k

k
pq

FIG. 3. Illustration of magnon-phonon interaction process by
which phonons in the heat current generate a spin current.

ratio �T/�Tset. Thus, actually, the SSE at low temperatures,
instead of following the behavior as in Ref. [13], has a sharp
peak like the one reported in Ref. [60] for YIG. In the
next section we show that at low temperatures, the dominant
mechanism of the SSE is phonon drag, analogously to the
conventional thermoelectric Seebeck effect in semiconductor
silicon [98].

IV. PHONON DRAG MECHANISM FOR THE SPIN
SEEBECK EFFECT

As is well known, the thermal conductivity of insulators
is orders of magnitude larger at low temperatures than at
room temperature, and is dominated by the heat transport by
phonons [99]. Thus phonons in the heat current can generate
a spin current by means of the magnon-phonon interaction
processes. We consider here the process illustrated in Fig. 3,
in which a phonon with wave vector �qp in the heat current
interacts with a magnon in thermal equilibrium with wave
vector �k1, to generate another magnon �k by a three-boson
process conserving momentum and energy.

The probability per unit time for the number of phonons nq

and the number of magnons nk1 to decrease by one unit, and
the number of magnons nk to increase by one unit in this pro-
cess, calculated by Fermi’s “golden rule” with Hamiltonian
(16), is

Wnk→nk+1 = 2π

h̄2

∑
k1

(Vm−p)2[nk1nqp(nk + 1)]

× δ(ωk1 + ωqp − ωk ), (43)

where Vm–p is given by Eq. (17) and the sum runs only over
�k1 because of the momentum conservation relation �k1 + �qp =
�k. The reverse process by which the number of magnons �k
decreases by one unit is calculated in a similar manner, so that
the time rate of change of the phonon number is given by

dnk

dt
= Wnk→nk+1 − Wnk→nk−1. (44)

Thus we find that the rate of change for the number of
magnons in mode �k to increase by means of the three-boson
process is

dnk

dt
= 2π

h̄2

∑
k1

(Vm−p)2[nk1nqp(nk + 1)

− nk (nk1 + 1)(nqp + 1)]δ(ωk1 + ωqp − ωk ). (45)
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In thermal equilibrium dnk/dt = 0, so that we have the following relation for the thermal numbers:

n̄k1n̄qp(n̄k + 1) − (n̄k1 + 1)(n̄qp + 1)n̄k = 0. (46)

When there is a flow of heat or magnon current, the numbers of magnons and phonons are in excess of the thermal equilibrium
numbers, so that following [99] we write

nk1 → n̄k1 + δnk1, nk → n̄k + δnk, nqp → n̄qp + δnqp, (47)

so that Eq. (45) becomes

dnk

dt
= 2π

h̄2

∑
k1

(Vm−p)2[(n̄k1 + δnk1)(δnqp + n̄qp)(n̄k + δnk + 1) − (n̄k + δnk )(n̄k1 + δnk1 + 1)(δnqp + n̄qp + 1)]δ(ω), (48)

where δ(ω) denotes conservation of energy. One can show that Eq. (48) gives

dnk

dt
= 2π

h̄2

∑
k1

(Vm−p)2

[
− (n̄k1 + 1)

(n̄k + 1)
(n̄qp + 1)δnk + n̄k

n̄k1
(n̄qp + 1)δnk1 + (n̄k1 + 1)

n̄k

n̄qp

]
δ(ω). (49)

Now, since the magnon-phonon interaction is small, we
consider that the number of phonons in excess of equilibrium
is much larger than the perturbations in the magnon system,
so in Eq. (43) we neglect δnk1 and δnk in the presence of nqp.
Also, considering energy and momentum conservation, and
replacing the sum by an integral over the Brillouin zone in
the usual way, one can show that at low temperatures Eq. (49)
leads, approximately, to

dnk

dt
= Fqpδnqp, (50)

where

Fqp = γ b2
1q2

q

32MSρωqp

a3

(2π )2

×
∫

d3 k1(n̄k1 + 1)
n̄k1+qp

n̄qp
δ(ωk1 + ωqp − ωk1+qp).

(51)

Using this result in the time-dependent Boltzmann equa-
tion without external forces [98], we obtain

Fqpδnqp = ∂nk (�r)

∂t
+ �vk · ∇rnk (�r) + nk (�r) − n0

k

τk
. (52)

In steady state and considering only the phonon contribu-
tion to the magnon spin current, we have

nk (�r) − n0
k = Fqpδnqpτk . (53)

Using this result in Eq. (18), we obtain, for the phonon drag
magnonic spin-current density,

�Jz
S (y) = ŷ

h̄

(2π )3

∫
d3kvkyFqpδnqpτk . (54)

The goal now is to relate the phonon drag spin current to
the phonon thermal current,

�JQ = 1

V

∑
�qp

f (�qp, �r)εqp�vqp, (55)

where f (�qp, �r) is the phonon distribution function. From this
equation one derives [99] the well-known relation

�JQ = −Kth∇T, (56)

where Kth is the thermal conductivity. It can be shown that, at
low temperatures, the phonon thermal current is dominated by
phonons in a small width �qp in wave vector space, centered
in a wave number qp around 2 × 107 cm−1. Thus the phonon
current can be written approximately as

JQ ≈ Gqpδnqp, (57)

where

Gq = 1

2π2
q3

qp�qph̄v2
qp. (58)

Thus, with the relation (56), we have

δnqp = − Kth

Gqp
∇T . (59)

So, finally, the phonon drag spin current in Eq. (54) can be
written as

�JS (y) = −B
Fq

Gqp
Kth∇T, (60)

where

B = h̄

(2π )3

∫
d3kvkyτk . (61)

Equation (60) shows that the spin current produced by
the phonon drag is proportional to the thermal conductivity,
as revealed by the measurements of Iguchi et al. [60]. It
also shows that the phonon drag contribution vanishes if the
magnetoelastic interaction b1 is null, as expected. Using for
YIG the magnon dispersion relation (37), the parameter B in
Eq. (61) becomes

B = h̄

4π

ωZBk2
max

η0
Bη, (62)

where the coefficient

Bη =
∫ 1

0

sin(πq/2)

ηq(T )
q2dq (63)

is written in terms of dimensionless variables to be evaluated
numerically using the magnon relaxation rate in Eq. (42). For
the evaluation of the parameter Fqp, we use a well-known
expression for the δ function to write the integral in Eq. (51)
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FIG. 4. Contributions of the calculated temperature dependence
of the SSE voltage in YIG/Pt by the pure magnonic spin current
(dashed dark blue curve), phonon drag spin current (dashed red
curve), and the sum of the two (blue curve).

as ∫
d3 k1 f (k1)δ[g(k1)] =

∑
i

f (k1(i) )

|g′(k1(i) )| , (64)

where g′(k1(i) ) denotes the derivative of the function g(k1)
relative to k1 calculated at the root (i) of g(k1) = 0. With the
magnon dispersion relation in Eq. (37), and with the phonon
dispersion ωqp = vqp qp, the numerical calculation gives only
one root in the first Brillouin zone, so that

g′(k1) = πωZB

2km

[
sin

πk1

2km
− sin

π (qp + k1)

2km

]
. (65)

The phonon drag spin current as a function of temperature
is calculated with Eq. (60), using the integrals (63) and (64)
evaluated numerically and the experimentally measured ther-
mal conductivity for YIG reported by Iguchi et al. [60]. Since
Kth is measured at discrete temperatures from 10 to 300 K, the
integrals are calculated for the same temperatures of the data,
using the parameters for YIG given at the end of Sec. III and
ρ = 5.2 g/cm3, vpq = 7.21 × 105 cm/s (LA phonons), and
b1 = 3.5 × 106 erg/cm3. The values of �qp, qp, and η0 are
adjusted so that the peak value of the spin Seebeck voltage
VSSE agrees with the one measured by Iguchi et al. [60].
The contributions to VSSE/�T from the pure magnonic spin

current, from the phonon drag spin current and the sum of
them are shown in Fig. 4. The pure magnonic contribution
is calculated as in Sec. III using the value at T = 300 K as
measured in [60] without the correction in the temperature
difference. The sum of the magnonic and phonon drag spin
contributions is in very good agreement with the data reported
in [60]. Clearly, the phonon drag mechanism completely dom-
inates the SSE at low temperatures, where its contribution
is over two orders of magnitude larger than the magnonic
contribution.

V. CONCLUSIONS

In summary, we have presented a full theory for the spin
Seebeck effect in a FMI/NM bilayer under a thermal gradient
applied perpendicularly to the bilayer plane. We have shown
that the SSE voltage is made of two contributions, one due
to the pure magnonic spin current excited in the bulk of the
FMI layer by the thermal gradient, and another due to the
spin current generated by the phonon drag mechanism. At
room temperature the magnonic contribution is very impor-
tant. However, at low temperatures, the SSE is completely
dominated by a phonon drag mechanism, in which phonons
in the heat current generate a spin current by means of the
magnon-phonon interaction. The theory explains very well the
experimental observations of Iguchi et al. [60], demonstrating
that the SSE in yttrium iron garnet (YIG)/platinum structures
has a pronounced peak at low temperatures following the
behavior of the thermal conductivity in YIG.
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