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Role of positional disorder in fully textured ensembles of Ising-like dipoles
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We study by numerical simulation the magnetic order in ensembles of randomly packed magnetic spherical
particles which, induced by their uniaxial anisotropy in the strong coupling limit, behave as Ising dipoles. We
explore the role of the frozen disorder in the positions of the particles assuming a common fixed direction for
the easy axes of all spheres. We look at two types of spatially disordered configurations. In the first one we
consider isotropic positional distributions which can be obtained from the liquid state of the hard sphere fluid.
We derive the phase diagram in the T -� plane, where T is the temperature and � is the volume fraction. This
diagram exhibits long-range ferromagnetic order at low T for volume fractions above the threshold �c = 0.157
predicted by mean-field calculations. For � � �c a spin-glass phase forms with the same marginal behavior
found for other strongly disordered dipolar systems. The second type of spatial configurations we study are
anisotropic distributions that can be obtained by freezing a dipolar hard sphere liquid in its polarized state at
low temperature. This structural anisotropy enhances the ferromagnetic order present in isotropic hard sphere
configurations.
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I. INTRODUCTION

Advances in nanotechnology have permitted us to synthe-
size nanoparticles (NPs) of various sizes and shapes, with or
without nonmagnetic coating layers, and to create monodis-
perse systems of NPs with a certain control on their spatial
distribution [1]. Small enough NPs (with diameters of about
10–30 nm) have a single domain that behaves like a magnetic
dipole [2].

Furthermore, the internal structure of the NP gives rise to
the magnetocrystalline anisotropy energy (MAE) tending to
orient the dipoles along local easy axes. Under such a cir-
cumstance magnetic spin flips have a nonvanishing energetic
cost Ea [3,4]. For sufficiently dense packings, the interaction
energy Edd between nearby dipoles can be comparable to
Ea. For example, for compact packings of bare maghemite
nanoparticles the ratio Ea/Edd is approximately [5] Ea/Edd ≈
6. For such systems Edd can induce complex collective be-
havior endowing them with a rich phenomenology, mainly
at low temperature [4,6,7]. Indeed, the spatial variations of
the dipolar fields lead to geometric frustration, making these
systems rather sensitive to the relative positions and directions
of their dipoles. For example, dipoles placed in well-ordered
crystalline arrangements exhibit ferromagnetic (FM) or anti-
ferromagnetic order depending on the lattice geometry [8].

In the strong MAE limit the dipole of each NP points up or
down nearly parallel to its local easy axis, leading to a dipolar
Ising-like model [9] in which only Edd play a central role.
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The study of magnetic order in systems of magnetic NPs
is an active field of research [10,11]. Its interest ranges from
fundamental physics because of the need to understand the
collective effects of samples of NPs to their applications in a
broad class of technological problems like data storage [12]
and nanomedicine [13].

When the arrangements of NPs are obtained by freezing
the carrier fluid in colloidal suspensions of NPs [14] or by
compacting powders of granular solids [15], disorder both in
dipole orientations and in position results. This double disor-
der along with the geometric frustration inherent in dipolar
interactions may give rise to dipolar spin-glass behavior. This
has been observed experimentally in frozen ferrofluids [14,16]
and in pressed powders of NPs [6,15].

The role played by the orientational disorder (called tex-
turation) has been studied using Monte Carlo simulations in
crystalline lattices [17] and in random distributions [18]. In
both cases the magnetic order at low temperature changed
from FM to spin-glass (SG) as the orientational disorder in-
creased from textured (parallel axis dipoles) to nontextured
(random axis dipoles). The same has been found in non-
textured systems by using the ratio Ea/Edd as the disorder
parameter [19].

On the other hand, the role played by the disorder in
positions in systems of NPs is not completely understood.
Heisenberg dipoles with no local anisotropies placed in ran-
dom dense packings (RDPs) have been studied using Monte
Carlo simulations. Given that the dipoles can rotate freely,
the frozen disorder is only in positions and depends on the
fraction � of volume occupied by the NPs. Numerical simu-
lations find FM order for � � 0.49 and SG order otherwise
[20]. In the mean-field approach, Zhang and Widom found
FM order for � � 0.295 under the crude approximation of
g(r) = 1, where g(r) is the radial distribution function [21].
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This discrepancy seems to be due to the spatial correlations at
short distances for RDPs.

Reverting to systems of NPs, it must be noticed that the
local anisotropy in single-domain NPs is always nonzero. For
this reason, the only way to suppress orientational disorder
in such systems in order to explore only positional disor-
der effects is to consider textured systems. It was recently
found that the alignment of the easy axes reduces the dipolar
field acting on each NP for volume fractions of 0.3 � �

[22]. A certain texturation arises naturally in colloidal liquids
even in the absence of an external field. Even for moderate
values of the volume fraction (0.25 � � � 0.5), the dipolar
hard sphere (DHS) fluid polarizes for temperatures below the
ferromagnetic transition temperature, exhibiting anisotropic
short-range spatial correlations [23–25].

In this paper we investigate the magnetic order of systems
of textured dipoles as a function of the positional disorder in
RDPs. For this purpose we will use Ising dipoles that point
up and down along a common direction such that the struc-
tural disorder comes only from the spatial distribution. For
large volume fractions [18,26] previous numerical simulations
showed FM order. Instead, for dipolar crystals with strong
dilution SG order was observed [27]. We wish to clarify how
the degree of spatial disorder in RDPs replaces FM order with
SG order.

We study two types of spatially disordered systems of NPs.
First, we consider frozen distributions taken from the liquid
state of the hard sphere fluid, whose degree of disorder is
parametrized by �. Our aim is to obtain the phase diagram
in the T -� plane and investigate the nature of the low-
temperature phases. The second type of spatially disordered
systems studied in this paper are the distributions that arise
from freezing the DHS fluid. They are obtained by cooling to
a temperature Tf a fluid of the DHS with a moderate volume
fraction � below its ferromagnetic transition temperature,
which will be denoted by Tc(DHS,�). Apart from orienta-
tional order and spatial disorder, these spatial distributions
show a structural anisotropy that increases when Tf dimin-
ishes [25]. We wish to discover whether such anisotropic
configurations favor FM order in textured systems.

Given that we are interested in equilibrium properties,
we assume that the dynamics allow Ising dipoles to flip the
orientation in order to reach equilibrium. This is tantamount
to choosing a vanishing blocking temperature [3,4]. It is
worthwhile to mention that in systems with uniaxial finite
anisotropy Monte Carlo simulations indicate the existence
of an effective behavior similar to that of Ising dipoles for
Ea/Edd � 30 [19].

This paper is organized as follows. In Sec. II we present the
model and details of the Monte Carlo algorithm and introduce
the observables that will be measured. We present and discuss
our results in Sec. III. A summary and some concluding re-
marks are given in Sec. IV.

II. MODEL, METHOD, AND OBSERVABLES

A. Model

We study systems of N identical NPs whose dipoles stay
oriented along a common fixed direction â. They are labeled

with an index i = 1, . . . , N . Each NP can be viewed as a
sphere of diameter d . Its magnetic moment will be denoted
by �μi = μsîa, where si = ±1 and μ takes the same value
for all spheres. For si = +1 (−1) the dipole points parallel
(antiparallel) to â.

The N spheres are placed in frozen disordered configura-
tions in a cube of edge L. The volume fraction occupied by the
spheres is � = Nπ/6(d3/L3). We assume periodic boundary
conditions. The position of each particle remains fixed during
the simulations, and only the signs si evolve in time, assuming
that the dipoles are able to flip up and down along â.

The Hamiltonian of the system reads

H =
∑
i �= j

εd

(
d

ri j

)3(
1 − 3(̂a · �ri j )(̂a · �ri j )

r2
i j

)
sis j, (1)

where εd = μ0μ
2/(4πd3) is an energy and μ0 is the mag-

netic permeability in vacuum. �ri j is the position of dipole
j as viewed from dipole i, and ri j = ‖�ri j‖. Temperatures
will be given in units of εd/kB, where kB is the Boltzmann
constant.

We use the word “configuration” to denote a particular
realization of positional disorder. Mathematically, it is given
by the set of vectors �ri j , with i, j = 1, . . . , N , i �= j, and the
nonoverlapping constraint ri j > d to be plugged in (1).

We investigate systems of dipoles for two types of con-
figurations. On the one hand, we choose configurations of
hard spheres corresponding to their stable liquid state with
given volume fraction �. We consider values of � rang-
ing from diluted systems with � = 0.1 up to the freezing
point (� = 0.49). These configurations are obtained by using
the Lubachevsky-Stillinger algorithm [28–30], in which the
spheres, which are initially very small, are allowed to move
and collide while growing in size until they reach the desired
value of �. Their spatial correlations, due to steric effects, are
isotropic, being described by the radial distribution function
g(r). The amount of disorder of such configurations is a func-
tion of �.

The second type of configuration appears by freezing col-
loidal suspensions of NPs. In practice they are obtained from
equilibrium states of the DHS fluid model for low Tf in such a
way that the states correspond to the phase where the system
is polarized without crystalline order [23,24]. These config-
urations exhibit a large degree of spatial anisotropy which
is larger for lower Tf [25]. The degree of disorder of such
configurations is a function of � and Tf . We have chosen
two volume fractions, � = 0.262 and � = 0.45, with values
of the temperature Tf adequate to keep the configurations
homogeneous.

Following the usual notation in discussions on SG order,
we shall call “sample” any system of NPs after they are placed
in a specific distribution of fixed positions, that is, in a specific
configuration. Physical results follow by averaging over Ns

independent samples. These averages are crucial in systems
with strong frozen disorder, for which SG order is expected
and where sample-to-sample fluctuations are large. We used
about Ns = 1000 samples when FM order was present and at
least Ns = 4000 samples when SG order was present. For the
simulations reported in Sec. III B we averaged over Ns = 1000
samples for β f = 0 and over 250 for β f > 0.
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B. Method

The systems considered here are expected to enter a SG
phase in the case of strong frozen disorder at low T . As is
well known, SG phases are difficult to simulate due to the
presence of energy landscapes which are beset with barriers
and valleys. In order to overcome that difficulty, we used
the tempered Monte Carlo algorithm [31], which is specially
adapted to facilitate samples wandering through such rough
landscapes in an efficient way. More specifically, for each
sample we run in parallel n identical replicas at n different
temperatures Ti, i = 1, . . . , n. After applying 10 Metropolis
sweeps [32] to each replica, we exchange neighboring pairs
of replicas according to detailed balance. In order to reach
equilibrium within a reasonable amount of computer time,
we found it useful to choose the highest temperature Tn to
be Tn � 2 Tc and the lowest one T1 to be T1 � 0.5Tc, where
Tc is the expected transition temperature from the PM to the
ordered phase. We used an arithmetic distribution of tempera-
tures

Ti = T1 + (i − 1)�T, (2)

with �T = 0.05 and n ≈ 60 replicas. When necessary, we
added some additional temperatures with spacing �T =
0.025 for the low-temperature region 0.5Tc � T � 1.1Tc.
Only for the systems which are harder to equilibrate (this
occurs with N = 1728 and � � 0.18) do we use the inverse
linear distribution [33]

1

Ti
= 1

T1
+

(
1

Tn
− 1

T1

)
i − 1

n − 1
(3)

by choosing n = 70 and T1 ≈ 0.8 Tc. The thermal equilibra-
tion times t0 are estimated following the procedure described
in Ref. [34]. For the above list of temperatures we used
t0 = 106 Metropolis sweeps for equilibration and took thermal
averages for each given sample within the interval [t0, 2t0]. A
second average over Ns samples is needed to obtain physical
results. For an observable u, this double average will be de-
noted by 〈u〉.

The lattice volumes were cubes of edge L with periodic
conditions at the boundaries. The long-range nature of the
dipolar-dipolar interaction is treated using Ewald’s sums [35].
Details on the use of Ewald’s sums for dipolar systems are
given in Ref. [36]. We chose α = 4/L as the splitting parame-
ter and computed the sum in real space with a cutoff rc = L/2
and the sum in the reciprocal space with a cutoff kc = 10 [36].
Given that in the case of weak frozen disorder the systems
are expected to show FM order, we performed the Ewald
sums using the so-called conducting external conditions, with
surrounding permeability μ′ = ∞. This technique allows us
to avoid shape-dependent depolarizing effects [23,37].

C. Observables

The main goal of this work has been the determination of
the magnetic order as a function of the degree of disorder
in the positions of the particles. On general grounds it is
expected that any increase in disorder leads to a reduction
of the area occupied by FM order in the phase diagram and
an equivalent increase of the area corresponding to SG order.
To characterize both types of magnetic order we employed

several observables. The first is the specific heat

c ≡ 1

NT 2
[〈H2〉 > −〈H〉2], (4)

obtained from fluctuations of energy, where the energy is

e ≡ 〈H〉/N. (5)

Also, to distinguish FM order, we used the spontaneous mag-
netization

m ≡ 1

N

∑
i

si (6)

and evaluated its momenta mp = 〈|m|p〉 for p = 1, 2, 4 and,
from them, the magnetic susceptibility

χm ≡ N

kBT

(
m2 − m2

1

)
(7)

and the Binder cumulant

Bm ≡ 1

2

(
3 − m4

m2
2

)
, (8)

which permits us to extract the transition temperature between
the FM and paramagnetic (PM) phases.

To mark the onset of the SG phase, we evaluated the
Edwards-Anderson overlap parameter [38], defined as

q ≡ 1

N

∑
i

s(1)
i s(2)

i , (9)

for any given sample, where s(1)
i and s(2)

i are the signs of si

at site i of two replicas labeled (1) and (2) for that sample.
Each replica is allowed to evolve independently at the same
temperature. Like for m, we also measured the momenta qp ≡
〈|q|p〉 for p = 1, 2, 4 and, from them, the Binder cumulant

Bq ≡ 1

2

(
3 − q4

q2
2

)
. (10)

To identify the transition temperature between the PM and SG
phases we employed the so-called SG correlation length ξL,
which is given by

ξ 2
L ≡ 1

4 sin2(k/2)

(
〈q2〉

〈|q(�k)|2〉 − 1

)
, (11)

where q(�k) is

q(�k) ≡ 1

N

∑
j

s(1)
j s(2)

j ei�k·�r j , (12)

with �r j being the position of the jth NP, �k = (2π/L, 0, 0) and
k = ‖�k‖ = 2π/L [39].

Errors in the measurements of these quantities were calcu-
lated as the mean-square deviations of the sample-to-sample
fluctuations.

III. RESULTS

A. Phase diagram for isotropic HS-like configurations

In this section we investigate the magnetic order as a
function of the volume fraction � for frozen configurations
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FIG. 1. (a) Plots of the specific heat c versus T for volume
fraction � = 0.4. Symbols �, �, �, �, and • stand for N =
125, 216, 512, 1000, and 1728, respectively. (b) Same as in (a), but
for volume fraction � = 0.1.

obtained from equilibrium states of hard sphere fluids in the
range 0 < � � 0.49. � measures the degree of spatial disor-
der on such configurations. We will show that for decreasing
� (which means increasing disorder) SG order replaces the
FM order.

A first overview can be grasped from Figs. 1 and 2.
Figure 1(a) displays plots of the specific heat c vs T for
� = 0.4. The curves exhibit a marked lambda-shaped peak.
Their evident dependence on the number of NPs indicates the
presence of a singular point in the curve that corresponds to
N → ∞ at Tc ≈ 1.9. That singular behavior is expected in
PM-FM second-order transitions. Data are consistent with a
logarithmic divergence of c with N . Figure 1(b) shows the
plots obtained for � = 0.1. In contrast to the previous ones,
these plots are smooth and depend little on the sample size.
So there is no sign of any singular behavior. This is expected
in PM-SG transitions with strong structural disorder.

FIG. 2. (a) Plots of the magnetization m1 versus T for vol-
ume fraction � = 0.4. Symbols �, �, �, �, and • stand for
N = 125, 216, 512, 1000, and 1728, respectively. (b) Plots of the
magnetic susceptibility χm versus T for volume fraction � = 0.4.
Symbols are the same as in (a). (c) Same as (b), but for volume
fraction � = 0.1.

FIG. 3. (a) Plots of the magnetization m1 vs T for � = 0.18.
Symbols �, �, �, and ◦ stand for N = 216, 512, 1000, and 1728,
respectively. (b) Plots of the Binder cumulant of the magnetization
Bm vs T for � = 0.18. Symbols are the same as in (a).

FM order entails the presence of nonvanishing magnetiza-
tion m. Figure 2(a) displays m1 vs T for � = 0.4 at several
N . It shows that m1 tends to nonzero values for N → ∞
and low T , revealing the existence of strong FM order. The
curves plotted in Fig. 2(b) for the magnetic susceptibility χm

vs T confirm this conclusion because they show peaks that
become sharper for large N . An extrapolation of the positions
of the maxima of those peaks vs 1/N provides a value for the
transition temperature, Tc(� = 0.4) � 1.9(1), in agreement
with the estimated Tc obtained from the analysis of Fig. 1(a).
For T < Tc we find that χm does not diverge with N , a fact
that validates the above conclusions on FM order. All that
is in contrast to the results obtained for � = 0.1, shown in
Fig. 2(c), where we see how the values of χm increase with
N for low T . Data are consistent with the trend χm ∼ N p for
p ≈ 0.45 and T � 0.2. This behavior suggests the existence
of a SG phase.

Let us discuss now the threshold value of � at which the
FM order disappears. Mean-field calculations predict that FM
order persists for � � �c = π/20 ∼ 0.157 [21].

The plots in Fig. 3 show that the FM order persists at � =
0.18. The curves of m1 vs T in Fig. 3(a) indicate an increase
in magnetization with N at low T , although they also exhibit
relevant finite-size effects. The Binder parameter in Fig. 3(b)
allows us to determine the transition temperature within good
precision. In general this parameter tends to 1 for N → ∞ in
FM phases, while from the law of large numbers it follows
that in PM phases Bm → 0 as N increases. On the other hand,
since Bm is dimensionless, it must be independent of N at
the critical point. As a consequence, curves of Bm vs T for
different values of N cross at Tc for second-order transitions.
Instead, in the presence of an intermediate marginal phase
of quasi-long-range FM order, the curves do not cross but
join. Plots of Bm vs T for several N are shown in Fig. 3(b)
for � = 0.18. Those curves cross at a well-defined critical
temperature for N � 512 [40]. With similar results obtained
for � � 0.17, we can draw a line of transition between PM
and FM phases.

The corresponding plots for � = 0.14 are shown in Fig. 4.
The qualitatively different results illustrate the absence of FM
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FIG. 4. (a) Plots of the magnetization m1 vs T for � = 0.14.
Symbols �, �, �, and ◦ stand for N = 216, 512, 1000, and 1728,
respectively. (b) Plots of the Binder cumulant of the magnetization
Bm vs T for � = 0.18. Symbols are the same as in (a).

order at this value of �. The plots of the magnetization in
Fig. 4(a) show that m1 gradually decreases as N increases
for all T . The data for m1 at low temperature agree with
the algebraic decay m1 ∼ N p for p < 1/2; hence, a marginal
order is a priori not excluded. However, the plots of Bm vs T
from Fig. 4(b) show clearly that Bm vanishes for N → ∞ for
all T , and this means that the FM order is short range even
at low temperature. We obtained similar plots for all analyzed
values of � in the range � � 0.15, and this fact excludes FM
order.

It is then imperative to investigate whether at those values
of � the FM phase is replaced by SG order. For this purpose
we evaluate the overlap parameter q1 in Fig. 5. In Fig. 5(a)
we show plots of q1 vs T for � = 0.14. It is instructive to
compare these plots with those for m1 in Fig. 4(a) for the

FIG. 5. (a) Plots of the SG overlap parameter q1 vs T for � =
0.14. Symbols �, �, �, �, and ◦ stand for N = 125, 216, 512, 1000,
and 1728, respectively. (b) Log-log plots of q1 vs N for several
temperatures at � = 0.14. From top to bottom, �, �, �, �, �, ◦,
and • stand for T = 0.22, 0.27, 0.31, 0.37, 0.47, 0.57, and 0.96,
respectively. The arrow marks the data set corresponding to the SG-
PM transition temperature. The dashed line shows the N−1/2 decay
expected for a paramagnet.

FIG. 6. (a) Plots of the SG correlation length ξL/L vs T for � =
0.14. Symbols �, �, �, �, and ◦ stand for N = 125, 216, 512, 1000,
and 1728, respectively. (b) Plots of the SG correlation length 
L/L
vs T for � = 0.14. Symbols are the same as in (a).

same value of �. We notice that like for m1, the overlap q1

decreases when N increases for all temperatures. To determine
whether q1 tends to zero in the limit N → ∞, we show log-log
plots of q1 vs N in Fig. 5(b). Data in these plots are consistent
with the behavior q1 ∼ 1/N p at low temperatures, where p
is a T -dependent exponent. Thus, for example, at T = 0.31
we obtain p � 0.11. The expected behavior for a PM phase
is N−1/2, but we found it only at high temperature. These
properties could be due to the presence of SG with quasi-
long-range order at low T . To verify that we examine the
behaviors of Bq and ξL/L in terms of T . Recall that, indeed,
in the thermodynamic limit Bq → 1 when there is strong SG
order, becomes zero in the PM phase, and tends to an inter-
mediate value at critical points. A similar trend is expected
for dimensionless magnitudes like ξL/L with a caveat: in the
case of strong order, this quantity diverges as N1/2 instead of
going to 1. This makes the splaying out of curves for ξL/L
for different sizes at low temperatures more prominent than
for Bq, and the crossing points are clearer for second-order
transitions [39].

The curves Bq vs T for � = 0.14 shown in Fig. 6(a) merge
at T below a certain value Tsg � 0.31(2), rather than crossing.
The spread that those curves exhibit for T < Tsg becomes
almost zero for N � 512. Thus, Bq does not tend to 1 in
the thermodynamic limit. Then, the curves Bq collapse for
N → ∞ and T � Tsg, which is consistent with the algebraic
decay found for q1. The plots of ξL/L vs T in Fig. 6(b) exhibit
a similar behavior. All that emphasizes that SG order with
quasi-long-range order exists, which happens in other systems
with NPs and strong structural disorder.

The temperature Tsg that marks the transition between PM
and SG orders is a function of �, and for that reason it will be
represented as Tsg(�). The fact that the merging of different
curves is dominant over crossing makes the determination of
Tsg(�) less precise than for the PM-FM transition. In any case
Tsg(�) is quite smooth as a function of � for strong dilution.
For � = 0.1 we obtained Tsg/� = 1.9(1), in agreement with
the relation Tsg = x found in the limit of strong dilution for
systems of dipoles in crystalline simple cubic (SC) lattices
with a fraction x of occupied sites [27]. For a diluted system of
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FIG. 7. (a) Plots of the Binder cumulant Bm vs T for � = 0.16.
�, �, �, and ◦ stand for systems with N = 216, 512, 1000, and 1728
dipoles, respectively. (b) Plots of the Binder cumulant for the overlap
parameter Bq vs T for � = 0.16. Symbols are the same as in (a).

spheres with SC order, this relation reads Tsg/� = 1/�SC �
1.91, where �SC is the volume fraction for SC lattices.

As a last step we determine the low-temperature boundary
of the FM phase. Mean-field theory predicts the onset of FM
order for T = 0 at �c = 0.157. Let us examine first the data
obtained for � = 0.16. Plots of Bq vs T for various sizes are
shown in Fig. 7(b). We estimate that the curves cross at Tc ≈
0.44. For T < Tc we find (not shown) that q does not vanish in
the thermodynamic limit, a fact that points to the presence of
SG order. Contrarily, the curves of Bm vs T shown in Fig. 7(a)
merge at low temperatures. In particular, the curves for N =
1000 and N = 1177 fall on top of each other within the error
bars for T < Tc. This suggests that the transition line between
FM and SG lies at � ≈ 0.16 at low temperature.

This line of critical points can be recovered in a more
precise way with data obtained from simulations in the range
0.13 < � < 0.18. To this end, we prepare plots of Bm vs � at
different N along isotherms for T below the PM region. Fig-
ures 8(a) and 8(b) show the plots for the isotherm at T = 0.28

FIG. 8. (a) Plots of the Binder cumulant Bm vs � for T = 0.28.
�, �, ◦, and • stand for systems with N = 216, 512, 1000, and
1728 dipoles respectively. (b) The same as (a), but for temperature
T = 0.40.

FIG. 9. Phase diagram in the plane (T, �) for the fully textured
dipolar Ising model in random HS-like configurations. The ◦ sym-
bols stand for the PM-FM transition obtained from the Bm vs T plots.
The � symbols stand for the PM-SG transition obtained from the
Bq vs T plots. The � symbols represent the FM-SG transition and
follow from the Bm vs � plots. Error bars are smaller than the size of
these symbols. The dashed line indicates a mean-field calculation by
Zhang and Widom [21]. The horizontal red dashed line comes from
previous calculations for strongly diluted DIS in crystals.

and T = 0.4, respectively. Recall that Bm diminishes as N
increases in the SG phase, while in the FM phase Bm increases
with N . As shown in both panels, we find that the curves of
Bm vs � cross at the transition �c(T ). A very precise result
can be obtained if we have many values of � available. The
transition line �c(T ) is almost vertical at � = 0.160(5), in
good agreement the with mean-field approximation. We also
notice the well-defined separation in the curves above and
below the crossing point in Fig. 8. This detail rules out the
possibility of the presence of critical phases between FM and
SG in the region close to � � �c(T ).

The results in this section are gathered in the phase diagram
in Fig. 9, which shows the extension of the FM, SG, and PM
regions. They are separated by second-order transition lines.
The slope of the transition line at low density is nearly zero, so
that the ratio Tsg/� takes a fixed value, Tsg/� � 1.9. Mean-
field theory yields a good approximation of the boundary line
of the FM phase at low temperatures [21]. This approximation
is carried out by assuming fully random particle positions,
which is in contrast to the results obtained for systems of
dipoles with no local anisotropy [20], for which the onset
found at � = 0.49 coincides with the freezing point of the
hard sphere fluid. This onset depends on the details of the
radial distribution function for short distances [41]. We end
this discussion by noting that different from systems of Ising
dipoles with orientational disorder [18], we have found for the
systems studied in this paper no trace of reentrances or other
intermediate phases, which is clearly shown in Fig. 9.

B. FM order on anisotropic DHS fluidlike configurations

In this section we will describe the results obtained by
exploring the FM order of textured Ising dipoles placed in
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frozen DHS fluidlike distributions of particles. These posi-
tional distributions are taken from equilibrium configurations
of the DHS fluid at low temperatures Tf [25]. We consider
volume fractions in the range 0.25 � � � 0.5, for which the
DHS fluid is known to polarize below the transition tempera-
ture Tc(DHS,�) [23,24]. Within this interval of values of �

and for a wide range of temperatures Tf below Tc(DHS,�) the
equilibrium configurations for the DHS fluid exhibit some par-
tial alignment of the magnetic moments μ̂i along a common
direction and a certain degree of anisotropy in the positional
distribution. At the same time these fluidlike configurations
are still homogeneous and show the absence of crystalline
order [24]. It is this type of configurations that arises naturally
in colloidal suspensions of particles at low temperature.

Any of those equilibrium configurations is determined by
the positions �ri and the instantaneous orientations of the mag-
netic moments μ̂i of all particles, i = 1, . . . , N . At low Tf the
orientations exhibit nematic order along a preferred direction
â. In this case the configurations are said to be partially
textured.

As is customary when studying nematic order, the direction
â can be determined as the eigenvector related to the largest
eigenvalue of the so-called nematic tensor [37]

Q̄n = 1

2N

∑
i

(3μ̂iμ̂i − Ī ) . (13)

Thus, the degree of texturation can be quantified by the value
of the nematic order parameter λn. Similarly, the degree of
anisotropy in the disordered positional distribution can be as-
sessed by the structural nematic order parameter λs associated
with the tensor

Q̄s = 1

2Nnn

∑
nn

(3̂rnn̂rnn − Ī ), (14)

where r̂nn are the normalized relative positions r̂i j ≡ �ri j/ri j

between pairs of particles whose ri j distance is smaller than a
threshold value chosen to be rs = 1.2d and Nnn is the number
of such pairs [42]. λs is the largest eigenvalue of Q̄s and
measures the degree of alignment of the set of r̂nn along a
preferred direction.

The behavior of those eigenvalues was explored for � =
0.45 and � = 0.262 in Ref. [25]. Plots of λn and λs ver-
sus the inverse temperature β f = 1/Tf are given for � =
0.45 and N = 1177 in the inset of Fig. 10. The plateaus
found for β f � βc(DHS,�) = 4 with λs � λn � 0 indicate
that the configurations remain isotropic for temperatures
above the PM-FM transition [the notation βc(DHS,�) ≡
1/Tc(DHS,�) has been used]. In contrast, for β f � 4 both λn

and λs increase with β f , indicating that the double anisotropy
strengthens as temperature is lowered. For � = 0.262, where
βc(DHS,�) = 7.7, the behavior is qualitatively the same,
apart from the fact that chains of spheres seem to form at very
low temperature instead of the homogeneous configurations
observed for � = 0.45.

Up to now, we have described equilibrium DHS fluidlike
configurations at low T which exhibit partial texturation in the
orientations of the dipoles as well as structural anisotropy in
their positions [25]. However, given that this work is aimed at
the study of the role of frozen positional disorder, we proceed

FIG. 10. Plots of the magnetization m1 vs T for ensembles
of N = 1177 dipoles placed on anisotropic frozen configurations
obtained for � = 0.45 and the inverse freezing temperatures β f

indicated in the legend. The inset shows the structural λs and ori-
entational λn nematic order parameters for the DHS fluid versus the
inverse temperature β f for density � = 0.45 and N = 1177 (data
taken from Ref. [25]).

by studying fully textured systems of DHS fluidlike config-
urations in equilibrium. Once one of these configurations is
picked, i.e., once the sets of positions �ri and momenta μ̂i are
fixed throughout the lattice, the frozen textured distribution
is built by first computing the nematic tensor Q̄n and then
choosing the nematic director â of Q̄n as the common direction
along which all the Ising dipoles are placed.

The question now is how the remaining structural posi-
tional anisotropy in those systems affects the order at low T .
We do not expect to find any SG order for the volume fractions
considered here (0.25 � � � 0.5). Note, from the previous
section, that for � � 0.16 only FM order is expected at low
T even for isotropic configurations. Thus, by studying DHS
systems we intend to analyze whether the structural positional
anisotropy enhances the FM order already present in isotropic
hard sphere (HS) configurations.

Curves of magnetization m1 vs T are shown in Fig. 10 for
� = 0.45 and N = 1177 for various values of β f = 1/Tf . The
system at low temperature is in a FM phase even for β f = 0
in the absence of anisotropy, in agreement with the previous
section. The result for β f � βc(DHS,�) � 4 is practically
the same as that for β f = 0. Only for β f > 4 do we see the
curves of magnetization move rightwards as β f increases, a
fact that indicates that the increase in anisotropy favors FM
order. The susceptibility χm vs T curves shown in Fig. 11 ex-
hibit peaks which are typical for ferromagnets. The positions
of those peaks for β f > 4 shift to the right as β f increases,
indicating that the PM-FM transition temperature Tc increases
with the anisotropy.

A precise determination of Tc can be obtained from the
crossing points of the Binder parameter vs T for different
sizes, as shown in Fig. 12. The inset shows the transition tem-
perature Tc vs β f for � = 0.45. Figure 12 should be compared
with the inset of Fig. 10. We can appreciate that Tc increases
with β f only for β f > βc(DHS,�) � 4 when the structural
anisotropy quantified by λs increases. It is worth mentioning
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FIG. 11. Plots of the susceptibility χm vs T for ensembles of N =
1177 dipoles placed on anisotropic frozen configurations obtained
for � = 0.45 and the inverse freezing temperatures β f indicated in
the legend.

that for β f � 4 the values of Tc obtained here for fully textured
systems along the nematic director â practically coincide with
the values of Tc found for ensembles of Ising dipoles placed
on the same frozen configurations {�ri} but point up or down
along the orientations {μ̂i} of the original DHS configurations
[25]. This suggests that the procedure used in this work for
imposing a common direction â (obtained from the set of
values μ̂i) to build fully textured samples keeps all the rele-
vant information for the FM order induced by the structural
anisotropy on positions. In other words, the fluctuations of the
Ising axes around the mean value â play only a marginal role.

For the volume fraction � = 0.262 similar results are ob-
tained. Figure 13 exhibits curves of m1 and χm vs T for β f = 0
and β f = 8.5 [a value larger than βc(DHS,�) = 7.7]. Both

FIG. 12. (a) Plots of Bm vs T for systems of N dipoles placed on
anisotropic frozen configurations obtained for � = 0.45 and given
freezing temperatures β f . �, •, and � stand for β f = 5.71 and sys-
tem sizes N = 453, 758, and 1177 respectively. ◦, �, �, and � stand
for β f = 0 and N = 125, 216, 512, and 1000, respectively. The solid
lines are guides to the eye. The inset shows the PM-FM transition
temperature Tc vs β f for volume fraction � = 0.45.

FIG. 13. (a) Plots of the magnetization m1 vs T for ensembles
of N = 1000 dipoles placed on anisotropic frozen configurations
obtained for � = 0.262. Symbols ◦ and � stand for β f = 0 and 8.5,
respectively. (b) Plots of the susceptibility χm vs T for ensembles of
N = 1000 for � = 0.262. Symbols are the same as in (a).

the m1 and χm curves move to the right as β f is increased,
indicating again that the presence of structural anisotropy
favors FM order. However, it can be noticed that for very
low temperatures the magnetization m1 for β f = 8.5 is lower
than for β f = 0. This fact can be related to the formation of
inhomogeneities in the DHS fluid for low Tf [24,25].

IV. CONCLUSIONS

We studied, using Monte Carlo simulations, the effect of
positional disorder on the collective properties of fully tex-
tured systems of identical magnetic nanospheres that behave
as Ising dipoles along common easy axes.

We first studied frozen isotropic systems of hard spheres
obtained along the stable liquid branch with volume fraction
� ranging from low values up to the freezing point (� �
0.49). By analyzing the phase diagram on the T -� plane, we
found a low-temperature ferromagnetic phase for � � �o =
0.160(5), in good agreement with mean-field calculations that
assume complete randomness in positions. This phase exhibits
strong long-range order. For � < �o this ferromagnetic phase
disappears, giving rise to a spin-glass phase for tempera-
tures below Tsg(�). For strong dilution we found Tsg(�)/� =
1.9(1). The nature of the dipolar spin-glass phase is similar to
the one observed in other systems of Ising dipoles with strong
frozen disorder. Plots of Binder cumulants vs � allowed us to
obtain the transition line between the ferromagnetic and spin-
glass phases. We found neither an appreciable reentrance nor
an intermediate region with quasi-long-range ferromagnetic
between the FM and SG phases.

We also studied anisotropic spatial systems for � = 0.45
and � = 0.262. They were obtained by freezing the liquid
state of the dipolar hard sphere fluid in its polarized state
at sufficiently low temperatures Tf . Such systems develop
some texturation as well as anisotropic spatial correlations
that increase as Tf is decreased. The ferromagnetic order
of parallel dipoles placed on such configurations along their
nematic director is enhanced as Tf decreases.
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