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Enhancement of Zener tunneling rate via electron-hole attraction
within a time-dependent quasi-Hartree-Fock method
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The tunneling process, a prototypical phenomenon of nonperturbative dynamics, is a natural consequence
of photocarrier generation in materials irradiated by a strong laser. Common treatments for Zener tunneling
are based on a one-body problem with a field-free electronic structure. In the literature [Ikemachi et al., Phys.
Rev. A 98, 023415 (2018)], the characteristic of gap shrinking or excitation can occur due to the electron-
hole interaction for slow and strong time-varying electric fields. We have developed a theoretical framework
called the quasi-Hartree-Fock (qHF) method to enable a more flexible imitation of the electronic structures
and electron-hole attraction strength of materials compared with the original Hartree-Fock method. In the qHF
framework, the band gap, reduced effective mass, and electron-hole interaction strength can be independently
selected to reproduce common crystals. In this paper, we investigate the effect of electron-hole attraction on
Zener tunneling subjected to a DC electric field for four different systems using the qHF method. Our findings
demonstrate that the electron-hole attraction promotes the tunneling rates in all four material systems assumed
as examples. Specifically, systems that have a strong electron-hole interaction show a few factor enhancements
for tunneling rates under DC fields, while systems with a weak interaction show higher enhancements of a few
tens of percent.
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I. INTRODUCTION

Recent progress with strong coherent light source technol-
ogy has enabled the application of a transient V/nm scale
strong field to materials only on the femtosecond time scale.
Materials under a strong and short light field exhibit ex-
tremely nonlinear responses to the field [1–5] because the field
strength is comparable to the electric fields felt by the valence
electrons in the materials. Such a strong light field excites pho-
tocarriers even in insulators with off-resonant photons, which
undergo ablation and permanent damage due to their nonlin-
ear responses [6–8]. When a strong field is applied to vapor,
it results in one of the most symbolic phenomena, namely,
high-order harmonic generation, in which three steps (field
ionization of an electron, electron acceleration by the field,
and recombination to the parent ion) govern the mechanism
[9]. The number of excited electrons is one of the most im-
portant physical quantities of the material exposed to a strong
field. According to Keldysh’s theory [10], when a strong field
makes the tunneling ionization faster than the time scale of the
electric field oscillation, i.e., the Keldysh parameter γ < 1,
the optical absorption rate is explained by the ionization due
to tunneling rather than that due to multiphoton excitation.

The correlation between the excited electron and the hole
corresponds to a local electric field of the same order of
magnitude as that of a strong optical pulse. The electron-hole
(e-h) interactions are pronounced by the formation of exci-
tons, which play an important role in linear optical absorption
processes, especially in systems with low dielectric constants,
with low-dimensional structures, and at low temperatures. The
research field of two-dimensional materials has progressed

in the past few years [11], where exciton binding energy is
at the sub-eV level well above room temperature. Material-
dependent excitons are well described by the Bethe-Salpeter
equation [12–14] through the dielectric function based on
an atomistic quantum mechanical description. The size of
the exciton ranges from the subnanometer level to a few
nanometers, and its binding energy is from meV to sub-eV.
The corresponding field strength can be up to the order of
V/nm for tightly bound excitons. While this field strength is
comparable to the typical strength of nonlinear optics, the role
of exciton existence in nonlinear optical excitation has not yet
been investigated.

In rare cases, however, the effects of e-h interaction on
the Zener tunneling process [15] have been investigated. The
field-induced tunneling property of electrons has been studied
mainly in quantum wells [16–18], where theoretical treat-
ments are based on the assumption of rigid energy bands.
The Zener tunneling dynamics of atoms in optical lattices also
have been investigated mainly within the independent-particle
approximation [19–22]. A mean-field treatment of the inter-
atomic potential has been reported [23], but no direct clue was
obtained for the e-h effect on the Zener tunneling because the
focus was on bosonic systems and contact interaction rather
than fermionic systems and long-range interaction. The semi-
conductor Bloch equation (SBE) [24,25] and time-dependent
Hartree-Fock (TD-HF) method are the theoretical frameworks
to address the effects of e-h on the Zener tunneling. For
example, Garg et al. reported the prominent enhancement of
photoradiation intensity (i.e., the power spectrum of dipole
acceleration) in α-quartz by increasing the e-h interaction
strength through SBE simulations [26], where maximally
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1.3 eV exciton binding energy is assumed. Ikemachi et al.
reported a similar enhancement for photoradiation by means
of TD-HF calculations for a one-dimensional model [27] in
which the exciton binding energy is 3.8 eV. Both investiga-
tions did not make an explicit argument for the number of
excited electrons, but for photoradiation enhancement by e-h
interaction.

Parts of the study by Ikemachi et al. [27] indicated that
the e-h interaction promotes e-h pair creation, although direct
numerical proof was not given. To clarify the background of
our current investigation, we briefly review the related part of
the study. In their work, the TD-HF method and the frozen
TD-HF method, where the one-body Hamiltonian is fixed to
the initial self-consistent solution, are introduced to calculate
high-order harmonic generation for a pulsed electric field.
While time-frequency analysis of the frozen TD-HF pho-
toradiation shows good agreement with independent e-h pair
motion, the full TD-HF method incorporating e-h interaction
shows a higher-frequency emission than the frozen TD-HF
method. This higher-frequency component invokes the e-h
pair creation promoted by the e-h interaction. While the
TD-HF method is the concrete theoretical foundation of the
fermionic many-body theory, it is unsuitable for simulating
realistic materials’ nonperturbative dynamics. A fully con-
verged real-time solution, including a long-range exchange
interaction for a given periodic potential, is still limited to
spatially one-dimensional systems [27,28] because of the high
computational cost. It is hard for the electronic structures
and exciton binding energy to imitate common solids (e.g.,
GaAs and α-quartz) when we utilize the TD-HF framework,
especially with one-dimensional space. Therefore most of the
TD-HF simulations based on the spatial grid representation
have been limited to artificial or quite simple systems such as
spatially one-dimensional atomic arrays [27], atoms, or small
molecules that contain a few valence electrons.

In light of this background, we have developed a theo-
retical framework that enables the flexible incorporation of
e-h interactions for electron quantum dynamics under a time-
dependent external field. The e-h interaction is included at
a mean-field level in a quasi-Hartree-Fock (qHF) treatment
on top of the electronic structure of an independent elec-
tron system (IES). Our qHF provides a simple protocol to
obtain a band gap and reduced effective mass values for
an IES by choosing a one-body potential. The strength of
the e-h interaction is independently selected to reproduce an
expected exciton binding energy without affecting the IES
in the qHF framework. We perform explicit time evolution
of the quantum system under a time-dependent electric field
while assuming a DC field as the electric field that induces
the tunneling process. This assumption is reasonable when γ

is sufficiently smaller than 1, such as the condition (γ = 0.3
with 2.5 V/nm) discussed in Ikemachi et al.’s research [27].
The tunneling rates are estimated from the increasing rate
of the number of excited electrons obtained by the time-
dependent simulation. We investigate the tunneling rate of
electrons under a strong electric field, particularly focusing
on the dependence on the electronic structures and the e-h
interaction strength.

Section II of this paper presents our theoretical frame-
work. Specifically, we introduce a time-dependent mean-field

theoretical framework for the system consisting of interacting
electrons, in which we can flexibly set an arbitrary band gap
and an effective mass that determine quasiparticle spectra. In
Sec. III, we introduce the details of the simulation protocol, in-
cluding the complete protocols for numerical simulations and
the connection of our tunneling problem. Section IV shows
the results of the simulation assuming four different material
systems. In Sec. V, we present a discussion, and conclusions
are given in Sec. VI. Atomic units are used throughout this
paper, where the elementary charge e, electron mass me, and
Dirac constant h̄ are set to 1.

II. THEORETICAL FRAMEWORK

We derive the equation of motion of the time-dependent
quasi-Hartree-Fock (TD-qHF) method from the original TD-
HF method. An arbitrary one-body potential can be chosen
for the ground state electronic structure within the TD-qHF
framework. The potential is determined such that the elec-
tronic structure, precisely, the band gap and the reduced
effective mass, imitates common materials. The strength of
the e-h interaction is independently tuned to give the correct
exciton binding energy of the same material. This independent
determination of the electronic structure and exciton binding
energy is not realized in the original TD-HF framework.

We present the theoretical foundation of the TD-qHF
method in terms of three types of properties: (a) The inter-
action among electrons does not change the electronic ground
state as long as the applied field is zero, (b) the energy to be
conserved without the applied field can be defined in terms of
orbital functions, and (c) there is an explicit orbital set that
satisfies the conditions of energy minima. These inspections
manifest that our initial wave function is the stable point of the
total energy and has almost the same theoretical foundation as
the TD-HF method.

A. Time-dependent quasi-Hartree-Fock method

We begin with the spatially one-dimensional TD-HF (1D-
TD-HF) equation based on the Born–von Kármán (BvK)
boundary condition:

i
∂

∂t
ψi,k (x, t ) =

[
1

2

(
−i

∂

∂x
+ A(t )

)2

+ vext (x)

]
ψi,k (x, t )

+ v̂MF[ρ]ψi,k (x, t ), (1)

v̂MF[ρ]ψi,k (x, t ) =
∫ Nka

0
dx′ρ(x′, x′, t )w(x − x′)ψi,k (x, t )

− 1

2

∫ Nka

0
dx′ρ(x, x′, t )w(x − x′)ψi,k (x′, t ),

(2)

ρ(x, x′; t ) = 2
∑
i,k

ψi,k (x, t )ψ∗
i,k (x′, t ), (3)

ψi,k (x, t ) = 1√
Nk

eikxuik (x, t ), (4)

where a, vext, w(x − x′), and Nk are the lattice constant, the
external potential, the modeled Coulombic interaction be-
tween electrons, and the number of primitive cells for the
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simulation box. The summation in the density matrix ρ is
taken over occupied bands. The number of primitive cells Nk

should be as high as possible to obtain well-converged results.
The external potential has the lattice periodicity vext (x + a) =
vext (x). The crystal momentum k has the discretized values of
0, 2π/(aNk ), 4π/(aNk ), . . . , 2(Nk − 1)π/(aNk ). The external
potential is supposed to be the Coulombic attraction potential
from the ion array. The orbital function ψk is orthonormalized
in the simulation cell as

∫ Nka
0 dx ψ∗

i,k (x, t )ψ j,k′ (x, t ) = δi, jδk,k′ ,
while the lattice periodic part (LPP) uik is orthonormalized
in the unit cell. Here, the spin-restricted wave function for the
Slater determinant is assumed, i.e., up- and down-spin orbitals
are the same spatial orbital. A k-resolved density matrix is a
useful intermediate variable, as

ρk (x, x′; t ) = 2
∑

i

uik (x, t )u∗
ik (x′, t ), (5)

with ρ(t ) = 1
Nk

∑
k eikxρk (t )e−ikx.

The mean-field (MF) part (2) in the TD-HF equation has
a linear dependence on the density matrix ρ. For an arbitrary
density matrix ρ0, the mean-field part has the following rela-
tion:

v̂MF[ρ]ψi,k (x, t ) = v̂MF[ρ0]ψi,k (x, t ) + v̂MF[ρ − ρ0]ψi,k (x, t ).

(6)

Now, we introduce an approximation to the treatment of the
Hamiltonian, as

{vext (x) + v̂MF[ρ0]}ψi,k (x, t ) → v(x)ψi,k (x, t ), (7)

ρ0(x, x′; t ) = e+iA(t )x

⎛
⎝2

∑
i,k

φi,k (x)φ∗
i,k (x′)

⎞
⎠e−iA(t )x′

, (8)

[
1

2

(
−i

∂

∂x
+ k

)2

+ v(x)

]
vi,k (x) = εi,kvi,k (x), (9)

φi,k (x) = 1√
Nk

eikxvik (x), (10)

ψi,k (x, t = 0) = φi,k (x), (11)

where the effective one-body potential is assumed to be the
same lattice periodicity v(x + a) = v(x). Note that ρ0 para-
metrically depends on the time due to the velocity gauge
choice. The mean-field potential at the Hartree-Fock ground
state is replaced by the spatially local potential v. We solve
the following time-dependent equation of motion rather than
the original time-dependent HF equation (1):

i
∂

∂t
ψi,k (x, t ) =

[
1

2

(
−i

∂

∂x
+ A(t )

)2

+ v(x)

]
ψi,k (x, t )

+ v̂MF[ρ − ρ0]ψi,k (x, t ), (12)

called the TD-qHF equation.
The beauty of the TD-qHF equation is that we can reduce

it to an equation of motion for the IES by omitting the MF
part from Eq. (17). The dynamics of the IES, as determined
by the Hamiltonian [−i∂/∂x + A(t )]2/2 + v(x), are regarded
as reference dynamics. We can solely change the influence

of the electron-hole interaction on the dynamics by changing
the strength of the MF term. We can also prepare an arbitrary
potential for v to create an expected electronic structure to
simulate different materials, from ideal toy crystals to com-
mon crystals. This helpful nature is impossible for the original
TD-HF equation because the modeled Coulombic interaction
w affects the dynamics as well as the quasiparticle spectra of
the reference system.

Here, let us explain the relation between the TD-qHF
equation and the famous SBE [24,25]. The TD-qHF equa-
tion is equivalent to the SBE when the LPP eigenfunction of
− 1

2
∂2

∂x2 + v(x) does not depend on k and the short-range part
of the Coulombic potential is neglected (see Appendix B).
TD-qHF is therefore applicable to systems that have tightly
bound excitons (e.g., Frenkel exciton). Coulomb matrix ele-
ments between pairwise orbitals are more naturally introduced
than when using the SBE. Moreover, the TD-qHF method via
Eq. (12) is free from the phase determination of the dipole
matrix element [29,30] unless the Houston basis is introduced.

A representation of the physical picture embedded in the
TD-qHF method is depicted in Fig. 1. All k points of valence
(conduction) bands are fully occupied (unoccupied) initially
because our system is a band insulator. The off-diagonal
component of the density matrix ρcv = 〈vv,k+A(t )|ρk|vc,k+A(t )〉
appears when an e-h pair is created. The Landau-Zener (LZ)
model provides a good description when only two diabatic
components dominate the electronic structure around the gap
narrowest point (GNP) (k = π/a in this case), as discussed
in Sec. III C, where k + A(t ) is the time-dependent parameter
of the LZ model. Through this process, the population in the
conduction (valence) band increases (decreases), as indicated
by the solid circle (open circle) in Fig. 1(a). The e-h pairs
on different k points are totally independent of the IES by
definition. When a dynamic starting from a � point is drawn,
different k points reveal the same dynamic. This bifurcation
process starting from a k point alternately happens in time
because an A(t ) ∼ −EDCt shape is assumed for the DC field,
and the Brillouin zone (BZ) has periodicity in the reciprocal
space. By including an e-h interaction, density-matrix compo-
nents in different k points interact with each other by means
of the Coulomb interaction w. When we consider only the
long-range part of the Coulomb potential written as wq, an
additional field −∑

q wqρ
k−q
vc appears in the equation of mo-

tion for ρk
vc, as described by Eq. (B16). Note that the Coulomb

potential w in the TD-qHF method couples not only ρk
vc and

ρ
k−q
vc but also other density-matrix components, as discussed

in Sec. III and Appendix B.

B. Theoretical foundation of the TD-qHF method

We need to examine this equation of motion (12) to deter-
mine whether or not the expected conditions are satisfied. The
first point is to see whether the arbitrary one-body observable∑

ik〈ψik (t )|ô|ψik (t )〉 is a constant in time without the field.
This condition is confirmed by the fact that a trial solution
ψ̃i,k (x, t ) = e−iεi,ktφi,k (x) is the solution of Eq. (12) without
the field, since v̂MF vanishes when ρ from the trial solution is
equivalent to ρ0. The solution does not change the observables
of any one-body operator. Therefore v̂MF does not change the
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FIG. 1. Schematic image of tunneling ionization for (a) an IES and (b) the TD-qHF method on top of an IES. The band structure for
the Hamiltonian of the 1D-TD-HF system as an example is denoted by solid curves. The A-field shape is shown in the inset. Nonadiabatic
transition occurs when an orbital in k space passes the narrowest point of the gap due to the intraband motion via the A field, where diabatic
levels are drawn as dashed lines.

Slater determinant composed by ψi,k as long as we set the
proper initial condition for ψik when the field is absent.

For the second point, we need to see if there is an energy
expression as a function of ψik . This energy expression should

give a constant value for an arbitrary ψik , not necessarily
φi,k under the initial condition, obeying Eq. (12) as long as
the external field is zero. A possible energy functional is
given as

E [ψ,ψ∗] = 2
∑
i,k

∫
dxψ∗

i,k (x, t )

[
1

2

(
−i

∂

∂x
+ A(t )

)2

+ v(x)

]
ψi,k (x, t )

+
∑
i,k

∫
dx[ψ∗

i,k (x, t )v̂MF[ρ − ρ0]ψi,k (x, t ) − e−iA(t )xφ∗
i,k (x)v̂MF[ρ − ρ0]φi,k (x)e+iA(t )x]. (13)

We can show that the equation of motion (12) is obtained as the functional derivative of the energy with respect to the orbital, as

i
∂

∂t
ψi,k (x, t ) = 1

2

δE

δψ∗
i,k (x, t )

,

(14)

−i
∂

∂t
ψ∗

i,k (x, t ) = 1

2

δE

δψi,k (x, t )
,

where half of the prefactor in the energy functional derivative reflects that the total energy is for both spins and the orbital is for
each spin. These relations ensure that the energy (13) is conserved in a time-dependent manner as long as the external field A is
a constant in time even for orbitals other than the initial one, because of

d

dt
E [ψ,ψ∗] =

∑
i,k

∫
dx

[
∂ψ∗

i,k (x, t )

∂t

δE

δψ∗
i,k (x, t )

+ δE

δψi,k (x, t )

∂ψi,k (x, t )

∂t

]

+ 2
dA

dt

∑
i,k

∫
dxψ∗

i,k (x, t )

[
−i

∂

∂x
+ A(t )

]
ψi,k (x, t ) − 1

2

∫∫
dxdx′ ∂ρ0(x, x′; t )

∂t
w(x′, x)ρ(x′, x; t )

= dA

dt

〈
−i

∂

∂x
+ A(t )

〉
− 1

2

〈
∂ρ0(t )

∂t
w

〉
. (15)

Finally, we determine the orbital set that gives the energy minima for the energy functional (13) without the field.
The stationary condition of energy with respect to orthonormalized orbitals is given by the condition that δ(E −∑

nm,k′ λnm,k〈ψ̃n,k′ |ψ̃m,k′ 〉)/δψ̃i,k (x) = 0, where λnm,k is the Lagrange multiplier to ensure the orthogonality. Using the standard
procedure to derive the Hartree-Fock equation, this condition leads to nonlinear eigenvalue equations, as

ε̃i,kψ̃i,k (x) =
[
−1

2

∂2

∂x2
+ v(x) + v̂MF[ρ̃ − ρ0]

]
ψ̃i,k (x),

(16)
ρ̃(x, x′) = 2

∑
i,k

ψ̃i,k (x)ψ̃∗
i,k (x′).
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In general, the eigenvector ψik should be determined in the
self-consistent field manner, as in the original Hartree-Fock
equation. Here, a trivial solution of Eq. (16) is achieved
by ψ̃i,k = φi,k , ρ̃ = ρ0, and ε̃i,k = εi,k . Therefore the initial
condition of the TD-qHF equation φi,k gives a variationally
stationary value of the energy functional (13).

III. SIMULATION SCHEME

We introduce an explicit discretization scheme for the spa-
tial coordinate to solve Eq. (12). The LPP is expressed as
the sum of plane waves that have reciprocal lattice momenta.
Whole ingredients in the equation of motion are written as
matrix elements evaluated as the reciprocal lattice momen-
tum. A predictor-corrector trick in time propagation is needed
to obtain a reasonable solution when the e-h interaction is
switched on.

Then, we derive an explicit formula to determine the one-
body potential. The band gap and the reduced effective mass
are analytically determined by the potential amplitude and
the lattice constant within the degenerated perturbation theory
among two energy branches [31]. The time-dependent prob-
lem of the two-band assumption results in mapping to the
Landau-Zener-type (LZ-type) Hamiltonian when we neglect
the e-h interaction.

We extract the tunneling rates from a real-time solution
of the TD-qHF equation. We solve the time-dependent equa-
tion of motion under a time-dependent field where the electric
field is kept constant after a slow ramp-up field. The number of
excited electrons (NEE) is evaluated by the explicit projection
of the time-dependent wave function onto conduction bands.
The tunneling rate is obtained as the slope of the NEE as a
function of time, which is validated as long as the slope is
constant in time. Compared with a stationary assumption to
obtain the rate, where different assumptions lead to different
values [21], this tunneling rate evaluation is the most direct
and concrete way to obtain the tunneling rate for a given
system.

A. Discretization for numerical simulation

We here derive the exact expression of the LPP function in
the TD-qHF method. We utilize plane wave expansion for the
LPP, as ui,k (x, t ) = ∑

G eiGxui,k (G, t ), with G = 2πn/a and
n = 0,±1,±2, . . . . The equation of motion for the LPP is
given as

i
d

dt
ui,k (G, t ) = 1

2
([G + k + A(t )]2ui,k (G, t )

+
∑

G′
vG−G′ui,k (G′, t ) +

∑
G′

vk
MF,G,G′ [ρ − ρ0]

× ui,k (G′, t ), (17)

vk
MF,G,G′ [(t )] = Nkawq=0(G − G′)η(G − G′, t )

− Nka

2

∑
q,H

wq(H )k−q(G − H, G′ − H ; t ),

(18)

where the relevant Fourier components are given as

wk (G) = 1

Nka

∫ Nka

0
dx e−i(k+G)xw(x), (19)

vG = 1

a

∫ a

0
dx e−iGxv(x), (20)

η(G, t ) = 1

a

∫ a

0
dx e−iGx(x, x; t ), (21)

ρk (G, G′; t ) = 2
∑

i

uik (G, t )u∗
ik (G′, t ), (22)

ρk
0 (G, G′; t ) 	 2

∑
i

vi,k+A(t )(G)v∗
i,k+A(t )(G

′). (23)

The approximately equal sign in the last formula comes from
the following approximation:

1

Nka

∫ Nka

0
dx eiκx = 1

iNkaα
(eiκNka − 1)

Nka→∞−→ δκ,0. (24)

The spatial integration (24) becomes exact when κ is on a k
grid. Thus the large-Nk limit ensures that this approximation
becomes accurate because we can find any k + A(t ) from
the infinitely dense k grids. The finite spatial integration for
wk (G) leads to a spatial periodicity of the real-space counter-
part: wNk (x) = ∑

k,G wk (G)ei(k+G)x, wNk (x + Nka) = wNk (x).
The real-space counterpart wNk (x) becomes the original w(x)
when we take a large-Nk limit. The reciprocal grids for G and k
are dense enough to obtain well-converged results. The shifted
eigenvector vi,k+A(t )(G) is constructed by explicit diagonal-
ization each time step from the time-dependent Hamiltonian,
1
2 [G + k + A(t )]2δG,G′ + vG−G′ .

B. Time-evolution protocol

We utilize a unitary matrix as the propagator of the orbital
function, as

ui,k (G, t + �t ) =
∑

G′
UG,G′ (hk )ui,k (G′, t ), (25)

UG,G′ (hk ) =
〈

G

∣∣∣∣∣
∑

n

e−ihk�t

∣∣∣∣∣G′
〉
, (26)

where hk is a k-dependent Hermitian matrix (similar to the
Hamiltonian). The unitary matrix is obtained from an explicit
diagonalization of hk . The unitary nature guarantees norm
conservation in the time propagation regardless of hk choice.

We utilize a predictor-corrector (PC) scheme for the selec-
tion of hk [32]:

hk = 1
2

{
hk

qHF[ρ(t )](t ) + hk
qHF[ρ p](t + �t )

}
, (27)

hk
qHF[](t ) = 1

2 [G + k + A(t )]2δG,G′

+ vG−G′ + vk
MF,G,G′ [ − ρ0], (28)

where ρ0 is constructed with A(t ). ρ p is the predictor con-
structed by

up
i,k (G) =

∑
G′

UG,G′ (hk
qHF[ρ(t )](t ))ui,k (G′, t ),

ρ p = 2

Nk

∑
i

e+ikxup
i,k (x)up∗

i,k (x′)e−ikx′
. (29)
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Thus we need to perform unitary matrix construction and the
matrix-vector operation twice to move one step forward.

This PC scheme for the unitary matrix construction is
mandatory for the qHF case, namely, the case with the
electron-hole interaction. Results without a PC lead to un-
physical behavior even for a short time step �t = 0.02 a.u. =
0.484 as when a large α is used in Eq. (39), although unitarity
in the time propagation is guaranteed by the construction. We
confirm that �t = 0.2 is usually small enough for our systems
when we use the PC scheme.

C. Band gap, reduced mass, and tunneling rate within
the Landau-Zener model for a monochromatic potential

We explain the protocol to obtain an arbitrary band gap
and reduced mass for the e-h pair derived from a one-body
potential v. We utilize the monochromatic spatial potential,
having only one wave number, to give an expected gap and
mass. The reference dynamics can be approximately mapped
to the Landau-Zener (LZ) model in the monochromatic

potential. The LZ model is utilized to provide our reference
system with a tunneling rate estimation. We concentrate on an
IES throughout this section.

To keep our problem as simple as possible, we consider
a system that has only one band gap in the BZ within the
degenerated perturbation theory. Specifically, we choose fully
occupied (unoccupied) states below (above) the gap and in-
vestigate the transition from the occupied valence band to the
unoccupied conduction band. The single gap is achieved by
the potential v(x) = v0 cos(2πn x

a ), n = 1, 2, . . . . The Fourier
transformation is given as

vG−G′ = v0(δG−G′,n2π/a + δG−G′,−n2π/a). (30)

This potential connects three components (G, G′
± = G ±

n2π/a) in Eq. (17) when the mean field is neglected. The
kinetic energy for the G and G′

± components degenerates at
k± = −G ∓ nπ/a. Another kinetic energy for the G′

∓ compo-
nent 9

2 (nπ/a)2 is far from the degenerated energy 1
2 (nπ/a)2.

Hereinafter, we denote G′ as either G′
+ or G′

−. Therefore a 2 ×
2 matrix representation for the time-dependent Schrödinger
equation is justified by

i
d

dt

(
uk (G, t )

uk (G′, t )

)
=

(
1
2 [G + k + A(t )]2 vG−G′

(vG−G′ )∗ 1
2 [G′ + k + A(t )]2

)(
uk (G, t )

uk (G′, t )

)
. (31)

In the degenerate perturbation theory among two levels [31], the band gap � appears in accordance with the amount of 2|vG−G′± |
at k = −G+G′

±
2 . To get rid of the k-squared term in the Hamiltonian, we introduce a time-dependent phase factor associated with

the average energy 1
4 {[G + k + A(t )]2 + [G′ + k + A(t )]2} as (ũG

κ (t ), ũG′
κ (t ))T = e−i 1

4 {[G+k+A(t )]2+[G′+k+A(t )]2} × (uG
κ (t ), uG′

κ (t ))T ,
with a variable change κ = k + G+G′

2 .

i
d

dt

(
ũκ (G, t )
ũκ (G′, t )

)
=

(
1
2 (G − G′)[κ + A(t )] vG−G′

(vG−G′ )∗ − 1
2 (G − G′)[κ + A(t )]

)(
ũκ (G, t )
ũκ (G′, t )

)
. (32)

The shifted crystal momentum κ means a crystal momentum
measured from the degenerated point.

The DC electric field is obtained by A(t ) = −EDCt . By
choosing a proper time origin, the crystal momentum κ can
be set to zero. Thus Eq. (32) can be exactly mapped to the LZ
model [33]. The adiabaticity parameter given in Ref. [21] is
ε = (G − G′)EDC/(2|vG−G′ |2).

Let us derive formulas for the effective mass (32) written as
vG−G′ and G − G′. By diagonalizing the Hamiltonian in (32)
with A = 0, we have two energy branches:

ε±(κ ) = ±
√

1
4 (G − G′)2κ2 + |vG−G′ |2. (33)

Regarding + and − as conduction and valence bands, the
reduced effective mass μ reads

1

μ
=

(
d2ε+
dκ2

)−1

κ=0

−
(

d2ε−
dκ2

)−1

κ=0

= (G − G′)2

�
, (34)

where � = 2|vG−G′ |. The pure imaginary momentum that
gives zero eigenvalues of the Hamiltonian in (32) is κ =
i
√

μ�. The diabatic transition amount for t = −∞ to ∞ is
given as e−π/ε [21], with 1/ε = √

μ��/(2EDC). This amount
is the incremental value in the event that the vector potential

sweep crosses A(t ) = 0. This transition alternatively happens
in crystals because the vector potential sweeps over Brillouin
zones with the constant velocity EDC (see Fig. 1). The period
of the event is 2π/(aEDC), as this is how long it takes to pass
the first Brillouin zone once for the vector potential. Then, we
obtain the tunneling rate as

wLZ = aEDC

2π
e−π

√
μ��/(2EDC ). (35)

The exponential dependence is the same as the semiclassical
treatment of the Zener tunneling [34]. This LZ treatment does
not include a resonance tunneling structure as a function of
EDC because there is no 1/EDC oscillation in (35). To obtain a
more qualitative rate, a finite time interval rather than −∞ to
∞ should be taken into account for the LZ transition amount
[21]. The finite interval τ± in the normalized LZ formula in
Eq. (61) of Ref. [21] for |G − G′| = n 2π

a is given as

τ± = ± 1

2nμ
, (36)

where we use the normalized time τ/t = |G −
G′|EDC/(2|vG−G′ |) = EDC/(

√
μ�). Thus, having a smaller n
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and lighter μ leads to a better approximation of Eq. (35) to
Zener tunneling.

While an interpretation of the Keldysh parameter com-
bined with the LZ treatment provides interesting insights, it
does not relate to our problem directly. This consideration is
given in more detail in Appendix A.

The tunneling formula (35) itself is for pairwise states and
is not intended to rely on the spatial dimension of reciprocal
space. In other words, the tunneling rate can be a fair value for
systems that have different spatial dimensions. The Brillouin
zone integration is required to obtain the actual number of
excited electrons for pairwise states per length, surface, or vol-
ume. We further need the factor 2 because of spin degeneracy.

We need to determine how many electrons are in the prim-
itive cell. We assume a band insulator where the bottom Nocc

bands are occupied for the initial condition in the reference
system. The electron number per cell is 2Nocc because of the
spin degeneracy. Our potential v(x) = v0 cos(2πnx/a) gives
a gap 2v0 between the nth and (n + 1)th bands according
to the degenerated perturbation theory. Since we focus on
Zener tunneling from valence top to conduction bottom, we
set n = Nocc.

D. Tunneling rate evaluation from real-time calculation

We apply a DC electric field after a smooth ramp-up to get
rid of excitations due to the sudden field switch-on. The actual
field shape is

A(t ) =
{

−EDCT
[ (t+T )3

T 3 − (t+T )4

2T 4

]
(−T � t < 0)

−EDC(t + T/2) (0 � t ),
(37)

as shown in the inset in Fig. 1. The electric field is ob-
tained as the temporal derivative by E (t ) = −Ȧ. In the
ramp-up region, the electric field exhibits a cubic function,
EDC[3(t + T )2/T 2 − 2(t + T )3/T 3] (−T � t < 0), for con-
necting smoothly to the constant value. The field shape
gives Ė (−T ) = Ė (0) = 0. We take T = 1000 = 24.19 fs =
h̄/(0.171 eV) for the simulations over all parameters. The
energetic dimension, 0.171 eV, is much less than the band
gaps of the four investigated systems.

We define the NEE as

Nex(t ) = 2

Nk

∑
i,b(∈unocc),k

∫ a

0
dx v∗

b,k+A(t )(x)ui,k (x, t ), (38)

where the instantaneous eigenfunction vb,k+A(t ) is obtained by
an explicit diagonalization each time. For oscillating elec-
tric fields, projection onto the instantaneous eigenfunctions
is more suitable for evaluating the NEE under finite electric
fields [35] than field-free eigenfunctions. The NEE is nor-
malized in a unit cell, i.e., it is equal to the total number
of electrons in the cell when all electrons are excited from
valence bands. To obtain the excited carrier density, we need
to multiply the cell volume, area, or length by the NEE.

We fit the slope value as the tunneling rate for the temporal
evolution of the NEE from a real-time solution of the TD-qHF
equation. The LZ transition happens once in a period TB =
2π/(aEDC), which is the period of the Bloch oscillation. The
tunneling rate is not expected to be stationary for 0 � t < TB

because the LZ transition occurs only once. The fitting is

TABLE I. Data set and physical constants derived from the Wan-
nier equation for the four systems. The number of occupied bands
Nocc is always 1. a, v, �, and Eop are in atomic units.

System a (a.u.) v (a.u.) α μ � (a.u.) Eop (a.u.) Ref.

(a) 1D-TD-HF 1.85 0.174 0.68 0.0303 0.3487 0.2105 [27]
(b) BN sheet 7.05 0.143 0.21 0.360 0.2860 0.2131 [36]
(c) α-quartz 6.4 0.167 0.059 0.347 0.3340 0.3219 [37]
(d) GaAs 5.0 0.028 0.01 0.0355 0.05600 0.05591 [38]

performed for the slope after TB. As shown in the figures in
Sec. IV, most of the data show a nicely linear dependence on
time for the regime.

IV. RESULTS

We prepare four systems imitating (a) a one-dimensional
time-dependent Hartree-Fock (1D-TD-HF) solution [27], (b)
a boron-nitride sheet (BN sheet), (c) α-quartz, and (d) GaAs.
The characteristics of the systems are (a) extreme conditions
for electron-hole attraction strength, (b) a two-dimensional
semiconductor, (c) a three-dimensional insulator, and (d) a
three-dimensional semiconductor. Note that these simulations
only utilize one-dimensional integration over the Brillouin
zone. These different materials are imitated using only the
band gap, effective mass, and exciton binding energy, as
described in the following sections. The effective Coulomb
interaction is expected to capture the main role of e-h inter-
action for the tunneling dynamics. The remaining effect (e.g.,
dynamical symmetry) is missing within the one-dimensional
treatment.

We change the reciprocal lattice size 2π/a, the number of
occupied bands Nocc, and the off-diagonal component vG−G′

to obtain the given band gaps and effective masses of the ref-
erence systems. The number of occupied bands is set to 1 for
simplicity. We utilize a scaled electron-electron interaction, as

w(x) = α√
1 + x2

. (39)

The softened Coulomb potential has a long-range tail and
no singularity at the origin. The strength α is chosen such
that the one-dimensional Wannier equation (B22) gives ex-
citon binding energies that correspond to reported values; see
Appendix B for more details. Here, Eop is introduced as the
optical gap from the Wannier equation. The exciton binding
energy is obtained as Eop − �. We utilized parameters a, v,
and α (Table I) and confirmed that they give μ, �, and Eop in
a large enough Brillouin zone sampling for static calculation.

A. 1D-TD-HF system

The first system imitates the time-dependent Hartree-Fock
results reported in Ref. [27]. This system is more or less
artificial due to the one-dimensional space treatment with
the TD-HF method, leading to a strong electron-hole attrac-
tion. However, the strong effect provides insight into how
the electron-hole interaction affects the dynamics. The band
gap and the reduced effective mass for quasiparticle spectra
are � = 0.35 = 9.5 eV and μ = 0.03, as obtained by the
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FIG. 2. Number of excited electrons as a function of time for a 1D-TD-HF system under (a) EDC = 2.6 V/nm and (b) EDC = 5.1 V/nm.
The TB values of 16.52 and 8.26 fs are represented as vertical dash-dotted lines in (a) and (b), respectively.

self-consistent Hartree-Fock solution in Ref. [27]. The exciton
binding energy is 3.8 eV obtained through the linear response
spectra derived from the direct real-time solution of the TD-
HF method. The normalized time interval (36) is given as
τ± = ±16.5.

First, we fix the off-diagonal component v = 0.174 to re-
produce the band gap. Then, the lattice constant is set to
a = 1.85 to reproduce the reduced effective mass. Finally,
the strength of the electron-electron interaction is determined
as α = 0.68 by a condition such that the Wannier equa-
tion (B22) gives the same binding energy as the TD-HF result
in Ref. [27].

We use 13 and 400 grids for real and reciprocal space,
respectively, to obtain well-converged results. The size of the
time step is 0.02 = 0.484 as, which is quite a small value
and only mandatory with e-h interaction. The IES dynamics
require 0.2 = 4.84 as for the time step.

The time evolution of the NEE for the DC field is presented
in Fig. 2, where both graphs show linear behavior as a function
of time after TB. There are finite y intercepts because the ramp-
up field influences the dynamics for t < 0. By linear fitting
with wt + n for 0.005 = 2.57 V/nm excitation, the tunneling
rates w for the TD-qHF method and the IES are 8.58 ×
10−8 = 1/(0.282 ns) and 3.52 × 10−8 = 1/(0.688 ns). The
TD-qHF method shows a 2.44 times more significant tunnel-
ing rate than the IES. For 0.01 = 5.14 V/nm excitation, the
tunneling rates are 1.12 × 10−4 = 1/(0.215 ps) and 2.25 ×
10−5 = 1/(1.076 ps), and thus the enhancement factor is
4.98. The tunneling rates and the field-dependent enhance-
ments are summarized in Table II. The LZ formula (35) gives
a quantitatively accurate estimation for the IES, which can be
attributed to the light-reduced mass.

TABLE II. Calculated tunneling rates and enhancement factors
for the 1D-TD-HF system. The period of Bloch oscillation and the
tunneling rates evaluated with the LZ formula (35) are tabulated.

EDC

(a.u.) TB (a.u.) 2wLZ (a.u.) IES (a.u.) qHF (a.u.) Enhancement

0.003 1130 1.25 × 10−11 1.16 × 10−11 2.29 × 10−11 1.97
0.005 680 3.79 × 10−8 3.52 × 10−8 8.58 × 10−8 2.44
0.01 340 2.11 × 10−5 2.25 × 10−5 1.12 × 10−4 4.98

The NEE is a normalized number in a cell. When the field
is 2.57 V/nm, the NEE reaches 0.1% of the total electrons
after 1 ps, where two electrons are in the cell. After doubling
the strength to 5.14 V/nm, the NEE reaches 0.1% after 1
fs. The abrupt increase in the NEE with respect to the field
increase stems from the strong nonlinearity in the tunneling
process.

B. BN sheet

The second system imitates a BN sheet, which is a two-
dimensional semiconductor. The protocol to determine v, a,
and α as the material parameters is the same as for the 1D-TD-
HF system. According to Ref. [36], � = 0.2860 = 7.77 eV
and μ = 0.36 derived from the effective masses for a hole,
mh = 0.63, and a particle, me = 0.83. The binding energy of
excitons is 2.14 eV. Then, we utilize the following parameters
for the BN sheet: v = 0.143, a = 7.05, and α = 0.21. The
normalized time interval (36) is given as τ± = ±1.39.

We use 53 and 140 grids for real and reciprocal space,
respectively, to obtain well-converged results. The time-step
size is 0.2, the same as the IES of the 1D-TD-HF system.

Figure 3 shows the time-dependent NEE values for the BN-
sheet system. The tunneling rates are obtained by the same
procedure as for the 1D-TD-HF system. For 4.1 V/nm excita-
tion, the tunneling rates are 1.35 × 10−10 = 1/(17.9 ns) and
4.19 × 10−9 = 1/(57.7 ns), and thus the enhancement factor
is 3.22. The tunneling rates are 5.05 × 10−5 = 1/(479 fs)
and 2.12 × 10−5 = 1/(1140 fs) for 10.3 V/nm excitation.
Table III summarizes the tunneling rates and field-dependent

TABLE III. Calculated tunneling rates and enhancement factors
for the BN-sheet system. The period of Bloch oscillation and the
tunneling rates evaluated with the LZ formula (35) are tabulated.

EDC

(a.u.) TB (a.u.) 2wLZ (a.u.) IES (a.u.) qHF (a.u.) Enhancement

0.008 111 2.68 × 10−10 4.19 × 10−10 1.35 × 10−9 3.22
0.009 99.0 2.23 × 10−9 1.47 × 10−9 2.84 × 10−9 1.93
0.01 89.1 1.23 × 10−8 2.84 × 10−7 1.41 × 10−7a 0.496a

0.015 59.4 2.26 × 10−6 2.16 × 10−6 6.44 × 10−6 2.98
0.02 44.6 3.33 × 10−5 2.12 × 10−5 5.05 × 10−5 2.38

aThe corresponding NEE does not show a strict linear line.
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FIG. 3. Number of excited electrons as a function of time for a BN sheet under (a) EDC = 4.1 V/nm and (b) EDC = 10.3 V/nm. The TB

values of 2.70 and 1.078 fs are represented as dash-dotted vertical lines in (a) and (b), respectively.

enhancements. The ionization rate of qHF with the EDC =
0.01 field has significant ambiguity because the NEE does not
show a strict linear dependence on time.

Compared with the 1D-TD-HF system, the BN system is
barely excited for both the IES and the qHF method, while
the band gap is smaller. This is due to the much heavier
reduced mass than for the 1D-TD-HF system. Because of this
heavier mass, the LZ formula occasionally fails to predict the
ionization rate, in contrast to the 1D-TD-HF system. When
we assume that the field comes from an optical field, the
field intensity for 10.3 V/nm is 14 TW/cm2. According to a
rough estimation that just a half period of a single oscillation
effectively ionizes the electron into the conduction band by
the tunneling rate, 1% of the photocarriers are generated in
7.5 fs with 14 TW/cm2 intensity.

C. α-quartz

The third system imitates α-quartz, a three-dimensional
insulator. The protocol to determine v, a, and α as the material
parameters is the same as before. According to Ref. [37],
� = 0.334 = 9.1 eV and μ = 0.347 derived from the effec-
tive masses for a hole, mh = 1.3, and a particle, me = 0.5. The
binding energy of excitons is estimated to be 0.33 eV, for the
hydrogen 1s state energy with the screened Coulombic inter-
action with dielectric constant εr ∼ 3.8 for the reduced mass,
and is calculated by En = − μ

2ε2
r
. Then, we utilize the following

parameters for α-quartz: v = 0.167, a = 6.4, and α = 0.059.
The normalized time interval (36) is given as τ± = ±1.44.

We use 103 and 40 grids for real and reciprocal space,
respectively, to obtain well-converged results. The time-step
size is 0.2 a.u., the same as the BN sheet.

Figure 4 shows time-dependent NEE values for the
α-quartz system. We used the same procedure for ob-
taining the tunneling rates as for the 1D-TD-HF system.
For 0.02 = 10.3 V/nm excitation, the tunneling rates are
8.77 × 10−6 = 1/(2.76 ps) and 6.58 × 10−6 = 1/(3.67 ps),
and thus the enhancement factor is 1.33. The tun-
neling rates are 4.86 × 10−4 = 1/(49.7 fs) and 3.24 ×
10−4 = 1/(74.7 fs) for 0.03 = 15.4 V/nm excitation. Ta-
ble IV summarizes the tunneling rates and field-dependent
enhancements.

The tendency of the α-quartz system is similar to that of
the BN-sheet system, with a relatively heavy mass and rela-
tively high band gap. One of the most significant differences
is the much smaller e-h interaction, mainly due to the high
dimensionality. The enhancement of the e-h interaction is in
the range of a 16–50% increase in the investigated strength.

D. GaAs

The final system imitates GaAs, a three-dimensional semi-
conductor. The protocol to determine v, a, and α as the
material parameters is the same. According to Ref. [38], � =
1.519 eV and μ = 0.0377 derived from the effective masses

×
× ×

×

FIG. 4. Number of excited electrons as a function of time for α-quartz under (a) EDC = 10.3 V/nm and (b) EDC = 15.4 V/nm. The TB

values of 1.187 and 0.792 fs are represented as dash-dotted vertical lines in (a) and (b), respectively.
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TABLE IV. Calculated tunneling rates and α-quartz system en-
hancement factors. The period of Bloch oscillation and the tunneling
rates evaluated with the LZ formula (35) are tabulated.

EDC TB

(a.u.) (a.u.) 2wLZ (a.u.) IES (a.u.) qHF (a.u.) Enhancement

0.01 98.2 3.57 × 10−10 2.59 × 10−10 3.00 × 10−10 1.16
0.02 49.1 5.39 × 10−6 6.58 × 10−6 8.77 × 10−6 1.33
0.03 32.7 1.59 × 10−4 3.24 × 10−4 4.86 × 10−4 1.50

for a light hole, mh = 0.087, and a particle, me = 0.0665.
The binding energy of excitons is estimated to be 0.003 eV
for the 1s state energy with a dielectric constant of ∼13 for
the reduced mass. Then, we utilize the following parameters
for GaAs: v = 0.028, a = 5.0, and α = 0.01. The normalized
time interval (36) is given as τ± = ±14.1.

We use 13 and 140 grids for real and reciprocal space,
respectively, to obtain well-converged results. The time-step
size is 0.2 a.u., the same as the BN sheet and α-quartz.

Figure 5 shows the time-dependent NEE values for
the GaAs system. We used the same procedure to ob-
tain the tunneling rates as for the 1D-TD-HF system. For
0.0008 = 0.411 V/nm excitation, the tunneling rates are
8.73 × 10−6 = 1/(2.77 ps) and 8.52 × 10−6 = 1/(2.84 ps),
and thus the enhancement factor is 1.02. The tunneling rates
are 2.93 × 10−5 = 1/(826 fs) and 2.76 × 10−5 = 1/(877 fs)
for 0.001 = 0.514 V/nm excitation. Table V summarizes the
tunneling rates and field-dependent enhancements. The LZ
formula (35) gives a good estimation for the IES because of
the light-reduced mass of GaAs.

The NEE of the GaAs system reached a few electrons in
a cell with a much weaker field than the other three systems.
This is because GaAs has a light-reduced mass and a much
smaller gap. Similar tunneling rates are achieved with a field
strength tens of times weaker than that of the α-quartz system.
Reflecting the weaker e-h interaction strength, the enhance-
ment due to e-h interaction is minor, up to 0.514 V/nm.

V. DISCUSSION

We examine the trend of the enhancement due
to e-h interaction and the tunneling rate over the

TABLE V. Calculated tunneling rates and enhancement factors
for the GaAs system. The period of Bloch oscillation and the tunnel-
ing rates evaluated with the LZ formula (35) are tabulated.

EDC (a.u.) TB (a.u.) 2wLZ (a.u.) IES (a.u.) qHF (a.u.) Enhancement

0.0005 2510 3.12 × 10−7 3.62 × 10−7 3.64 × 10−7 1.01
0.0008 1570 9.46 × 10−6 8.52 × 10−6 8.73 × 10−6 1.02
0.001 1260 3.15 × 10−5 2.76 × 10−5 2.93 × 10−5 1.06

investigated materials and field, as shown in Fig. 6. The
enhancement factors in Fig. 6(a) are normally larger than
unity except for the BN-sheet system at 0.01 = 5.14V/nm, at
which ionization rates are not rigorously defined because the
NEE does not show a clear straight line. We find a tendency
that significant enhancements are accompanied by a large e-h
interaction strength α. The enhancement factors increase with
field strength increasing for the 1D-TD-HF, α-quartz, and
GaAs systems.

The LZ formula basically gives us a reasonable estimation
of the tunneling rates for all examples in Fig. 6(b). Specif-
ically, it shows quite a good estimation for the IES when
the reduced mass is light, as in the 1D-TD-HF and GaAs
systems. For the BN-sheet system, the LZ formula maximally
predicts an order error for a heavier mass of around 0.35.
The e-h enhancement increases for a stronger field with the
1D-TD-HF, α-quartz, and GaAs systems.

Here, we discuss the mechanism underlying the enhance-
ment due to e-h interaction. Band-gap renormalization (BGR)
can be explained as occurring through carrier introduction by
photodoping, thermal excitation, or chemical doping. These
gap reductions can be explained as the exchange interaction
weakening by Eq. (B19) in the two-band SBE. Thus the pos-
sible mechanism for enhancing tunneling rates is attributed
to electronic structure renormalization. To confirm this mech-
anism, we perform on-the-fly electronic structure extraction
from the time-dependent qHF Hamiltonian hk[ρ(t )](t ). A sys-
tem that has light effective mass is suitable to evaluate the
tunneling rate using the LZ formula. We analyze the data for
the 1D-TD-HF system because of its light mass and strong e-h
interaction strength.

We evaluate a time-dependent eigenvalue Ek
i (t ) by the

explicit diagonalization of hk[ρ(t )](t ), where i refers to the

×
×

×
×

FIG. 5. Number of excited electrons as a function of time for GaAs under (a) EDC = 0.411 V/nm and (b) EDC = 0.514 V/nm.
The TB values of 38.0 and 30.4 fs are represented as dash-dotted vertical lines in (a) and (b), respectively.
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FIG. 6. (a) Enhancement factors and (b) tunneling rate inverse as a function of field strength for the 1D-TD-HF (black), BN-sheet (red),
α-quartz (green), and GaAs (blue) systems. The LZ-based formula, IES, and qHF data are denoted by solid lines, solid circles, and solid stars,
respectively.

eigenvalue index for each k. Note that this eigenvalue is
not precisely equal to the diagonal component of the gen-
eralized Rabi frequency in Eq. (B11) because each uses
a different basis to evaluate the value. Snapshots of the
time-dependent eigenvalue for the 1D-TD-HF system are
shown in Fig. 7. For the reference system, the IES, the eigen-
value shows an A-shifted relation Ek

i (t ) = εi,k+A(t ) stemming
from the velocity gauge coupling. The trivial momentum shift
is subtracted to create the data in the first Brillouin zone.
For the weaker-field case, 5.14 V/nm, the eigenvalue change
appears symmetric for the valence and conduction bands.
We also extract the reduced mass from Ek

i (t ) by 1/μ(t ) =
(∂2Ek

c (t )/∂k2)−1
k=π/a − (∂2Ek

v (t )/∂k2)−1
k=π/a. The values of the

renormalized gap and reduced mass are 9.375 eV and 0.0295,
respectively. The renormalized electronic structure shows the
asymmetric change for the stronger-field case, 10.3 V/nm:
The valence band uplift is more pronounced than the con-
duction band drop. The values of the renormalized gap and
reduced mass are 8.3 eV and 0.027. Combining the renor-
malized gap and effective masses into the LZ-based tunneling
formula (35), we obtain 1.2 and 3.7 enhancements for 5.14
and 10.3 V/nm. These estimated values need to be higher
to match the actual ionization rate enhancements, 2.44 and
4.98, in Table II. This fact suggests that renormalization of the
transient dipole moment also plays a role in the enhancement.
The hauling-up effect is a possible candidate for the dipole
moment renormalization.

The time-dependent renormalized gap and reduced mass
are also instructive for understanding the dynamics, as shown
in Fig. 8. For the weaker-field case, neither the gap nor the
reduced mass change over time. In contrast, the renormalized
gap gradually decreases as a function of time for the stronger-
field case. The renormalized reduced mass is independent of
time. These facts demonstrate that the gap reduction depends
on instantaneous field strength and the history of the time-
dependent electric field.

VI. CONCLUSION

We developed a TD-qHF theoretical framework to investi-
gate the role of e-h interaction in solid-state electron dynamics
driven by a time-dependent electric field. The e-h interaction
is included as a mean field inspired by the TD-HF method.
By subtracting the trivial ground state DM in the mean-field
potential, an arbitrary IES can be introduced as a reference
system. The strength of the e-h interaction can be scaled up
or down without any influence on the IES. This independent
control of the IES and e-h interaction strength cannot be
achieved by the original TD-HF method. As such, this flexible
property of the TD-qHF method allows us to model a system
more easily than with the TD-HF method. The equation of
motion can be derived via the variational principle from an
explicit energy expression; the total energy is well defined
when an external field is absent.

FIG. 7. Snapshots of transient electronic structures for the 1D-TD-HF system under 5.14 V/nm at t = 60 fs (a) and 10.3 V/nm at t = 25 fs
(b). The conduction band energy at the top of each panel is shifted downward by 9.0 eV for visibility. Here, c, conduction band; v, valence
band.
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FIG. 8. Time evolution of transient gaps [(a) and (c)] and reduced masses [(b) and (d)] for 5.14 V/nm [(a) and (b)] and 10.3 V/nm [(c)
and (d)].

We performed TD-qHF simulations to evaluate the e-h
attraction effect in Zener tunneling. Thanks to explicit time
evolution, there was no ambiguity in handling the nonpertur-
bative response of quantum systems. A mapping to the LZ
model of the IES time evolution was derived for the tunneling
rate estimation. The influence of e-h interaction was investi-
gated by comparing the TD-qHF and IES simulations using
four systems imitating a 1D-TD-HF solution, a BN sheet,
α-quartz, and GaAs.

Our findings showed that e-h interaction enhances the ion-
ization rate in almost all cases. The enhancement depends on
the systems as well as on the field strength. For the 1D-TD-
HF, α-quartz, and GaAs systems, the enhancement showed
a monotonic increase as a function of the field strength. We
analyzed the transient band structure change due to e-h inter-
action for the 1D-TD-HF system and found that the interaction
reduces the gap and the reduced mass, leading to tunnel-
ing rate promotion. However, the reductions of the gap and
mass do not fully explain the enhancement. The remaining
dynamical effects, such as the hauling-up effect, play an ad-
ditional role in the enhancement. This theoretical framework
and the results will help to clarify the mechanisms and con-
trol the dynamics of two-dimensional semiconductors (e.g.,
transition metal dichalcogenides) driven by a strong light
field.
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APPENDIX A: KELDYSH PARAMETER FROM A JUMP
TIME IN THE LANDAU-ZENER TRANSITION

In the analysis of the LZ model by Vitanov [33], jump
time is introduced as a characteristic time where the diabatic
population is divided by the slope of the population such that
the diabatic energies are crossed. The jump time (Eq. (21) in
Ref. [33]), when written as our variables, is given by

T jump = �
1
2 (G − G′)EDC

= 2

√
μ�

EDC
. (A1)

This formula is physically interpreted as the inverse of energy
associated with the field strength EDC times the penetration
depth 1/

√
μ� in the energy gap � between the valence and

conduction bands. This equation can be obtained by taking
the ratio between the diagonal and off-diagonal components
of our equation of motion (32). The Keldysh parameter in
Ref. [10] with an angular frequency ω is constituted by

γKeldysh = ω
T jump

2
. (A2)

The Keldysh parameter comes from the Keldysh theory for
ionization in semiconductors via a strong electric field [10].
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APPENDIX B: DENSITY-MATRIX EXPRESSION
OF THE TD-QHF EQUATION AND HOUSTON BASIS

REPRESENTATION

We introduce an alternative expression for the TD-qHF
equation with a density-matrix-based (DM-based) expression.
This expression is formally elegant and simple compared
with the orbital expression introduced in Sec. II. We can find
an explicit connection between the SBE and the Wannier
equation derived from the TD-qHF equation. Furthermore,
this density-matrix-based equation can include phenomeno-
logical many-body influences such as a scattering term with
relaxation time approximation. Therefore we derive here a
generic theoretical framework in which the Bloch orbital is
not used, since the DM composed by a Bloch orbital is not
necessarily justified when we add a phenological treatment in
the equation of motion beyond the qHF wave function. We
only impose the BvK boundary condition, ρ(x + Nka, x′) =
ρ(x, x′ + Nka) = ρ(x, x′), and the lattice periodicity for the
simultaneous spatial translation, ρ(x + a, x′ + a) = ρ(x, x′).
Throughout this section, t in the variables is omitted except
for parametrically time-dependent ones. In other words, the
dynamical degrees of freedom to be determined by the equa-
tion of motion do not have explicit time coordinates in the
following equations.

The total energy as a functional of the DM is given as

E [ρ](t ) =
∫∫

dxdx′h(x′, x; t )ρ(x, x′) + EMF[ρ], (B1)

EMF[ρ] = 1

2

∫∫
dxdx′[ρ(x, x) − ρ0(x, x; t )]w(x, x′)[ρ(x, x)

− ρ0(x, x; t )] − 1

4

∫∫
dxdx′[ρ(x, x′) − ρ0(x, x′; t )]

× w(x′, x)[ρ(x′, x) − ρ0(x′, x; t )], (B2)

h(x, x′; t ) = δ(x − x′)

[(
−i

∂

∂x′ + A(t )

)2

+ v(x)

]
, (B3)

where spatial integration is taken over the simulation cell
0 � x, x′ < Nka. We define a functional derivative of F with
respect to the DM as

δF

δρ(x, x′)

∣∣∣∣
ρ

= lim
ε→0

F [ρ(x, x′) + εδρ(x, x′)] − F [ρ(x, x′)]
ε

.

(B4)

Physically proper conditions for the DM are not taken into ac-
count when this functional derivative is taken. In other words,
ρ + εδρ can be no physical DM even if ρ satisfied phys-
ically expected conditions, such as N-representability for a
fermionic one-body reduced DM. We introduce the one-body
Hamiltonian hqHF by a functional derivative of the energy as

hqHF(x′, x; t ) = δE (t )

δρ(x, x′)
= h(x′, x; t ) + vMF(x′, x)

vMF(x′, x) =
(∫

dx′′w(x, x′′)[ρ(x′′, x′′) − ρ0(x′′, x′′; t )]

)

× δ(x′ − x) − 1

2
w(x′, x)[ρ(x′, x)

− ρ0(x′, x; t )]. (B5)

We can then derive the equation of motion for the DM from
Eq. (12) as

i
∂

∂t
ρ(x, x′) =

∫
dx′′[hqHF(x, x′′; t )ρ(x′′, x′)

− ρ(x, x′′)hqHF(x′′, x′; t )]. (B6)

The total energy time derivative is given as

d

dt
E =

∫∫
dxdx′ δE

δρ(x, x′)
∂

∂t
ρ(x, x′) + Tr

(
∂h(t )

∂t
ρ

)

+
(

∂ρ0(t )

∂t
related terms

)

= −iTr(hqHFhqHFρ) + iTr(hqHFρhqHF)

+ dA

dt
Tr

([
−i

∂

∂x
+ A(t )

]
ρ

)
− 1

2
Tr

([
∂ρ0(t )

∂t
w

]
ρ

)
,

(B7)

where the trace is achieved by the spatial integration over the
simulation cell. To obtain the last line, we use ∂ρ0(t )/∂t =
iȦ[x, ρ0(t )] and Tr([x, ρ0(t )]ρ0(t )) = 0. The first and second
terms in the final equation cancel each other out by the cyclic
exchange in the trace. Therefore the total energy is kept con-
stant when the A field is a constant in time.

We derive an expression to solve (B6) in the Houston basis
[39] without a time-dependent phase factor as

ρ(x, x′) = 2

Nk

∑
αβk

eikxvα,k+A(t )(x)ρk
αβv∗

β,k+A(t )e
−ikx′

, (B8)

where justification of the k-dependent decompositions is pre-
sented in Appendix C. The reason for phase factor omission
here is to resemble the SBE for the TD-qHF method. Matrix
elements for a spatially nonlocal function O(x, x′) of the basis
are defined as

Ok
αβ (t ) = 1

Nk

∫ Nka

0
dx

∫ Nka

0
dx′ e−ikxv∗

α,k+A(t )(x)O(x, x′; t )

× e+ikx′
vβ,k+A(t )(x

′). (B9)

Substituting Eq. (B8) into Eq. (B6), we obtain the equation of
motion for ραβ as

i
d

dt
ρk

αβ = [εαk+A(t ) − εβk+A(t )]ρ
k
αβ

+
∑

γ

�k
αγ (t )ρk

γ β −
∑

γ

ρk
αγ �k

γ β (t ), (B10)

�k
αβ (t ) = −Ȧ(t )Xαβ (k + A(t )) + vk

MF,αβ,

Xαβ (k) =
〈
vαk

∣∣∣∣∂vβk

∂k

〉
=

∫ a

0
dxv∗

αk

∂vβk (x)

∂k
, (B11)

where 〈vαk| ∂vβk

∂k 〉 = −〈 ∂vαk
∂k |vβk〉 is used. �k

αβ is the gener-
alized Rabi frequency for the TD-qHF method. Explicit
construction of the MF-term matrix element for  = ρ, ρ0
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is given as

vk
MF,αβ [] =

∑
H

wq=0(H )η(H )〈vαk+A(t )|eiHx|vβk+A(t )〉
⎛
⎝∑

k′γ δ

k′
γ δ〈vγ k+A(t )|e−iHx|vδk+A(t )〉

⎞
⎠

− 1

2

∑
qHγ δ

wq(H )k−q
γ δ 〈vα,k+A(t )|eiHx|vγ ,k−q+A(t )(t )〉〈vδ,k−q+A(t )(t )|e−iHx|vβ,k+A(t )〉. (B12)

We introduce two approximations: first, that the Coulombic
interaction has only a long-range part,

wq(H ) = w̄qδH,0, (B13)

and second, that the LPP labeled by the eigenfunction is the
same for all crystal momenta,

〈vαk|vαk′ 〉 = 1. (B14)

Within the approximation, we obtain the mean-field part as

vk
SBE,αβ[ρ − ρ0] = −1

2

∑
q

w̄q
{
ρ

k−q
αβ (t ) − ρ

k−q
0,αβ

}
. (B15)

The equation of motion with the approximation is

i
d

dt
ρk

αβ = [εαk+A(t ) − εβk+A(t )]ρ
k
αβ

+
∑

γ

�k
SBE,αγ (t )ρk

γ β −
∑

γ

ρk
αγ �k

SBE,γ β (t ),

(B16)

�k
SBE,αβ (t ) = −Ȧ(t )Xαβ (k + A(t )) + vk

SBE,αβ . (B17)

We restrict ourselves to a two-band system achieved by
(α, β ) = (v, v), (v, c), (c, v), (c, c). The equations of motion
are given as

i
d

dt
ρk

vc = [eck (t ) − evk (t )]ρk
vc

+ [
ρk

vv (t ) − ρk
cc(t )

]
�k

SBE,vc[ρ],

eck (t ) = εck+A(t ) − 1

2

∑
q

w̄qρk−q
cc ,

evk (t ) = εvk+A(t ) − 1

2

∑
q

w̄q
(
ρk−q

vv − 2
)
,

i
d

dt
ρk

vv = ρk
vc�

k
SBE,cv[ρ] − �k

SBE,vc[ρ]ρk
cv,

i
d

dt
ρk

cc(t ) = ρk
cv�

k
SBE,vc[ρ] − �k

SBE,cv[ρ]ρk
vc. (B18)

These are nothing but SBEs, while minor differences are as
follows. In the original SBE construction, a bare electronic
structure is given as a reference system, and it is renormal-
ized by the electron-hole interaction even without an external
field. In our TD-qHF formulation, an already renormalized
electronic structure is introduced by subtracting the initial
density matrix ρ0. In front of the electron-hole attraction, the
1/2 factor appears because of the exchange interaction for
the spin-restricted electron system within the qHF method.
The intraband motion in the eigenvalue εvk+A(t ) comes from
the velocity gauge ansatz for the equation of motion. In

the velocity gauge, we determine that the counterpart to the
dipole operator matrix element is Xαβ by taking into account
Ȧ = −E (t ).

Within the two-band SBE, the gap renormalization of the
relative energy between conduction and valence bands is cal-
culated as

eck (t ) − evk (t ) = εck+A(t ) − εvk+A(t ) −
∑

q

w̄qρk−q
cc , (B19)

where the conservation rule ρ
k−q
cc (t ) + ρ

k−q
vv (t ) = 2 is used.

Thus the band gap shrinks by increasing the conduction band
population.

For the Wannier equation in our framework, we apply the
linear perturbation theory for Eq. (B18) by ρ(t ) 	 ρ0 + δρ(t )
and neglect the momentum shift due to the A field. The equa-
tion for δρ is

i
d

dt
δρk

vc = [εck − εvk]δρk
vc −

∑
q

w̄qδρk−q
vc + 2X k

vcE (t ).

(B20)

By taking the correspondence k → k̂ = −i∂/∂X , we obtain
the real-space counterpart via Fourier transformation:

i
d

dt
Wvc(X, t ) = [εc(k̂) − εv (k̂) − w̄(X )]Wvc(X, t )

+ 2Xvc(X )E (t ). (B21)

When the eigenvalue difference is approximated as εck −
εvk 	 � + k2

2μ
, an eigenvalue equation for the homogeneous

part of (B21) is[
� − 1

2μ

∂2

∂X 2
− w̄(X )

]
Wvc(X ) = EopWvc(X ). (B22)

This is the Wannier equation.
If we use the Houston basis with the trivial phase factor, as

ρk (x, x′)=
∑
αβ

e−i
∫ t

0 dt ′εαk+A(t ′ )vα,k+A(t )ρ̃
k
αβv∗

β,k+A(t )e
+i

∫ t
0 dt ′εβk+A(t ′ ) ,

(B23)

where (vα,k, εα,k ) is the eigenpair of the field-free Hamil-
tonian without an MF part,

∫
dx′h(x, x′; t = 0)eikx′

vα,k (x′) =
εαkeikxvα,k (x). The equation of motion for ρk

αβ reads

i
d

dt
ρ̃k

αβ =
∑

γ

e+i
∫ t

0 (εαk+A(t ′ )−εγ k+A(t ′ ) )�k
αγ (t )ρ̃k

γ β

−
∑

γ

e−i
∫ t

0 (εβk+A(t ′ )−εγ k+A(t ′ ) )ρ̃k
αγ �k

γ β (t ), (B24)
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where the definition of the generalized Rabi frequency �k
γ β (t )

is the same as (B11). This equation of motion is simply
another expression of Eq. (9) in Ref. [27]. ρ̃αβ varies slowly
compared with the energy difference εβk − εαk because of the
phase factor inclusion in the Houston basis representation.
The term that has −Ȧ(t )X is expected to be off-resonant
because 〈vαk|∂vγ k/∂k〉k+A(t ) has only slowly varying compo-
nents. The resonant oscillation component only comes from
vk

MF,αγ 	 e−i
∫ t

0 (εαk+A(t ′ )−εγ k+A(t ′ ) ) as pointed out in Ref. [27].

APPENDIX C: NONLOCAL FUNCTION
WITH LATTICE PERIODICITY

Generally, a function with two spatial coordinates f (x, x′)
requires two wave numbers for the Fourier transformation.
Here, we prove that a function that satisfies f (x + Nka, x′) =
f (x, x′ + Nka) = f (x, x′), f (x + a, x′ + a) = f (x, x′) has a
particular form for the Fourier transformation that has single
crystal momentum and two reciprocal lattice coordinates. We
prove this form to validate the decomposition form (B8).

Consider a function f (x, x′) within the BvK boundary con-
dition f (x + Nka, x′) = f (x, x′ + Nka) = f (x, x′). We further
assume a lattice periodicity for simultaneous spatial variable
translation as

f (x + a, x′ + a) = f (x, x′). (C1)

This condition appears in the one-body reduced DM and
one-body Green’s function in typical many-body problems for
perfect crystals.

This function can be expanded as

f (x, x′) =
∑

k

eikx f k (x, x′)e−ikx,

f k (x + a, x′) = f k (x, x′ + a) = f k (x, x′), (C2)

where k is the discretized wave number k =
0, 2π/(Nka), . . . , 2π/(Nka)(Nk − 1), as in the orbital case.

This single k expansion is proved by starting from a general
Fourier expansion:

f (x, x′) =
∑

kk′GG′
e+i(k+G)x f̃ k,k′

(G, G′)e−i(k′+G′ )x′
,

f̃ k,k′
(G, G′) = 1

(Nka)2

∫∫
dxdx′e−i(k+G)x f (x, x′)e+i(k′+G′ )x′

,

(C3)

where k, k′ are discretized Brillouin zone indices and G, G′
varies the reciprocal lattices. Using the simultaneous transla-
tion for this formula, we obtain

f (x + a, x′ + a) =
∑

kk′GG′
e+i(k−k′ )ae+i(k+G)x f̃ k,k′

(G, G′)

× e−i(k′+G′ )x′
. (C4)

Since all components are the same, we obtain e+i(k−k′ )a = 1
for an arbitrary (k, k′) pair. This means that k′ is
equal to k, namely, a single k index is sufficient for
f̃ k,k′

(G, G) → f k (G, G′). Thus the proper expansion is
given as

f (x, x′) =
∑
kGG′

e+i(k+G)x f k (G, G′)e−i(k+G′ )x′
,

f k (G, G′) = 1

(Nka)2

∫∫
dxdx′e−i(k+G)x f (x, x′)e+i(k+G′ )x′

.

(C5)

By taking the partial sum over the reciprocal lattices, we have
the following formula:

f (x, x′) =
∑

k

e+ikx f k (x, x′′)e−ikx′
,

f k (x, x′) =
∑
GG′

e+iGx f k (G, G′)e−iG′x′
. (C6)

f k (x + a, x′) = f k (x, x′ + a) = f k (x, x′) can be confirmed
from this formula.

Note that we do not impose any condition on f except
for the BvK boundary condition and the simultaneous lattice
translation symmetry. We can derive a more specific formula
with a more explicit form for f . The one-body reduced DM
composed by a Slater determinant with Bloch orbitals, for
example, has the following factorized shape:

ρ(x, x′) = 2

Nk

∑
ik

e+ikxuik (x)u∗
ik (x′)e−ikx′

. (C7)

The Fourier component of the k-dependent DM also has a
factorial shape:

ρk (G, G′) = 2

Nk

∑
i

uik (G)u∗
ik (G′). (C8)
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