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Slow semiclassical dynamics of a two-dimensional Hubbard model in disorder-free potentials

Aleksander Kaczmarek and Adam S. Sajna *

Institute of Theoretical Physics, Faculty of Fundamental Problems of Technology,
Wrocław University of Science and Technology, 50-370 Wrocław, Poland

(Received 17 October 2022; revised 26 July 2023; accepted 13 September 2023; published 9 October 2023)

The quench dynamics of the Hubbard model in tilted and harmonic potentials is discussed within the
semiclassical picture. Applying the fermionic truncated Wigner approximation (fTWA), the dynamics of im-
balances for charge and spin degrees of freedom is analyzed and its time evolution is compared with the exact
simulations in a one-dimensional lattice. Quench from charge or spin density waves is considered. We show
that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
Such an improvement of fTWA is also obtained for the higher-order correlations in terms of quantum Fisher
information for charge and spin channels. This allows us to discuss the dynamics of larger system sizes and
connect our discussion to the recently introduced Stark many-body localization. In particular, we focus on a
finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic
potential and spin dependence of the tilt results in subdiffusive dynamics, similar to that of disordered systems.
Moreover, for specific values of harmonic potential, we observed phase separation of ergodic and nonergodic
regions in real space. The latter fact is especially important for ultracold-atom experiments in which harmonic
confinement can be easily imposed, causing a significant change in relaxation times for different lattice locations.
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I. INTRODUCTION

The search for robust quantum many-body systems which
show no thermalization or whose thermalization is very slow
has become a focus of a number of theoretical and experimen-
tal investigations (see, e.g., [1–10] and references therein).
The best known example in closed systems that show robust
nonergodic behavior is the many-body localized (MBL) phase
[11–14]. MBL systems are considered as potential models for
quantum memory devices [2,15] and are relevant for quantum
computational problems [16]. MBL behavior comes from the
interplay of a disorder and interactions and such systems have
already been realized experimentally on many platforms such
as ultracold atoms in optical lattices, trapped ions, and su-
perconducting qubits [17–21]. However, it has been recently
shown that MBL features can also be observed in the systems
without quenched disorder but showing a linear and weak
harmonic potential [22]. Another possibility is to add a weak
disorder potential to a tilted lattice [23]. Such a phenomenon
has been named the Stark many-body localization (SMBL)
and some of its features have already been investigated exper-
imentally [24–27].

Focusing on the one-dimensional dynamical behavior
of SMBL we have to mention the nondecaying charac-
ter of the imbalance function [22,23,28], the appearance of
logarithmic-in-time growth of entanglement entropy, quantum
Fisher information (QFI) and quantum mutual information
[22,25,28–32], nonergodic behavior of the squared width of
the excitation [33], and average participation ratio which
is directly related to the return probability [23]. For two-
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dimensional systems, much less is known about a possible
SMBL behavior. It seems that the absence of rare regions can
lead to nonergodic behavior in the thermodynamic limit [23].
However, strongly nonergodic polarized regions [34], which
can lead to the SMBL phase in the thermodynamic limit of
one-dimensional systems, are less relevant in two dimensions.
Therefore the existence of SMBL in higher-dimensional sys-
tems can be questioned [35]. This conclusion is consistent
with the experimental observation that the presence of defects
in polarized regions can lead to subdiffusive behavior [27].
Moreover, going beyond the linear potential, e.g., by adding
harmonicity to the lattice, can lead to various dynamical types
of behavior depending on the lattice location. Such an anal-
ysis, for one-dimensional systems, has recently been given
in the context of SMBL [29–31] leaving two-dimensional
systems unexplored.

In this work, we focus on the disorder-free quantum evo-
lution of the weakly polarized initial states and point out
dynamical similarities with disordered systems in one and
two dimensions. We give an approximate description of the
quench dynamics from density waves with a short wavelength
which evolve under a wide range of tilt strength (density
waves with a short wavelength correspond to the weakly
polarized initial states which can be more easily delocalized
[35]). In contrast to the recent studies of quantum dynam-
ics in two dimensions [27,35] we mostly assume that the
field gradient is applied at an irrational angle in order to re-
move the equipotential directions [23]. In particular, we show
that a finite two-dimensional lattice system with relatively
weak harmonic potential and sufficiently strong tilt exhibits
subdiffusive dynamical behavior similar to that known for
disordered systems [36,37]. We achieve this by analyzing
the quantum dynamics of the Hubbard model which can
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be directly experimentally realized [9,19,27,38–41]. In our
numerical study, we exploit the fermionic truncated Wigner
approximation (fTWA) to deal with systems of larger sizes
[37,42–46]. Such an analysis is possible because fTWA gives
a reliable description in the parameter space in which, together
with the tilt potential, a harmonic potential has been added to
the lattice and a spin dependence of the linear field has been
taken into account. The importance of the spin-dependent
local potential has been previously linked to the full MBL in
the disordered Hubbard system because it is responsible for
the localization of the spin degrees of freedom [47]. Here we
observe a similar effect for spin dynamics on a tilted lattice
and demonstrate that the prediction of fTWA dynamics is
highly enhanced in this limit.

To discuss the dynamics of a Hubbard model on the tilted
lattice we focus our analysis on the imbalance and QFI for
charges and spins. Both observables are related to the on-
site density measurements and are experimentally accessible
[17,19,20,24,38,40,48]. Imbalance and QFI were chosen be-
cause both are well-established indicators of nonergodicity.
Moreover QFI can distinguish the Wannier-Stark localiza-
tion from SMBL through a logarithmic-in-time type growth
in the SMBL phase [25]. In this work, we show that in
two dimensions QFI exhibits a slow logarithmic-like growth
which is similar to the QFI behavior of disordered systems
[17,37,49–51] and recently studied tilted triangular ladder
[25]. Moreover, we discuss the way in which harmonic poten-
tial together with spin-dependent tilt causes a change in the
charge imbalance decay from diffusive to subdiffusive behav-
ior for intermediate strength of linear potential. Interestingly
for spins we show that the decay of imbalance is even more
pronounced and changes from superdiffusive to subdiffusive
behavior. It is worth stressing that due to the approximation
made in studying dynamical behavior, we cannot make con-
clusions about the possibility of a transition to SMBL phase in
two dimensions. However, we can indicate certain dynamical
features which are difficult to handle by other computational
methods.

Finally, the fTWA method also enables us to discuss the
appearance of phase separation of ergodic and nonergodic
long-lived phases in a two-dimensional lattice, which is an
extension of previous theoretical studies performed for one-
dimensional lattices [29–31].

The paper is constructed as follows. In Sec. II, the fTWA
method is briefly discussed. In Sec. III, the benchmark of the
fTWA method against exact diagonalization (ED) in a one-
dimensional Hubbard system is provided together with the
mean squared error analysis (MSE) for imbalances and QFI.
It is realized for the charge and spin density wave initial con-
ditions, and the roles of harmonic and spin-dependent linear
potentials are described. The two-dimensional analysis of the
many-body dynamics in tilted lattices is given in Sec. IV. The
paper ends with a summary of the obtained results (Sec. V).

II. fTWA FOR THE HUBBARD MODEL IN
DISORDERED-FREE POTENTIALS

Before we define the semiclassical dynamics within fTWA
we begin with writing the Hubbard Hamiltonian in terms of

the creation ĉ†
iσ and annihilation ĉiσ operators

H = −
∑
i j, σ

Ji j ĉ
†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓ +
∑
i,σ

�(i, σ )n̂iσ , (1)

where the operator ĉ†
iσ (ĉiσ ) creates (annihilates) fermionic

particle at position i with spin σ ∈ {↑, ↓}, n̂iσ = ĉ†
iσ ĉiσ is the

density operator, Ji j is the hopping energy, �(i, σ ) is the spin-
dependent on-site potential, and U is the on-site interaction
energy between two spin species. Throughout this work it
is assumed that Ji j is nonzero for the nearest-neighbor sites
only for which we set Ji j = J . Then, instead of solving the
Schrödinger equation, approximated quantum dynamics in
fTWA is obtained by equating Hamilton equations of motion
with the addition of quantum fluctuation encoded in the initial
conditions through the Wigner function W [42,52]. Equa-
tions of motion for the Hubbard Hamiltonian take the form
[37,42]

i
dρmσnσ

dt
= −

∑
k

(Jnkρmσ,kσ − Jkmρkσ,n σ )

+ ρmσnσ [�(n, σ ) − �(m, σ )

+ U (ρn−σn−σ − ρm−σm−σ )], (2)

where ρmσnσ are phase-space variables obtained by the
Wigner-Weyl quantization procedure. Here the so-called ρ

representation of Hamiltonian H was used [37,42]. In order
to obtain the expectation value of a given observable, e.g.,
Ô, trajectories are sampled from the initial Wigner function
W (ρ0) and summed up according to the following procedure,

〈Ô(t )〉 fTWA≈
∫

OW (ρ(t ))W (ρ0)dρ0 = 〈OW (t )〉cl , (3)

where OW is a Weyl symbol of Ô, ρ(t ) = {ρiσ jσ ′ (t ) : i, j ∈
{1, 2, . . . , N}, σ, σ ′ ∈ {↑, ↓}}, N is the number of sites,
and ρ0 = ρ(t = 0). Initial conditions encoded in the Wigner
function W (ρ0) are obtained by approximating W (ρ0) as
multivariate Gaussians and reading off its first and second
moments from matching the semiclassical and quantum ex-
pectation values [42].

Except for noninteracting systems, fTWA gives an accurate
description of general systems only in the early times [52].
However, in the next section, we numerically show that slight
modification of the linear potential leads to the improvement
of the long-time fTWA predictions. In one-dimensional sys-
tems, we consider the following form of the on-site potential

�( j, σ ) = �1(δσ↓ + Aδσ↑) j + �2( j − j0)2, (4)

where �1 (�2) is the strength of linear (harmonic) potential,
and A introduces a spin dependence to the linear potential for
any A 	= 1. In this work a weak spin dependence (A = 0.9) is
considered as in the recent experiment by Scherg et al. [9].
In Sec. IV we assume a two-dimensional system and then the
potential is modified correspondingly.

Throughout the paper, the interaction strength is set to
U/J = 1 and open boundary conditions are assumed.
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III. THE ROLE OF HARMONIC POTENTIAL AND SPIN
DEPENDENCE OF THE LINEAR FIELD

To benchmark the fTWA method, we compare the results
of semiclassical simulations with those of ED in a finite
one-dimensional system at half filling (8 lattice sites are inves-
tigated). The role of harmonic potential and spin dependence
of the linear field is stressed by using the imbalance functions
and QFI. We chose these quantities because they are accessi-
ble experimentally in trapped atoms and ions experiments and
are useful in a discussion of ergodicity breaking in different
systems [17,19,20,24,38,40,48].

The imbalance function measures the distribution of
charges (densities) and spin degrees of freedom at a given
time. Assuming that the system starts from a charge density
wave (CDW) where the even sites are doubly occupied and
the odd ones are empty, the imbalance zC is defined as

zC (t ) = 1

N
(〈Ĉe(t )〉C − 〈Ĉo(t )〉C ), (5)

with

Ĉe/o(t ) =
∑

i∈ even/odd sites

n̂i(t ), (6)

where n̂i(t ) = n̂i↑(t ) + n̂i↓(t ) is the local charge density, N
is the number of fermions, and Ĉe(t ) and Ĉo(t ) are the op-
erators (in the Heisenberg representation) of the total charge
on even and odd sites, respectively. Moreover, 〈. . .〉C de-
notes 〈�C

init| . . . |�C
init〉 with the CDW initial state |�C

init 〉 =
|0,↑↓, 0,↑↓, . . .〉 which is a product state of doubly occupied
and empty sites.

Correspondingly, for the spin degrees of freedom, the im-
balance function zS (t ) can be defined in the following way,

zS (t ) = 1

N
(〈Ŝe(t )〉S − 〈Ŝo(t )〉S ), (7)

with

Ŝe/o =
∑

i∈ even/odd sites

m̂i, (8)

where m̂i(t ) = n̂i↑(t ) − n̂i↓(t ) is the local spin magnetization,
and Ŝe(t ) and Ŝo(t ) are the operators of the total spin mag-
netization (z component) on even and odd sites, respectively.
In order to study the dynamics of the spin degrees of free-
dom we chose the initial spin density wave (SDW), i.e., even
(odd) sites containing fermions with spins up (down). This
means that in Eq. (7) we set 〈. . .〉S = 〈�S

init| . . . |�S
init〉 with

|�S
init 〉 = |↓,↑,↓,↑, . . .〉.
Moreover, to efficiently discuss a quantitative difference

between fTWA and ED, the mean squared error (MSE) is
analyzed, given by the formula

MSE(zC/S ) = 1

Ns + 1

Ns∑
j=0

[
zED

C/S ( j�t ) − zfTWA
C/S ( j�t )

]2
, (9)

where �t = 0.01/J is the time step after which data are
numerically collected, Ns�t = 300/J is the total time of sim-
ulations, and C and S indices correspond to the charge and
spin channel, respectively. Correspondingly, zED

C/S and zfTWA
C/S

stand for the imbalances calculated by using the ED and
fTWA methods.

In Fig. 1 we plot the time dependencies of the imbalances
zC and zS in the fTWA (solid lines) and ED simulations
(dashed lines). We first focus on the role of spin dependence of
the linear potential. It is easily seen that for a spin-independent
potential, A = 1 [see Figs. 1(a) and 1(d)], delocalization of
spin degrees of freedom takes place [Fig. 1(d)]. A simi-
lar behavior was previously observed in the context of the
spin-independent disordered systems [47,54–58]. In our sim-
ulations, this happens at times of the order of O(tJ) and makes
the fTWA completely fail to describe the many-body quan-
tum dynamics in the intermediate and large linear potential
strength limit [see also the growth of MSE(zS ) function in
Fig. 2(b)]. In Fig. 1(e), we show that introduction of a weak
spin dependence of the linear potential, i.e., A = 0.9, forbids
spin delocalization within the analyzed times and recovers the
approximate predictability of fTWA.

Having established an efficient description of the spin
channel, we focus on the role of harmonic potential in our
semiclassical dynamics by setting �2/J = 0.5 [see Figs. 1(c)
and 1(f)]. Then the situation is reversed to that of the spin
channel. We observe enhancement of fTWA prediction in
the charge channel which is explicitly seen in MSE(zC ) for
intermediate and large linear potential strength [see Fig. 2(a)].
For further analysis of the fTWA accuracy, see Appendix A.

In our studies we also look at the QFI which is a higher-
order correlation function in comparison to imbalance (QFI
is proportional to the variance of Ĉe − Ĉo or Ŝe − Ŝo). For
pure initial states analyzed here, i.e., for CDW and SDW, the
corresponding normalized QFI for charges fQ,C and spins fQ,S

has the form [59–62]

fQ,C (t ) = 4

N

[〈(Ĉe(t ) − Ĉo(t ))2〉C − 〈Ĉe(t ) − Ĉo(t )〉2
C

]
, (10)

fQ,S (t ) = 4

N

[〈(Ŝe(t ) − Ŝo(t ))2〉S − 〈Ŝe(t ) − Ŝo(t )〉2
S

]
. (11)

Similarly as in the imbalance case we focus on the three
regimes: (i) with spin-independent tilt (A = 1) and without
a harmonic potential (�2 = 0), see Figs. 3(a) and 3(d), (ii)
with spin-dependent tilt (A = 0.9) and without a harmonic
potential (�2 = 0), see Figs. 3(b) and 3(e), and (iii) with spin-
dependent tilt (A = 0.9) and with a harmonic potential (�2 =
0.5), see Figs. 3(c) and 3(f). The predictability of fTWA for
QFI in the (i) case is even worse than for the imbalance func-
tion. The abrupt increase in QFI at later times is not properly
described in terms of semiclassical description. However in-
troduction of the spin-dependent tilt and a harmonic potential
substantially improves the fTWA method. This conclusion is
better illustrated in Fig. 4 where MSE( fQ,C/S ) is plotted [the
definition of MSE( fQ,C/S ) corresponds to that given in Eq. (9)
for imbalance]. We observe that fQ,C is mostly improved for
the case A = 0.9 and �2 = 0.5, while for fQ,S the highest
enhancement of the fTWA method is observed in the case
of the spin-dependent linear potential. The latter behavior
is consistent with that of the imbalance function for a spin
channel [cf. Figs. 1(d), 1(f)].

Interestingly, in the systems with a spin-dependent linear
field and with an additional harmonic potential [(iii) regime],
the MSE of imbalance functions and QFI show a peak at the
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FIG. 1. Time dependencies of imbalance functions for charges, zC [(a)–(c)], and spins, zS [(d)–(f)]. In each plot different strengths of the
linear potential �1/J are taken, i.e., �1/J = 1, 4, 6, 12 from the bottom to top [see also the legend in (a)]. The solid lines indicate the fTWA,
while dashed correspond to the ED results. The first column [(a) and (d)] corresponds to A = 1, �2 = 0, the second column [(b) and (e)] to
A = 0.9, �2 = 0, and the third column [(c) and (f)] to A = 0.9, �2/J = 0.5. Simulations are performed for the one-dimensional system with 8
sites and with the CDW [(a)–(c)] or SDW [(d)–(f)] initial conditions. The other parameters are U/J = 1, j0 = 4, and the number of trajectories
used in fTWA is 1000 or higher. Preliminary results of (a) were obtained in [53].

FIG. 2. Dependence of the mean squared error MSE(zC/S ) on the linear potential strength �1/J [for MSE(zC/S ) definition, see Eq. (9)].
MSE(zC ) and MSE(zS) are calculated for charge (a) and spin (b) imbalance, respectively. Different parameter ranges are considered; circles
correspond to A = 1, �2/J = 0, triangles to A = 0.9, �2/J = 0, and crosses to A = 0.9, �2/J = 0.5. In the inset of (b) we plot the same data
as in (b) but with an additional logarithmic scale in the vertical axis. Simulations are performed for the one-dimensional system with 8 sites
and with the CDW (a) or SDW (b) initial conditions. The other parameters are U/J = 1, j0 = 4, and the number of trajectories used in fTWA
is 1000 or higher.
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FIG. 3. Time dependence of QFI for charges [(a)–(c)] and spins [(d)–(f)]. In each plot different strengths of the linear potential �1/J are
taken, i.e., �1/J = 6, 9, 12 from the top to bottom [direction of increasing values of �1/J is marked by the arrow in (b); see also the legend
in (b)]. The black boxes in (a) and (d) mark the regions displayed in the insets. The solid lines indicate the fTWA, while dashed correspond
to the ED results. The first column [(a) and (d)] corresponds to A = 1, �2 = 0, the second column [(b) and (e)] to A = 0.9, �2 = 0, and the
third column [(c) and (f)] to A = 0.9, �2/J = 0.5. Simulations are performed for the one-dimensional system with 8 sites and with the CDW
[(a)–(c)] or SDW [(d)–(f)] initial conditions. The other parameters are U/J = 1, j0 = 4, and the number of trajectories used in fTWA is 1000
or higher.

FIG. 4. Dependence of the MSE( fQ,C/S ) on the linear potential strength �1. MSE( fQ,C ) and MSE( fQ,S ) are calculated for charge (a) and
spin (b) QFI, respectively. Different parameter ranges are considered; circles correspond to A = 1, �2/J = 0, triangles to A = 0.9, �2/J = 0,
and crosses to A = 0.9, �2/J = 0.5. In the inset of (b) we plot the same data as in (b) but with an additional logarithmic scale in the vertical
axis. Simulations are performed for the one-dimensional system with 8 sites and with the CDW (a) or SDW (b) initial conditions. The other
parameters are U/J = 1, j0 = 4, and the number of trajectories used in fTWA is 1000 or higher.
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intermediate value of the linear potential strength. This means
that fTWA gives the best prediction of quantum dynamics
for weak and strong tilts. Such a feature was previously also
observed for disordered systems when the disorder strength
was varied [37,63]. Moreover, we also noticed that in the (iii)
regime and charge channel, fTWA imbalances decay faster
than the corresponding ones in ED, which suggests that fTWA
dynamics can be regarded as an upper bound for relaxation
rates. This situation is similar to that of disordered systems
studied recently for spinless interacting fermions [64].

IV. SEMICLASSICAL DYNAMICS OF A
TWO-DIMENSIONAL SYSTEM

After benchmarking fTWA against the exact simulations,
we focus our analysis on the system sizes that are beyond
the reach of ED. Using the advantage offered by the fTWA
method, that is, the fact that it can be easily extended to
higher-dimensional systems, we focus on the system with a
square lattice. It is worth mentioning that higher-dimensional
lattices have a higher coordination number and we expected
that performance of fTWA, as a semiclassical method, would
be improved (see also discussion in Ref. [42] where it is
shown that increasing the connectivity of the lattice improves
fTWA predictions).

In Sec. III it was shown that the predictability of fTWA for
the case with spin-independent linear potential can be ques-
tioned for longer times (especially as far as the spin degrees
of freedom are concerned). However, we decided to include
this case in our two-dimensional simulations in order to show
that the slowing down of dynamical behavior through the spin
dependence of the linear potential is also clearly observed
in the semiclassical picture in two dimensions (similarly like
in the ED case analyzed for Hubbard chain in the previous
section).

For a two-dimensional lattice system, the on-site potential
�( j, σ ) which was introduced in Sec. II has to be generalized
to the two spatial directions, i.e.,

�( j, σ ) = �1x(δσ↓ + Aδσ↑) jx + �2x( jx − jx,0)2

+ �1y(δσ↓ + Aδσ↑) jy + �2y( jy − jy,0)2, (12)

where j = ( jx, jy) is now a vector indicating the location of a
given lattice site (the jx and jy are the Cartesian coordinates in
the x and y directions, respectively). The coordinates jx,0 and
jy,0 denote the center of the harmonic potential. In order to
avoid lattice directions for which there is no potential change,
throughout most of the work, we assume that the strengths
of linear potentials in the x and y directions are �1x = �1

and �1y = √
2�1, respectively [23]. However, for simplic-

ity, the harmonic potential strength satisfies the condition
�2x = �2y = �2. In Eq. (12) we also assumed that the spin
dependence of the linear potential given by the parameter A is
the same for x and y lattice dimensions.

First we analyze the behavior of imbalances IC and IS at
long times for 6 × 6 lattice. We set the initial conditions in the
form of stripes [see inset in Fig. 5(c)] which are directly ac-
cessible in ultracold-atom experiments [38,40]. In the striped
CDW initial state every second stripe is doubly occupied and
the others are empty (in striped SDW every second stripe

contains fermions with spin up and the other sites are filled
with fermions with spin down). The choice of such initial
conditions needs a comment because the definitions of zC and
zS given in Sec. III have to be updated. Instead of Eqs. (6)
and (8), we introduce the following definitions of Ĉ and Ŝ
operators,

Ĉe/o =
∑

i∈Xe/o

n̂i, Ŝe/o =
∑

i∈Ye/o

m̂i, (13)

where Xe (Ye) and Xo (Yo) denote the sets of sites that are
initially doubly occupied (fermions with spin up) and empty
(fermions with spin down), respectively.

The outcome of the numerical simulations of zC and zS

are presented in Fig. 5 in which the results of three physical
situations corresponding to those in Fig. 1 are plotted. In the
simulations parameters are chosen in such a way that the
imbalance function without a tilt potential decays near zero
suggesting ergodic behavior within the analyzed timescales.
In each of the three cases [(i)–(iii); see Sec. III], as expected,
imbalance dynamics for zC and zS are slowing down when
the strength of tilt is increased. We also observe that the
relaxation of imbalances, after introducing a harmonic and
spin-dependent linear potential, becomes slower for weak and
intermediate tilts. To be more specific, in the charge chan-
nel and with the spin-independent linear potential (A = 1),
nearly diffusive dynamics of densities is observed at longer
times, i.e., zC ∼ t−γ , where γ = 1 [Fig. 5(a)]. After intro-
ducing the spin dependence of the linear field (A = 0.9),
the subdiffusive behavior appears (γ < 1) which is further
strengthened by a harmonic potential [Figs. 5(b) and 5(c)].
It is worth noting that the subdiffusive behavior was also
observed for two-dimensional interacting systems with a suf-
ficiently strong disorder [36,37]. For the spin degrees of
freedom, the situation is more complex due to spin depen-
dence of the linear potential. For the spin-independent tilt,
spin transport is superdiffusive and approaches diffusive when
the spin dependence is imposed [Figs. 5(d) and 5(e)]. In-
troduction of a harmonic potential makes the spin dynamics
become subdiffusive, similarly like in the charge case. This
is especially visible for higher values of the linear potential
strength; see Figs. 5(c) and 5(f). Interestingly, the subdiffusive
behavior of spin degrees of freedom was also observed in the
disordered two-dimensional Hubbard model [37]. It is also
worth mentioning that some delocalization features of the
initial striped CDW state with short wavelength have been
also recently reported in Ref. [35]. This is consistent with
our studies; however, in Ref. [35], different tilt direction and
shorter timescales have been analyzed, and therefore direct
comparison needs further investigation which we leave for
future studies.

It is important to mention that the fitting curves t−γ in
Fig. 5 were obtained for the long-time limit and for three
fixed values of �1/J . It is straightforward to notice that in
Figs. 5(a) and 5(b) there are significant deviations from these
fitting curves at later times. This can be accounted for by
significant finite-size effects in the dynamics, which is faster
in the system without a harmonic potential; see Appendix B.
In Appendix B we also explain that the finite-size effects
can be neglected in the cases when fTWA gives the lowest
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FIG. 5. Time dependencies of charge [(a)–(c)] and spin [(d)–(f)] imbalance functions. In each plot, different strengths of the linear potential
�1/J are taken, i.e., �1/J = 1, 3, 4, 5, 6, 9, 12 from the bottom to top [direction of increasing values of �1/J is marked by the arrow in (a);
see also the legend in (f)]. The first column [(a) and (d)] corresponds to A = 1, �2 = 0, the second column [(b) and (e)] to A = 0.9, �2 = 0,
the third column [(c) and (f)] to A = 0.9, �2/J = 0.5. Simulations are performed for a finite two-dimensional system with 6 × 6 sites and with
the striped CDW [(a)–(c)] or SDW [(d)–(f)] initial conditions. The structure of stripelike initial conditions is presented in the inset of (c). The
other parameters are U/J = 1, jx,0 = jy,0 = 0, and the number of trajectories used in fTWA is around 100.

errors and when it mimics the behavior of disordered systems.
Moreover, it is important to point out that small differences
in the steepness of the long-time asymptotics, e.g., γ = 0.5
and γ = 0.53 in Fig. 5(c), can stem from the fact that fTWA
accuracy can depend on the tilt strength. Indeed this was
shown in MSE studies for 1D systems in Sec. III and should
be taken into account analyzing long-time dynamics behavior.

We also investigate fC and fS focusing on the limit in
which fTWA satisfactorily describes the long-time dynamics,
i.e., when the spin dependence (A = 0.9) and the harmonic
potential (�2 = 0.5) are introduced. The results are presented
in Fig. 6 for charge and spin channels. Interestingly, in both
situations we observe a logarithmic-like growth of QFI, which
is slower for higher values of the linear potential. Here again
as for imbalances, the dynamics of QFI is similar to that
of strongly disordered systems in one and two dimensions
[37,50,51] or that of tilted triangular ladders [25]. In Appendix
B we also show that the finite-size effects do not play a signif-
icant role in the logarithmic growth and can be neglected.

In the end of this section we also look at the competition
between the linear (�1) and harmonic (�2) potentials in the
parameter range in which additional harmonicity of the lattice
leads to the appearance of long-lived ergodic and nonergodic

regions. Figure 7 presents the density plot of charge distribu-
tion on the lattice. At the expense of shorter time analysis,
we increase the size of the lattice to 8 × 8 and set the lowest
value of harmonic potential at the lattice center. To precisely
catch the density decay on the individual sites we choose
a checkerboard-like structure of the initial CDW-like state
in which only charge channel is analyzed. In the presented
simulations the linear potential is three times stronger than
the harmonic and we simply choose �1x = �1y = �1. We
observe that within the analyzed timescales, charges repre-
sented by doubly occupied sites did not decay at the corners of
the lattice. The corresponding phase separation has been also
recently observed in the one-dimensional system in which the
effective local field was used for explanation of such behavior
[26,29–31].

V. SUMMARY AND OUTLOOK

In this work we show that for a certain range of parameters,
the fTWA method can efficiently simulate quantum many-
body dynamics for the tilted Hubbard model. This is the
case when a harmonic and spin-dependent linear potentials
are imposed. Interestingly we observe also that this improve-
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FIG. 6. Time dependence of QFI for charges (a) and spins (b). The other parameters and denotations are the same as in Fig. 5; however,
here increasing values of �1/J correspond to the curves from the top to bottom [direction of increasing values of �1/J is marked by the arrow
in (a); see also the legend in (a)].

ment appears for higher-order correlation functions like QFI
suggesting that this strictly non-mean-field result is very ef-
ficiently described by the quantum fluctuations included in
fTWA.

These results enable us to discuss the many-body dynamics
of the disorder-free two-dimensional square lattice. We show
that quantum evolution of charge and spin degrees of freedom
exhibits subdiffusive behavior which is similar to that of disor-
der systems [36,37] (however, in two-dimensional disordered
systems a behavior somewhat faster than a power-law one
can be expected due to rare regions [14,65–67]). Moreover,
disorder-like dynamical behavior is also recovered for QFI
which shows a logarithmic-like growth [37,50,51]. Next fo-
cusing our study on the on-site density dynamics, we show
that the harmonic potential induces lattice locations at which
the ergodic or nonergodic type of behavior is observed. This
result complements the recent studies in one dimension in
which phase separation of ergodic and nonergodic regions has
been observed [26,29–31].

It is also worth pointing out that the spin dependence of the
linear potential, controlled in our simulations by a parameter
A, was similar to that of the recent experimental work in
Ref. [9]. This suggests that the fTWA method can become an

efficient tool for the theoretical prediction of real experimental
data for larger system sizes.

In future studies it will be interesting to investigate other
types of initial conditions like domain walls in two dimensions
[35] or other types of tilts that modify the lattice directions
for which potential changes can be small [23]. Moreover the
harmonic potential strength analyzed in this work can induce
anomalously slow dynamics in different parts of the lattice
locations and therefore it will be also interesting to look at the
dynamics locally and test the local effective potential theory
in the semiclassical picture [29–32].
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FIG. 7. Density plots of charge distribution for 8 × 8 square lattice at different times tJ = 0 (left), tJ = 10 (center), tJ = 300 (right). In
simulations �1x = �1y = �1 is chosen and around 100 fTWA trajectories are used in each plot. The other parameters are U/J = 1, A = 0.9,
�1/J = −6, �2/J = 2, j0x = j0y = 2.
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FIG. 8. Dependence of the RMSE(zC/S ) (a) and RMSE( fQ,C/S )
(b) on the linear potential strength �1. Parameters are A = 0.9 and
�2/J = 0.5. Simulations are performed for the one-dimensional sys-
tem with 8 sites and with the CDW (red squares) or SDW (blue
crosses) initial conditions. The other parameters are U/J = 1, j0 =
4, and the number of trajectories used in fTWA is 1000 or higher.

APPENDIX A: COMPARISON OF fTWA AND ED USING
RELATIVE MSE

In Sec. III, the fTWA method is benchmarked against ED
simulations. By using MSE, it has been shown that predic-
tions of fTWA are the most efficient in the limit of weak
and strong tilts. Moreover, including harmonic potential and
spin-dependent linear tilt further increases the accuracy of
fTWA simulations. To further investigate fTWA in this limit
one can also ask about other measures which can benchmark
fTWA reliability when simulating long-time dynamics. Here,
we additionally analyze relative MSE (RMSE) which is de-

fined by the formula

RMSE(zC/S ) =
∑Ns

j=0

(
zED

C/S ( j�t ) − zfTWA
C/S ( j�t )

)2

∑Ns
j=0

(
zED

C/S ( j�t ) − z̄ED
C/S

)2 , (A1)

where

z̄ED
C/S = 1

Ns + 1

Ns∑
j=0

zED
C/S ( j�t ) (A2)

is a mean value of ED imbalance over time for CDW and
SDW initial state which correspond to C and S indices, respec-
tively. The corresponding RMSE can be also calculated for the
quantum Fisher information function by simply interchanging
zC/S to fQ,C/S in Eq. (A1).

In Fig. 8, we present results for RMSE(zC/S ) and
RMSE( fQ,C/S ). We show that RMSE exhibits a similar qual-
itative behavior observed for MSE in Figs. 2 and 4. RMSE
also suggests that the charge channel is more effectively
approximated by fTWA at weak and strong tilts than the spin
one [with a small exception for the weak disorder where spin
imbalance exhibits slightly lower RMSE than the charge one;
see Fig. 8(a)].

APPENDIX B: FINITE-SIZE EFFECTS

In Fig. 9 we present the finite-size effects for the imbalance
function and QFI. Within the considered system sizes, we
only see qualitative difference in these effects for the charge
channel without an imposed harmonic potential [Figs. 9(a),
9(b)]. Interestingly, in the limit of disorder-like behavior ob-
served for the two-dimensional system [Figs. 9(c), 9(d), 9(g),

FIG. 9. Imbalance zC , zS and QFI fQ,C , fQ,S functions for different lattice sizes: 4 × 4, dashed lines; 6 × 6, solid lines. In each panel the
plots are made for the two values of tilt strength �1/J = 4 (dark blue), �2/J = 5 (light blue). The first row [(a)–(d)] represents the dynamics
evaluated from the striped CDW initial condition, while the second row [(e)–(f)] represents the dynamics evaluated from the striped SDW
initial condition. U/J = 1 and about 100 fTWA trajectories were used for a simulation of each line.
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FIG. 10. Charge imbalance zC (a) and QFI fQ,C (b) for different
values of the linear potential �1/J . Solid lines inside envelopes
representing original data are obtained by filtering high-frequency
oscillation and fTWA noise. The data presented in (a) and (b) corre-
spond to Fig. 5(c) and Fig. 6(a) for chosen values of �1/J .

9(h)], the finite-size effects seem unimportant in the presented
discussion.

APPENDIX C: HIGH-FREQUENCY OSCILLATIONS
AND NOISE

The dynamics presented in Fig. 10 was filtered from high-
frequency oscillations coming from inherit quantum dynamics
on the tilted lattice and from spurious fTWA noise coming
from sampling of the initial Wigner function. The spurious
fTWA noise can be removed taking more fTWA trajectories;
however, the application of filtering is less numerically costly
than the simulation of more trajectories. We checked that ad-
dition of more fTWA trajectories does not change the filtered
signal. To filter the obtained data a Kaiser window was used.
An example original signal and its form after filtering are
presented for zC and fQ,C in Fig. 10.
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