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Heat transport in an ion Coulomb crystal with a topological defect
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The thermodynamics of low-dimensional systems departs significantly from phenomenologically deducted
macroscopic laws. Particular examples, not yet fully understood, are provided by the breakdown of Fourier’s law
and the ballistic transport of heat. Low-dimensional trapped ion systems provide an experimentally accessible
and well-controlled platform for the study of these problems. In our paper, we study the transport of thermal en-
ergy in low-dimensional trapped ion crystals, focusing, in particular, on the influence of the Aubry-like transition
that occurs when a topological defect is present in the crystal. We show that the transition significantly hinders
efficient heat transport, being responsible for the rise of a marked temperature gradient in the nonequilibrium
steady state. Further analysis reveals the importance of the motional eigenfrequencies of the crystal.
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I. INTRODUCTION

The study of how heat is transported through a system in
different phases is an active field of research since the days of
Newton and Fourier [1–5]. Surprisingly, well-established phe-
nomenological findings seem to be invalid in low-dimensional
harmonic systems [6]. Phenomena contradictory to the laws
governing the heat transport on macroscopic scales have been
observed in different lattice models [6,7], sparking the interest
to understand the role of different microscopic properties.
The interplay of linear and nonlinear dynamics, as in the
well-known Fermi-Pasta-Ulam model [8], or the importance
of integrability and disorder in the system, are some examples
to be named here [9–14].

While transport in these theoretical models, also in the
quantum realm [15–18], has attracted considerable attention,
the experimental investigation of low-dimensional systems
proved to be difficult due to the lack of a well-suited platform
with sufficient control and readout techniques. In this context,
trapped ions offer a particularly interesting platform, with
excellent access to the particles, as well as a rich variety
of laser manipulation and readout techniques [19]. In addi-
tion, the possibility to vary the confinement in different trap
dimensions allows for the tuning of the geometry and the di-
mensionality of the crystals’ nonlinear effects are introduced
due to the Coulomb interaction.

Along this direction, there have already been several theo-
retical works studying the transport of energy in ion crystals
in different configurations and limits [20–25], while early
experiments demonstrated the controlled insertion of motional
excitations and the readout of their dynamics through the
crystal [26,27]. In addition to regular lattice configurations,
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such as linear chains or triangular lattices, experiments have
realized stable lattice defects in ion crystals [28–30]. Their
discovery has triggered a series of investigations, including
the experimental confirmation of the Kibble-Zurek scaling
for their creation probability, and their ability to emulate
paradigmatic models of nanofriction [28,31–35]. Especially,
the detection of a sliding-to-pinned transition, celebrated in
the tribology context as the Aubry transition [36], has opened
questions regarding their effect on the dynamics of local
excitations [11,37,38]. Simultaneously, a complementary ap-
proach employing linear ion strings in the periodic potential of
a standing wave laser field has demonstrated similar physics,
showing the existence of a frictionless phase [39–43].

Previous work showed that energy transport in ion crystals
in the presence of a topological defect is nontrivial [25]. In
this paper, we expand this study in the context of thermal
conductivity and investigate heat flux through the crystal and
the defect. Towards this goal, we couple the two ends of the
system to a source and a drain of thermal energy represented
by Langevin heat baths [44,45]. We are interested in how
the presence of the defect and its sliding-to-pinned transition
translates into the temperature profiles and heat flux in the
nonequilibrium steady state. When comparing our results with
those obtained for a regular zigzag crystal, we observe a
significant drop in conductivity caused by the defect accom-
panied with the emergence of a sharp temperature drop in the
pinned phase. Moreover, we reveal the delicate dependence
of the considered observables on the trap confinement, tem-
perature scale, and bath coupling. Our results emphasize the
importance of defects for heat transport properties in crys-
talline structures and suggest making use of the advantages
of trapped ion systems to measure them.

The structure of the paper is as follows. Section II
presents the system under consideration. The corresponding
dynamical equations are discussed in Sec. III. The harmonic
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FIG. 1. Schematic depiction of the system considered. The outer
four ions of a zigzag crystal with a kink defect are coupled to
Langevin heat baths with different temperatures. The ion crystal
develops a temperature profile in the steady state. The grey points
depict the zigzag crystal, the colored points are for a crystal with a
localized (odd) defect in the central region.

approximation valid at low energies is introduced in Sec. IV.
In Sec. V, we analyze how the presence of a topological defect
affects the temperature distribution in the crystal, whereas the
total heat flux is discussed in Sec. VI. Finally, we summarize
our conclusions in Sec. VII.

II. ION COULOMB CRYSTALS

We consider in the following N ions of mass m confined in
a linear Paul trap that provides, in ponderomotive approxima-
tion, a harmonic potential with secular frequencies ωz, ωx =
αωz and ωy = βωx. We neglect the micromotion from the fast
oscillating electric field [46]. The system is characterized by
the Hamiltonian

H =
N∑
i

�p2
i

2
+ V ({�ri}), (1)

where �pi = (pz
i , px

i , py
i ) and �ri = (zi, xi, yi ) are, respectively,

the momentum and position of the ith ion. The potential
energy is of the form V = ∑

i vi, with

2vi({�r j}) = z2
i + α2

(
x2

i + β2y2
i

) +
∑
j �=i

1

|�ri − �r j | , (2)

where the last term is provided by the Coulomb repulsion
between the ions. Throughout the paper, we fix ωz = 2π ×
25 kHz and use L = (e2/4πε0mω2

z )1/3 as the length unit, E =
mω2

z L2 as the energy unit, and W = 1/ωz as the time unit, with
e the elementary charge and ε0 the vacuum permittivity.

The system crystallizes when the thermal energy of the
ions is sufficiently low. The shape of the resulting crystal is
determined by the competition between the Coulomb repul-
sion that tends to maximize the distance between ions, and the
trap confinement, which pushes the particles closer together.
Different structural phases have been observed depending on
N and the aspect ratios α and β. For the regime α, β > 1
considered in this paper, the crystal structure lies solely in the
zx plane.

Moreover, we tune α into a regime where the minimal-
energy configuration is provided by the ions forming a
triangular ladder along the z axis, see Fig. 1. This crystal is
commonly referred to as zigzag. As the harmonic confinement
causes the charge density to be the largest in the trap with
increased ion distances at the crystal boundaries, the zigzag
phase does not extend across the whole system. Typically,
the outermost ions remain close to the trap’s z axis, leaving

two spatial phase transitions whose locations shift outward
with decreasing α. Due to the mirror symmetry (xi ↔ −xi)
of the potential V , there exist two such states, which can be
transformed into each other by flipping the positions along x.
Interestingly, this opens the possibility to introduce topologi-
cal defects, or kinks, in the crystal, which can be interpreted
as a domain wall between the two degenerate zigzag configu-
rations, see Fig. 1.

Kinks in ion crystals have been subject to intensive study
[31,32,47]. It has been experimentally shown that a kink
enables the emulation of nanofriction models, including a
sliding to pinned transition, also known as an Aubry transi-
tion, which occurs due to the local incommensurability of the
ion distances in the upper (x > 0) and lower (x < 0) subchains
of the triangular ladder [34,35]. The transition occurs when,
by increasing α, the crystal is squeezed closer to the z axis,
modifying the influence of the subchains on each other. Most
importantly, when transitioning from the sliding to the pinned
phase, the Z2 symmetry of the crystal along z is broken, lead-
ing to robust localization features in the dynamics [25]. The
defect slides into one of two possible equilibrium positions
away from the trap center or, if the thermal energy permits
it, jumps perpetually between the two configurations by over-
coming the energy barrier that connects them. Although the
dynamics is nonlinear, the blockade of the energy transport
can be traced back to the presence of asymmetric motional
modes of the crystal that dominate the dynamics for small-
enough energies. In the following, we study how the transition
influences the thermal conductivity of the system when the
crystal is transporting heat from a warmer to a colder bath.

III. DYNAMICAL EQUATIONS

To investigate the thermal conductivity properties of a two-
dimensional Coulomb crystal, we assume that the particles
at the edges of the system are coupled to Langevin heat
baths with different temperatures, as schematically indicated
in Fig. 1. Therefore, the Hamilton equations determined from
the Hamiltonian Eq. (1) must be modified to include the cor-
responding dissipation and fluctuation terms.

We assume that at the temperatures considered in this
paper, quantum effects play a negligible role for the nonequi-
librium steady state. Recent work has shown that quantum
corrections to the dynamics of ion crystals hosting a topolog-
ical defect only occur close to the critical point of the Aubry
transition and are only observable in the µK regime [43,48].

The resulting Langevin equations acquire the form

d2

dt2 �ri = −�∇iV − �i · �pi + �ξi(t ), (3)

where �i = diag(γ z
i , γ x

i , γ
y
i ) is a diagonal matrix containing

the dissipation rates in the different spatial dimensions. The
stochastic force �ξi(t ), provided by momentum kicks exerted
by the heat baths, fulfills the fluctuation-dissipation theorem:

〈�ξi(t )〉 = �0 〈�ξi(t ) ⊗ �ξ j (t
′)〉 = 2�i · Tiδi jδ(t − t ′), (4)

where 〈〉 denotes the ensemble average, (�a ⊗ �b)i j = aib j is
the outer product of two vectors, and Ti = diag(T z

i , T x
i , T y

i )
is a matrix containing the temperatures of the heat baths in
units of F = E/kB, with kB the Boltzmann constant. In a
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trapped-ion experiment, the emulation of different heat baths
may be accomplished by Doppler cooling lasers detuned from
a cooling transition [49]. While in this case the reachable
temperatures of the heat baths are Doppler limited, advanced
cooling techniques are able to reach sub-Doppler regimes. We
assume that the projection of the cooling lasers is the same
for all spatial dimensions, hence we can write �i = γi1 and
Ti = Ti1.

We are interested in the behavior of the dynamical temper-
ature of the ions, which we define as

τi =
〈
�p2

i

〉
3

, (5)

as well as in the total amount of energy the crystal can trans-
port. To quantify the latter, we define the net energy the system
gains from the coupling to the heat baths

dH

dt
=

∑
i

ji, (6)

where ji is the energy transported from the heat bath to
ion i. Calculating the time derivative of H and inserting the
Langevin Eq. (3), we can write

ji = �pi(t ) · �ξi − �pi · �i · �pi. (7)

During the thermalization process, the crystal, depending
on the initial conditions, gains or loses energy. When the equi-
librium steady state is reached, the same amount of energy
is dissipated into the colder heat bath as is flowing into the
system from the hotter bath, so

∑
i 〈 ji〉 = 0. The amount of

energy that is transported, i.e., flowing into the system on
one end and dissipated at the other end of the system, is the
system’s heat flux, defined by

J (t ) = 1

2

∑
i

|〈 ji(t )〉|, (8)

which we employ as a measure for the thermal conductivity of
the crystal. In the steady state, limt→∞J (t ) gives the amount
of energy transported through the system. To calculate J , we
employ Novikov’s theorem [50], which yields

〈 ji〉 = tr(�i · Ti ) − 〈�pi · �i · �pi〉 (9)

= 3γi(Ti − τi ), (10)

where the last equality is only valid for our choice �i, Ti ∝ 1.
While the first term in Eq. (9) is externally determined, the
second one characterizes the response of the system to the
heat current and needs to be calculated. Towards this end, we
perform numerical calculations solving the stochastic dynam-
ical Eq. (3) for discretized time steps [51]. For a given set
of parameters, we calculate 500 independent trajectories of
the ions. To determine the ensemble averages in Eq. (5), we
average over the trajectories and build a time average of 50 ms
when the system has reached the steady state. In addition to
this numerical approach, the linearization of the dynamical
equations provides important insights, as detailed below.

IV. LINEAR ANALYSIS

Assuming that the energy of the ions only allows for small
fluctuations of their positions, we may expand the potential
Eq. (2) up to second order in the deviations from their average

positions. This approximation permits on one side analytically
solvable dynamical equations, since the system is described
by coupled harmonic oscillators. On the other side, when com-
pared to full numerical computations, it reveals the relevance
of the nonlinearity induced by the Coulomb interaction in the
heat transport in the crystal.

For vanishing temperature, the ions settle down at
their equilibrium configuration �u0, where we have con-
densed all degrees of freedom in a single-state vector �u =
(�r1, . . . , �rN , �p1, . . . , �pN ). We expand the dynamical Eqs. (3)
up to first order in the deviations from the equilibrium �q =
�u − �u0, which yields

d

dt
�q = −

(
0 −1

K �

)
· �q +

(
0

�ξ (t )

)
, (11)

where we have written in a compact way the dissipation-
rate matrices � = diag(�i ) and the stochastic forces �ξ (t ) =
(�ξ1(t ), . . . , �ξN (t )). The coherent dynamics is provided by the
dynamical matrix K = �∇ ⊗ �∇ V ({�ri})|�u0

. We diagonalize the
dynamical matrix, UT · K · U = D, where the diagonal ma-
trix D and the unitary matrix U contain the eigenfrequencies
of the crystal and the spatial structure of the corresponding
eigenmodes. Denoting by �θ the state vector of the eigenmodes
containing their amplitudes and momenta, we obtain an equiv-
alent, more convenient formulation of the Langevin equations,

d

dt
�θ =

(
UT 0
0 UT

)
· d �q

dt
= −

(
0 −1

D �̃

)
︸ ︷︷ ︸

�

·�θ +
( �0

��
)

, (12)

where �̃ = UT · � · U is the transformed dissipation matrix
and �� = UT · �ξ is the transformed stochastic force vector.
The latter fulfills a fluctuation-dissipation theorem as that
of Eq. (4) but with the transformed temperatures T̃ = UT ·
T · U . Note that the modified dissipation matrix and the
transformed temperature matrix are not necessarily diagonal
anymore, which can be interpreted as a dynamical coupling
of the motional modes. The Langevin Eq. (12) are formally
solved by

�θ (t ) = e−�t · �θ (0) +
∫ t

0
e�(s−t ) ·

( �0
��(s)

)
ds, (13)

where the first term describes the damped oscillations of the
initial mode populations, whereas the latter part describes
the stochastic motion. We insert this solution into the second
moment matrix C(t ) = 〈�θ (t ) ⊗ �θ (t )〉, obtaining

C(t ) = e−�t · C(0) · e−�T t +
∫ t

0
e�(s−t ) ·

(
0 0
0 2�̃ · T̃

)

· e�T (s−t )ds, (14)

from which we can read off the dynamical temperatures of
the different motional modes τ̃i = Ci+3N,i+3N , after carrying
out the time integral. Finally, we can calculate the net heat
flux for each motional mode, which is given by

〈 j̃i〉 = (�̃ · T̃ )i,i −
3N∑
l

�̃i,lCl+3N,i+3N . (15)

The motional mode vectors are generally spatially extended
and therefore the modes couple to the hotter and the colder
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bath simultaneously. We can think of the modes as harmonic
oscillators coupled to two different thermal baths at the same
time, and hence 〈 j̃i〉 vanishes in the steady state. However, we

can unambiguously split the dissipation matrix �̃ = �̃
h + �̃

c

and the temperature matrix T̃ = T̃
h + T̃

c
into the contribu-

tions coming from the different heat baths. This allows for the
calculation of the heat flux from the hot bath into the motional
modes, as well as of the heat flux dissipated into the colder
bath, by inserting the respective parts of the matrices into
Eq. (15). In the steady state, these two terms add up to zero, so
the absolute value of one of them gives the energy transported
by the mode i, the total flux Eq. (8) is then given by the sum
over all modes.

V. TEMPERATURE DISTRIBUTION

In this section, we investigate the temperature distribution
in two-dimensional ion crystals in the presence of a topolog-
ical defect, focusing on the impact of the symmetry breaking
at the Aubry transition [34]. Throughout this section, we
consider that the four leftmost and four rightmost ions of the
crystal are coupled to thermal baths, see Fig. 1, with fixed
dissipation rate γ /W = 20 kHz that is comparable to experi-
mentally reached values [28]. In the discussed range of α, the
heat reservoirs have a finite overlap with the central zigzag
phase of the ion crystal. If the ions coupled to the heat reser-
voirs remain in the linear phase, we expect to observe slight
modifications of the steady-state temperature profile triggered
by the presence of the spatial phase transitions to the central
zigzag phase, see Fig. 1 [22]. We consider a temperature
difference between the two heat baths (T h − T c)F = 0.2 mK,
and set the average temperature T̄ = (T h + T c)/2 to different
values to assess the effects of thermal fluctuations on the
Aubry transition. Figure 2 shows the steady-state temperature
distributions for different trap aspect ratios α, for a zigzag
crystal with and without a kink.

For a defect-free zigzag crystal with α = 6.0, we observe
a sharp temperature edge at both ends of the crystal and a
flat profile for the inner ions, similar to the results observed
in a linear ion chain [20]. Changing α does not substantially
change the profile, although for α = 7.0 the central ions show
a slight temperature gradient. Counterintuitively, the central
profile for α = 6.0 exhibits a small gradient opposed to the
heat bath temperatures; the details for this behavior in the
zigzag phase are discussed later. The excellent agreement be-
tween the numerical results and the harmonic approximation
indicates the irrelevance of nonlinearities for these temper-
atures. These findings differ from the results of Ref. [22]
for the same particle number, which showed the emergence
of a temperature gradient in the zigzag phase. We assign
this discrepancy to the much larger temperatures of several
mK and stronger dissipation rates considered in that work.
As pointed out in Ref. [22], thermal fluctuations lead to
nonlinearities being probed during the dynamics, which give
rise to coupling and scattering of the phonon modes of the
crystal. Ultimately, the breakdown of the harmonic descrip-
tion was pinpointed as the reason for the growth of the
temperature slope by a Fourier analysis of the ion positions.
Our results of the defect-free zigzag complement this dis-
cussion, since they show that the absence of a temperature
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FIG. 2. Temperature profiles of an ion crystal of N = 30 ions for
the symmetric sliding phase α = 6.0 (a) and the symmetry-broken
pinned phase α = 7.0 (b) The graphs are normalized by 0.5(T h −
T c ). Results in blue are for the defect-less zigzag, whereas results
for a crystal with a topological defect are shown in red and green.
The dashed lines depict the results of the harmonic approximation,
the circles indicate numerical results for the same parameters. For the
blue and green curves, the bath temperatures have been set to 0.5 mK
and 0.7 mK, whereas the graph in red is for 0.05 mK and 0.25 mK.
The vertical lines indicate the position of the ions that are used for
the calculation of dT (see text).

gradient can be recovered for temperatures of the order of the
Doppler temperature and far away from the linear-zigzag tran-
sition. We expect that the observed increased susceptibility
to nonlinear dynamics in the zigzag phase, as opposed to the
robust ballistic transport in the linear regime, can be linked
to the finite density of nonlinear resonances between phonon
modes [25].

The presence of a kink in the sliding phase smoothens the
temperature profile, reducing the drops at the outer parts of
the system, see Fig. 2(a). This results from the localization
of the spatial shape of the motional modes induced by the
defect, which breaks the local translation invariance in the
zigzag region.

The so-called Peierls-Nabarro (PN) potential enables a
deeper insight into the properties of the kink [47,52]. When
understood as a quasiparticle inside the crystal, the defect
moves inside an effective potential landscape that crucially
depends on the trap configuration. In the sliding regime, the
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defect is repelled from the edges of the inhomogeneous crys-
tal, resulting in an approximately harmonic PN potential, with
its minimum at the trap center. The deviations of the PN
potential from its harmonic approximation are not probed at
the considered temperature scale, and hence the presence of
the defect does not result in significant nonlinear effects. As
a consequence, the steady state is well described by the linear
theory, as seen in Fig. 2(a).

The temperature profiles show a markedly different be-
havior when α is tuned into the pinning regime, as seen in
Fig. 2(b). Linear theory predicts a sharp drop of the tempera-
ture across the defect, and that the temperature profile does
not present mirror symmetry, τ (z) − T̄ = T̄ − τ (−z), as in
Fig. 2(a). These observations are explained by the emergence
of asymmetric modes in the spectrum, which are localized on
one side of the defect, and hence are unable to contribute to
the transport of heat across the system. Since these modes are
strongly coupled to only one thermal bath, their presence leads
to a step-shaped temperature profile.

For low average temperatures, the linear-analysis predic-
tion is supported by our numerical simulations. We observe a
nonuniform temperature gradient across the crystal with the
largest slope at the position of the defect. Although the qual-
itative observations agree, the markedly stronger deviations
from the harmonic approximation compared to the sliding
regime indicate the relevance of the nonlinear dynamics of
the kink in the pinned phase, even well below Doppler tem-
perature. When the energy scale of the baths is increased,
the profile becomes close to a linear gradient such that no
sharp feature of the energy blockade can be observed. This
observation stands in clear contrast to the predictions of linear
theory, marking the onset of nonlinear dynamics.

As shown above, the steady-state temperature distribution
provides a clear signal of the Aubry transition. To gain a better
understanding of the effect of the Aubry transition and its
interplay with thermal fluctuations, we depict in Fig. 3 the
temperature difference dT between the 11th and the 20th ion
as an indicator for the profile structure in the central region,
see the vertical lines in Fig. 2. It is shown as a function of the
trap aspect ratio α and the average temperature T̄ of the two
heat baths; blue regions indicate a close to vanishing tempera-
ture gradient whereas red to yellow marks strong temperature
drops. As a benchmark, we show in the upper diagram dT as
a function of α for a defect-free zigzag crystal. As discussed
above, the zigzag crystal exhibits only a small gradient in the
center, not larger than 15% of the temperature difference of
the baths. Note that dT falls below zero in this case, around
α = 6.0, as already seen in Fig 2.

The lower plot of Fig. 3 depicts the results for a crystal
initialized with a defect. In the sliding phase, α < 6.4, dT is
on the same order as for the defect-free zigzag crystal. This
result is independent of the average temperature and agrees
with the profiles shown in Fig. 2. Increasing α into the pinned
phase, the temperature slope rises significantly at the critical
point for small temperatures, clearly pinpointing the Aubry
transition as the cause of the modification in the steady-state
distribution. Up to a value of α ≈ 7.5, there exists a parameter
window in which the temperature slope for the central ten
ions covers around 40% of the difference between the bath
temperatures (note that the ions coupled to the thermal baths
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FIG. 3. Top: Temperature difference between the 11th and the
20th ion normalized by the difference of the bath temperatures for a
zigzag crystal. The dashed line depicts the linear theory result and the
circles indicate the numerical results for bath temperatures of 0.5 mK
and 0.7 mK. Bottom: Same quantity for a crystal initialized with kink
as a function of the trap aspect ratio α and the mean temperature T̄ of
the baths, normalized by the Doppler temperature TD = 0.5 mK for
Yb+. The white dots indicate the parameter choices from Fig. 2. For
α > 7.5, the kink can be lost for large T̄ (see text).

do not reach the bath temperatures due to the insufficient
coupling strength γ , see Fig. 2).

When the average temperature of the system is increased
for a fixed α, the system shows a transition into a phase with
a weaker temperature slope for the defect ions, as observed
in Fig. 2(b). The PN potential is again key to understanding
this feature. At the Aubry transition, the globally confining,
smooth PN potential develops periodic barriers [47]. Crucially
for the discussion, a local maximum rises at the crystal center,
leading to the emergence of two degenerate local minima
located off the center. For small energies, the defect falls spon-
taneously into one of these local minima, thereby breaking the
symmetry of the crystal, and remains close to the randomly
chosen configuration. Hence, the dynamical properties are to
a certain extent characterized by the harmonic approximation
of the potential around that configuration, and phenomena like
the sharp temperature drop emerge.

However, for large enough temperatures, the defect ex-
hibits a finite probability to overcome the energy barrier that
emerged at the Aubry transition via thermal fluctuations, and
can hence change its configuration between the two degen-
erate minimal energy states. Such a hopping results in the
smoothening of the temperature profile [see Fig. 2(b)], and
therefore in the reduction of dT , as it induces heat transport
between spatial regions which remained disconnected at low
energies. In this thermally delocalized regime, however, the
steady state dT remains larger than in the defect-free zigzag
case, as a remaining signal of the symmetry breaking due
to the finite dwelling time in one of the symmetry broken
states. The observed thermal crossover resembles that in-
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duced by thermal fluctuations at the linear-to-zigzag structural
transition [53–55] or by quantum fluctuations at the Aubry
transition for much colder systems [43,48,56].

The critical temperature of the crossover is a nontrivial
function of the trap aspect ratio. While it increases with in-
creasing α in the pinned phase, it saturates around α = 7 and
later decreases for α > 7.5. For larger values of α, the kink
undergoes a second transition into a localized shape, denoted
as an odd kink [30,47]. Most importantly, the PN potential
changes into an inverted harmonic oscillator, while the peri-
odic modulations introduced at the Aubry transition remain
and stabilize the defect for small energies in local minima.
Since the crystal edges are now attracting the kink, a transition
into a thermally delocalized phase opens a channel for the
complete loss of the kink. Indeed, the probability to travel to
the crystal edges and vanish there becomes nonzero when the
kink is able to overcome the barriers between local potential
minima in the PN potential and statistically hop between
them. We observe the losses of the defect in our simulations
for α > 7.5 but do not postselect those trajectories in which
the kink stays confined for the calculation period. The reduc-
tion of the temperature gradient for large α and T̄ observed in
Fig. 3 is caused by the loss of the kink characterizing the de-
localized phase in this regime. The critical temperature for the
thermal crossover to the delocalized regime drops to a local
minimum at α = 7.8, coinciding with the crossover to the odd
kink. Subsequently, the reduced heat transport becomes more
robust again around α ≈ 8.0. The two regions with robust
dT observed in Fig. 3 match well the observed parameter
windows of a strong blockade of a coherent excitation [25].
For α > 9.0, the crystal with a kink is not a stable equilibrium
of the system anymore as the modulations in the PN potential,
which are crucial for the stability of the defect, decline in size
for growing α and vanish subsequently.

One could expect that the crossover into the thermally
delocalized phase should occur when the temperature of the
system becomes comparable to the PN barrier. Interestingly,
although the energy barriers between different equilibrium
states of the kink are typically of several mK [47], thermal
delocalization occurs on the Doppler temperature scale (TD ≈
0.5 mK here), as seen in Fig. 3. Although we argue that the
observed features can be understood from the form of the PN
potential, this discrepancy indicates a more involved interplay,
yet to be explored, between the thermal fluctuations of the
kink and the residual motional modes of the crystal.

VI. HEAT FLUX

We analyze at this point the total heat flux J , given by
Eq. (8), transported in the steady state, see Fig. 4. For a
defect-free zigzag crystal, both linear theory and the numer-
ical results show a global minimum between α = 6.5 and
α = 8.5. For larger α, J shows an approximately linear growth
with α, whereas for lower α it presents a more irregular
growth. Nonlinearities lead to a speedup of heat transport,
since our numerical results show an uniform offset to larger
values compared to linear theory. A similar dependence on
α has been reported in Ref. [22], employing numerical sim-
ulations, although the presence of a trap configuration with
minimal heat flux in the considered parameter window has not
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FIG. 4. Total heat flux J through the crystal [normalized by
0.5γ (T h − T c )] as a function of the trap aspect ratio α. The blue
curves indicate the results for the defect-free zigzag crystal, while
red and green graphs depict the case with a kink. The dashed lines
indicate the linear theory results, and the circles our numerical re-
sults. For the latter, the bath temperatures have been set to 0.5 mK
and 0.7 mK for the blue and green graph, whereas in red we depict
our results for 0.05 mK and 0.25 mK. The gray dashed bars indicate
the Aubry transition and the crossover to the odd kink.

been discussed. We address this point in the final part of this
section.

For α > 6.0, the presence of the kink markedly reduces the
amount of heat the crystal can transport, even in the sliding
phase in which the crystals symmetry persists, see the red
graphs in Fig. 4. The results for J based on the harmonic
approximation show in the sliding regime a heat flux slightly
below the values for the defect-free case. At the Aubry transi-
tion, they display an abrupt decrease, followed by two minima
of J , one at α ≈ 7.0 and the other at α ≈ 8.25. These minima
agree well with the regions of a robust temperature gradient
observed in Fig. 3.

For a low system temperature (red circles in Fig. 4), the
numerical results remain close to the linear theory prediction
but, as for the defect-free case, they show an uniform offset
towards faster transport. For larger temperatures, the kink
becomes thermally delocalized and hence allows for faster
energy transport (green circles in Fig. 4). Although the sig-
nal strength of the Aubry transition is therefore reduced, the
decrease of J remains, even for these temperatures, a clear
signature of the transition.

As a final point, we address a subtle issue concerning the
presence of a minimal heat flux and a negative dT for the
zigzag crystal. In Ref. [22], the reduction of J when α is
quenched through the linear-to-zigzag transition is explained
by the growing inter-ion distances [22] when the ions start ex-
ploring the radial (x) direction. This argument cannot explain
however our results, exhibiting a minimum in the heat flux
for the defect-free zigzag crystal, as the ion distances are a
monotonously-growing function with decreasing α. Further-
more, the linear theory results show finer features of the J
curve, as shown in Fig. 4.

To argue that both these observations can be explained
from the structure of the motional modes, we compare in

134302-6



HEAT TRANSPORT IN AN ION COULOMB CRYSTAL WITH … PHYSICAL REVIEW B 108, 134302 (2023)

4

5

6

7

8

9

10

11

12

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

J

α

FIG. 5. Normalized total heat flux obtained from linear theory
for different values of the coupling γ . The dashed lines indicate
the results without (blue) and with (red) kink for γ /W = 20 kHz,
as in Fig. 4, whereas the solid lines depict the zero coupling limit,
calculated for γ /W = 0.002 Hz. The vertical dashed lines indicate
again the points of Aubry transition and the crossover to the odd
kink.

Fig. 5 the result for the heat flux observed in Fig. 4 with
the outcome of the calculation in the limit of vanishing cou-
pling γ . In this discussion, we only compare the linear theory
results, since the numerical calculation for γ → 0 demands
unreachable equilibration times. We believe this approxima-
tion is, however, enough for the following discussion, since
our results exhibit a good agreement with the numerics for the
case of a defect-free zigzag crystal. Note that the results are
normalized by J0 = 0.5γ (T h − T c) such that the trivial linear
scaling of the flux with the coupling strength is accounted for.
Changes in the heat conductivity are hence due to the altered
system response.

For the symmetric crystals, i.e., the zigzag and the kink
in the sliding phase, the heat flux is independent of α and
shows additional negative peaks. The Aubry transition leads
to a strong heat flux reduction in the presence of the kink,
but the sharp features persist in the pinned regime. While
the effect of the sliding-to-pinning transition remains observ-
able for the value of γ /W = 20 kHz employed above, the
resonance features observed at low γ were partially washed
out. The fine modulations coincide with α values for which
two motional modes contributing to the energy transport be-
come degenerate, resulting in oscillations with a fixed phase
relation. Since the mode vectors have alternating symmetry
(symmetric-antisymmetric under mirror transformation z ↔
−z) with increasing energy, for the symmetric crystal cases
their correlated motion leads to a destructive interference in
one half of the crystal. Ultimately, this results in a sharp
decrease in heat conductivity at the resonance points. For
the crystal with broken symmetry, the mode vectors do not
possess a fixed symmetry anymore and hence a resonance can
increase energy transport, as the presence of positive peaks in
J in this phase only shows. Similarly as in a driven harmonic
oscillator, the increase of the damping γ broadens the reso-
nance peaks, which subsequently start to overlap and finally
wash out.

Based on these findings, we understand the reduction of
the heat flux in zigzag crystals and the presence of a minimal
conductivity configuration as a consequence of the density
of mode crossings in the motional spectrum of the system
in the considered temperature scale. This is supported by
the fact that the calculated heat flux is only weakly de-
pendent on α when the crystal forms a chain [22]. In that
phase, the absence of mode-frequency crossings as a function
of α yields an invariant flux, and a small decrease with α

can be explained due to the bunching of the radial mode
frequencies. For off-resonant values of α, each of the four
ions coupled to one of the heat reservoirs contributes J0

to the total heat flux J for each dimension with γ
μ
i �= 0,

which yields in our case J = 12J0, a result that can be rig-
orously shown for harmonic oscillator models in the limit
γ → 0 [7,57].

The resonances coincide as well with peaks in dT in
the low γ regime. Depending on the spatial structure of the
affected phonon modes, they can be positive and negative,
causing a departure from dT = 0. We therefore argue that the
observation of a small positive and even negative temperature
gradient in the central crystal region, as seen in Figs. 2 and 3
(top), is also a direct consequence of the frequency degenera-
cies in the motional spectrum.

VII. CONCLUSION

The presence of a topological soliton strongly affects heat
transport in an ion crystal, which in itself already exhibits
an intricate dependency on external parameters. We observe
the emergence of a sharp and large edge in the temperature
profile in the pinned phase that is successively smoothened for
larger temperatures as the kink enters a thermally delocalized
regime. On the same temperature scale close to the Doppler
limit we recover a flat temperature profile ion the case of
a defect-free crystal, showing ballistic energy transport and
therefore the violation of Fourier’s law. Moreover, we ob-
served a reduction of the flow of heat caused by the defect with
respect to the heat flux in the zigzag case. Lastly, our findings
emphasize the importance of the phonon mode spectrum of
the crystals as degeneracies and possibly resonant mode cou-
plings lead to a change in the conductivity of the system and
cause in special cases a temperature gradient opposed to the
flow of heat.

In addition, our paper raises further questions that re-
mained unanswered in this paper. The interplay between
the motion of the defect inside the effective PN potential
and the residual degrees of freedom of the crystal proves
to be nontrivial, as the mismatch between the energy scales
for the crossover to the delocalized regime and the size
of the PN barriers localizing the kink demonstrates. Here
the formulation of the dynamical equations in a collec-
tive excitation formulation could reveal the influence of
these two different types of degrees of freedom onto each
other [58,59].

Another aspect that has not been treated in this paper is the
dependence of the temperature profiles and heat flux on the
system size. The scaling of J (N ) is especially of interest since
a deviation from a ∝ 1/N scaling would indicate a diverging
thermal conductivity in a properly defined thermodynamic
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limit, keeping the ion density constant. This analysis could
also reveal the importance of finite-size effects for the tem-
perature gradients, possibly recovering the temperature steps
at the contacts to the heat baths in the pinned phase. More-
over, the response of the system to the temperature stress in
a setup with a different axial confinement restoring (partly)
the translational invariance could differ qualitatively from the
results presented here. The inhomogeneous ion density in the
crystals with harmonic confinement ultimately leads to the
localization of the defect in the central region, which hinders
its abilities to transport energy.

In addition, the expansion of the investigation of heat trans-
port to other geometries, such as disk-shaped two-dimensional
or cigar-shaped three-dimensional systems could shed light
onto the influence of dimensionality, making use of the ver-

satility of trapped ion crystals [60–62]. Finally, we expect that
the altered excitation dynamics in crystals with defects impact
the sympathetic cooling of these systems as the observed
reduced heat flux could lead to regions of weak dissipation
rates. The latter would be of direct importance for experiments
investigating the properties of topological defects.
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