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Reconstructing thermal quantum quench dynamics from pure states
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Simulating the nonequilibrium dynamics of thermal states is a fundamental problem across scales from high-
energy to condensed-matter physics. Quantum computers may provide a way to solve this problem efficiently.
Preparing a thermal state on a quantum computer is challenging, but there exist methods to circumvent this by
computing a weighted sum of time-dependent matrix elements in a convenient basis. While the number of basis
states can be large, in this paper we show that it can be reduced by simulating only the largest density matrix
elements by weight, capturing the density matrix to a specified precision. Leveraging Hamiltonian symmetries
enables further reductions. This approach paves the way to more accurate thermal-state dynamics simulations on
near-term quantum hardware.

DOI: 10.1103/PhysRevB.108.134301

I. INTRODUCTION

Simulating quantum quench dynamics is a classically
hard problem due to the generation of entanglement in the
postquench nonequilibrium state. It is thus a natural appli-
cation for quantum computers [1–3], which do not suffer
from the exponential increase of resources that classical sim-
ulations experience [4]. A quench is a process in which a
model parameter of a quantum system changes abruptly in
time, taking a stationary state into a complex superposition
of excited states [5–18]. Quench dynamics are of interest
across physics, from cold atomic gases trapped in opti-
cal lattices [19–27] to ultrafast pump-probe experiments of
solid-state systems [28–31] and hadronization in heavy-ion
collisions [32]. Often quenches from pure states are studied,
but starting from initially mixed states like thermal states
is also physically interesting and experimentally relevant
[4,33,34].

Quenches from pure states can be simulated naturally on
quantum computers using, e.g., Suzuki-Trotter decomposition
[2,35,36] or variational approaches [37–39] (see Ref. [3] for a
recent overview on quantum computing simulation methods
for quantum dynamics). However, the evolution of mixed,
thermal, or thermofield double [40] states encounters the chal-
lenge of preparing such states on a quantum computer [41,42].
One means of circumventing this costly state preparation is
the “evolving density matrices on qubits” (EρOQ) algorithm
[43–45]. EρOQ is a hybrid quantum-classical algorithm in
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which the initial density matrix ρ in some computationally
simple basis of N states is obtained classically using a stochas-
tic method such as density matrix quantum Monte Carlo
(DMQMC) [46] or Euclidean lattice field theory. The quantum
dynamics simulations are then performed with corresponding
basis states, which can be more easily prepared, and the con-
volution with the classically obtained ρ reconstructs the full
mixed-state dynamics.

While EρOQ is an appealing hybrid algorithm, it po-
tentially requires a unique quantum simulation for all N2

elements of ρ to reconstruct the dynamics. However, often
it may be unnecessary to evolve all initial states; e.g., in
gapped systems at a low temperature, only a limited set of
configurations may be required. Further, one can truncate ρ

to reduce the number of quantum simulations to Nsim < N2 at
the price of systematically-improvable errors.

Here we study the effect of truncation on the simulated
dynamics of thermal states. We investigate the structure of
thermal ρ and simulate the dynamics of such states with vary-
ing Nsim. Optimizations of the truncation approximation are
investigated, such as choosing appropriate bases for ρ depend-
ing on the model parameters and the observables measured.
Another optimization is to exploit symmetry relations be-
tween basis states to reduce the number of unique simulations
required. In doing so, we demonstrate that Nsim can be reduced
by up to two orders of magnitude from the naive estimate.
We apply our techniques to quenches from thermal states in
the mixed-field Ising model, using both exact diagonalization
(ED) and DMQMC to prepare ρ. While our study is inspired
by quantum computing as a promising use case, we carry it
out on classical computers as we are addressing questions of
principle rather than implementation. The latter direction is
a logical next step for future work, and we briefly comment
further on it in our conclusion.
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The remainder of the paper is organized as follows. First,
we briefly review the EρOQ and DMQMC algorithms in
Sec. II. In Sec. III, the mixed-field Ising model and the quench
protocol are defined. Section IV is devoted to the impact of
truncating ρ. This is followed by Sec. V where symmetries are
used to further reduce Nsim. Classical dynamics simulations
are presented in Sec. VI to demonstrate how accuracy depends
on the truncation. We consider one system size where ρ is
easily accessible by ED, and another where full ED becomes
expensive and DMQMC becomes a desirable algorithmic
choice. Sec. VII concludes and describes future steps.

II. EρOQ ALGORITHM

Ultimately, our goal is to compute the expectation value
of an observable O at a time t . In the Heisenberg picture, the
time evolution of O with a Hamiltonian H1 is given by O(t ) =
eiH1t Oe−iH1t . Our initial state is defined via a Hamiltonian
H0 by ρ = e−βH0/Tr(e−βH0 ) and has an inverse temperature
β = 1/T . Then, the expectation value is

〈O(t )〉ρ = Tr[ρO(t )] =
∑
m,n

〈m|ρ|n〉 〈n|O(t )|m〉 (2.1)

where we have resolved the trace in a complete basis.
The EρOQ algorithm of Ref. [43] reconstructs the dy-

namics in Eq. (2.1) by first classically obtaining a stochastic
approximation ρ̃ and the matrix elements ρ̃mn = 〈m|ρ̃|n〉 us-
ing DMQMC [46]. With a stochastic algorithm like DMQMC,
it is possible to reach larger system sizes than ED. The un-
normalized thermal ρ̃(β ) = e−βH0 is approximated through
DMQMC by a stochastic solution to the symmetric Bloch
equation

dρ̃

dβ
= −1

2
(H0ρ̃ + ρ̃H0) (2.2)

with the initial condition ρ̃(β = 0) = 1 [43]. This stochastic
solution is obtained in DMQMC by discretizing β = Nβδβ.
Then one initializes a number Npsip of imaginary particles
called “psips” in the diagonal states |n〉〈n|. At each δβ step,
these psips are allowed to move in the space of basis states
|m〉〈n| with probabilistic rules derived from Eq. (2.2). Note
that each psip also carries a sign, so that its contribution to
a given density matrix element can be positive or negative.
From this, ρ̃(β ) is obtained as a sum over psips,

ρ̃(β ) = 1

2χdiag

∑
mn

(χmn |m〉 〈n| + χ∗
mn |n〉 〈m|), (2.3)

where χmn is determined by the number and sign of the psips
associated with |m〉 〈n| and χdiag = ∑

i χii ensures normaliza-
tion. (We note that χmn are taken in this paper to be real.)
The finiteness of Npsip naturally truncates ρ since any matrix
element with |ρmn| < 1/Npsip will be zero. The statistical error
of ρ̃ is derived from Poisson statistics in Appendix A. This
error can be systematically reduced by including more psips
in DMQMC.

With the classical simulation (using either DMQMC or
ED) designating which ρmn are nonzero, the quantum com-
puter is used to obtain the matrix elements Onm = 〈n|O(t )|m〉.
Combining these with ρ̃mn produces an approximation to
Eq. (2.1). To obtain the matrix elements Onm, one initializes

the quantum computer in the superposition states

|ψ±
nm〉 = 1√

2
(|n〉 ± |m〉),

|φ±
nm〉 = 1√

2
(|n〉 ± i|m〉), (2.4)

and evaluates the time dependence of O via

Re Onm = 1
2 (〈ψ+

nm|O(t )|ψ+
nm〉 − 〈ψ−

nm|O(t )|ψ−
nm〉),

Im Onm = 1
2 (〈φ−

nm|O(t )|φ−
nm〉 − 〈φ+

nm|O(t )|φ+
nm〉). (2.5)

(We discuss the contribution of state preparation to the quan-
tum simulation overhead in Appendix C.) Note that in many
cases, Onm is purely real. In any case, naively a number of
quantum dynamics simulations Nsim ≈ N2 is required to per-
fectly reconstruct the dynamics of a ρ̃ of size N×N .

The goal of this paper is to investigate whether Nsim can be
further reduced by judicious truncation of ρ̃ and by leveraging
symmetries. To address this question, we use classical simula-
tions to obtain either ρ itself by ED or ρ̃ by DMQMC. While
the former approach only works for relatively small systems, it
allows for faithful benchmarking against the exact dynamics.

III. MODEL AND QUENCH PROTOCOL

In this section we discuss the one-dimensional antiferro-
magnetic mixed-field Ising model (MFIM) and the specific
quench protocol used in our simulations. The MFIM Hamil-
tonian H is

H =
L∑

i=1

[JZiZi+1 + gXi + hZi + hs(−1)iZi], (3.1)

and includes a nearest-neighbor antiferromagnetic (AFM)
Ising coupling J > 0 and transverse and longitudinal fields
g and h. We also include a small staggered magnetic field
hs = L−1 to weakly lift the degeneracy of the ground state
in the AFM phase. We assume periodic boundary conditions
such that ZL+1 ≡ Z1, and hereafter set J = 1 as a unit of
energy and inverse time. We restrict to even L for convenience.

At T = 0 and hs = 0, the model exhibits AFM and para-
magnetic (PM) phases separated by a continuous phase
transition except at g = 0, where the model reduces to the
classical Ising model and exhibits a first-order transition at
h = 2. The order parameter for the AFM phase is the stag-
gered magnetization density

Mz
π = 1

L

L∑
i=1

(−1)iZi. (3.2)

In the disordered PM phase, as long as g �= 0 the ground state
acquires finite magnetization density

Mx = 1

L

L∑
i=1

Xi. (3.3)

The T = 0 phase diagram is found in Fig. 1(a) as determined
by density matrix renormalization group (DMRG) simulations
in Ref. [47].

Although no ordered phase exists when T �= 0, for suffi-
ciently small T , ρ has high weight on the Néel state |0101 . . .〉
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FIG. 1. (a) T = 0 phase diagram of the MFIM with hs = 0 from
Ref. [47]. The blue arrows of different shades show the quenches
initial and final location at h = g = 1. (b) Lowest 100 energy levels
as a function of g0 for fixed h0 = 0, hs = 1/L and J = 1 and L = 14.
En denotes the nth energy eigenvalue of H0 from lowest to highest.
The dashed horizontal lines indicate T = 1/β. The vertical blue lines
correspond to the quenches in (a).

for parameters g, h belonging to the zero-temperature AFM
phase. Since the initial T sets an energy scale below which
states contribute significantly to ρ, increasing T results in
more energy eigenstates contributing to ρ, as shown in
Fig. 1(b). Similarly, more states contribute to ρ near the L →
∞ critical point g = J , where the energy gap approaches its
minimum. Thus, the structure of ρ depends on parameters of
the model and initial state, as we discuss in Sec. IV.

In our simulations, H0 and H1 are given by the MFIM
Hamiltonian (3.1) with different choices of couplings. H0 is
defined by the couplings g0, h0, hs, while the quench Hamil-
tonian H1 is defined by couplings g and h with hs = 0.
Physically, this corresponds to an abrupt parameter quench in
which the fields are changed, g0 → g, h0 → h, and hs → 0.
Equation (3.1) is nonintegrable for h �= 0 [4,48]. We consider
three quenches to the point h/J = g/J = 1, starting from
the initial points h0/J = 0 and g0/J = 0.5, 1.0, 1.5. These
quenches are represented by arrows in Fig. 1(a).

IV. STRUCTURE AND TRUNCATION OF ρ

To reduce the simulation cost of evaluating Eq. (2.1), we
now investigate how to systematically omit some ρmn while
retaining a certain accuracy. As mentioned in Sec. I, we expect
that certain parameter regimes of H0 should be less sensitive
to discarding specific ρmn. For example, in the AFM phase at
large β, ρ has high weight on only a few ρmn: specifically,
if ρ is represented in the z basis, the Néel states |10 . . .〉
and |01 . . .〉 should dominate over all other configurations.
Similarly, if the initial state is deep in the PM phase, a single
spin-polarized configuration should dominate. In contrast, for

FIG. 2. L dependence of the number of elements of the truncated
density matrix ρ (w) needed to reach w = 0.93 [see Eq. (4.1)] for
initial state parameters g0 = 0.5, 1.0, and 1.5 with h0 = 0. A range
of temperatures is plotted with ρ (w) represented in panels (a)–(c) in
the z basis and in panels (d)–(f) in the x basis.

initial states close to the phase boundary—where the energy
gap scales as 1/L—or at small β, we expect many large ρmn.

To make this intuition quantitative, we consider a truncated
density matrix ρ (w) with Nw nonzero elements as a func-
tion of β and couplings. ρ (w) is defined via a set of indices
W = {(n, m) : |ρnm| > ε}, with ρ (w)

nm ≡ 0 for all (n, m) /∈ W
(note that |W| = Nw). The cutoff ε > 0 is chosen such that
the weight w, defined via the ratio of Frobenius norms

w2 = ‖ρ (w)‖2
F

‖ρ‖2
F

= Tr(ρ (w)ρ (w)†)

Tr(ρρ†)
(4.1)

is above a fixed threshold. Note that we normalize the trun-
cated density matrix ρ (w) → ρ (w)/Tr(ρ (w) ).

In Fig. 2, we calculate the Nw required to achieve w = 0.93
as a function of β and system size L for each quench g0 =
0.5, 1.0, 1.5 with h0 = 0. This choice of w is not essential; it
merely constitutes a fiducial value to compare different system
sizes and inverse temperatures. Since Nw depends on the basis
in which ρ (w) is represented, we show results for both the z
and x basis. Focusing first on the z-basis results, there is a
clear trend of increasing Nw with increasing g0. This is due to
the fact that the initial state becomes polarized in the x basis
for large g0, and therefore can only be represented using all
z-basis states. For example, in the extreme limit g0 → ∞ and
β → ∞, ρ ∝ (|−〉 〈−|)⊗L becomes fully dense, involving all
22L matrix elements in the z basis. Remnants of this behavior
are clearly visible for the larger β values in Fig. 2(c) (g0 =
1.5), where the required Nw approaches 22L. As β decreases,
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ρ becomes more diagonal, so that at β = 0 only 2L matrix
elements are nonzero. This effect is also visible in the β =
0.25 curve in Fig. 2(c). Meanwhile, in the AFM phase at g0 =
0.5 [Fig. 2(a)], we see that far fewer z-basis matrix elements
are required, especially at large β. However, in all phases we
observe the general tendency that Nw increases exponentially
with L.

The x-basis results mirror the z-basis results. In the AFM
phase [Fig. 2(d), g0 = 0.5], where the density matrix is sparser
in the z basis, the x-basis representation of ρ (w) is much
denser. In contrast, the density matrix sparsens in the PM
phase [Fig. 2(f), g0 = 1.5], especially at high β. Finally, we
observe that near the T = 0 quantum critical point [Figs. 2(b)
and 2(e), g0 = 1.0] the difference in Nw between different
basis representations is greatly reduced, especially at low β.
This is consistent with the intuition that more density matrix
elements should be required in any basis near the phase tran-
sition due to the pileup of eigenstates at low energies.

V. LEVERAGING SYMMETRIES

In general, ρmn and Onm are constrained by symmetries of
the Hamiltonians H0 and H1. Here we discuss how to leverage
these to further reduce Nsim.

The symmetries of H0 [Eq. (3.1)] impose a degeneracy
structure on ρ. H0 has a two-site translation symmetry ow-
ing to the presence of hs; we denote the generator of this
symmetry by T2. Additionally, when h0, hs = 0 the model is
invariant under the global spin-flip S = ∏

i Xi. This operation
commutes with the ZZ and X terms in H0 but anticommutes
with the staggered field. However, the latter also anticom-
mutes with bond-centered reflection R, which maps site i to
site L − i + 1 when L is even, and one-site translation T1,
both of which commute with the remainder of H0. Thus, the
combined operations SR, ST1, and RT1 are symmetries for
h0 = 0. The impact of these symmetries on the structure of
ρ can be seen as follows. Given a unitary operator Q that
commutes with H0, any ρmn ∝ (e−βH0 )mn satisfies

〈m|ρ|n〉 = 〈m|Q†ρQ|n〉 = 〈m′|ρ|n′〉 , (5.1)

where |m′〉 = Q |m〉 and |n′〉 = Q |n〉. Thus, given ρmn in any
basis, one immediately knows ρm′n′ . Since (ST1)L = (RT1)2 =
1 and (ST1)2 = T2, we can obtain from any ρmn at most 4L −
1 additional elements. This is particularly useful when using
DMQMC, which does not a priori preserve the symmetries of
ρ. By demanding that symmetry-related ρmn are identical, we
can produce a symmetrized DMQMC estimate ρ̃.

The symmetries of H1, namely T1 and R, can also be used
to reduce Nsim. The effect of these symmetry transformations
on Onm depends on the choice of observable O. For example,
for O = Mx the symmetry generators commute with both the
O and the eiH1t and we then obtain an expression analogous
to Eq. (5.1) with ρ replaced by Mx. When O = Mz

π , T1 and R
anticommute with the observable but commute with H1. We
therefore find, for a general element of the symmetry group
RaT b

1 (where a = 0, 1 and b = 0, . . . , L − 1) [49], that

〈n|Mz
π (t )|m〉 = (−1)a+b 〈n|(RaT b

1

)†
Mz

π (t )RaT b
1 |m〉

= (−1)a+b 〈n′|Mz
π (t )|m′〉 , (5.2)

where now |m′〉 = RaT b
1 |m〉 and |n′〉 = RaT b

1 |n〉. Thus, from
a single simulation yielding the matrix element Onm, we can
obtain at most 2L − 1 additional Onm between symmetry-
related basis states at no cost.

Finally, we note that Eq. (5.2) can be used to eliminate
certain simulations entirely. In particular, if we are inter-
ested in Mz

π (t ) between eigenstates of R, we can apply
Eq. (5.2) with a = 1, b = 0 to observe that, since |m′〉 = |m〉
and |n′〉 = |n〉 when |m〉 and |n〉 are eigenstates, we must have
that 〈n|Mz

π (t )|m〉 = − 〈n|Mz
π (t )|m〉 = 0 for those states. This

allows us to explicitly exclude 2L/2(2L/2 + 1)/2 Onm from
Eq. (2.1), corresponding to the upper triangle of the matrix
Onm in the space of reflection-symmetric states. Furthermore,
since T1 commutes with H1 and anticommutes with Mz

π , we
have that

〈n|(T b
1

)†
Mz

π (t )T b
1 |m〉 = (−1)b 〈n|Mz

π (t )|m〉 . (5.3)

When |m〉 and |n〉 are R eigenstates, these Onm = 0. This
increases the number of excluded states by a multiplicative
factor of at most L.

In summary, symmetries relate both ρmn and Onm. When O
transforms simply under the symmetry group of H1 (e.g., if
it is invariant or acquires a minus sign), a single Onm yields
a family of matrix elements On′m′ related by symmetry at
no additional simulation cost. Furthermore, when Onm anti-
commutes with a symmetry generator (e.g., Mz

π ), minus signs
appear, which can be used to additionally exclude matrix
elements between any two eigenstates of that generator. Fur-
thermore, ρ and O(t ) are always Hermitian, so one need only
consider upper-triangular matrix elements of both operators.
Combining all of these simplifications allows us to reduce
Nsim, as we will demonstrate below.

VI. SIMULATION RESULTS

We now present the results of classical simulations of ther-
mal quench dynamics for the observables Mz

π and Mx. We
focus on two example systems, in Sec. VI A a chain of length
L = 12 sites, and in Sec. VI B a chain of length L = 16. In the
former case, exact numerical results are accessible via ED, so
that detailed benchmarking can be performed as a function
of Nw. In the latter case, full ED is impractical but DMQMC
simulations can yield an accurate estimate of ρ to simulate
the O(t ) in Eq. (2.1). In this case, attention must be paid to the
impact of the systematic error in the DMQMC algorithm on
the subsequent dynamics.

A. L = 12-site chain (ED initial state)

For L = 12 chains, ρ = e−βH0/Tr(e−βH0 ) can be obtained
from H0 via ED. An exact simulation of the dynamics of
an operator O can then be obtained directly by computing
the Heisenberg operator O(t ) = eiH1t Oe−iH1t where e−iH1t is
obtained by direct matrix exponentiation using eigenstates
of H1. The late-time steady-state value of 〈O(t )〉ρ can be
calculated via the thermal diagonal ensemble (TDE) average
of O. This TDE average is defined by analogy with the diago-
nal ensemble (DE) average [50] in pure state dynamics as

lim
t→∞ Tr[ρO(t )] = 1

Z0

∑
E0,E1

e−βE0 | 〈E0|E1〉 |2 〈E1|O|E1〉 , (6.1)
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FIG. 3. Thermal quench dynamics results for L = 12 for various β and g0 (see labels at top and right, respectively). In each panel, the exact
dynamics results calculated using ED are shown in black, and the red horizontal line indicates the TDE average of the observable, Eq. (6.1).
Curves of different colors represent calculations using different w, resulting in truncated density matrices ρ (w) of different sizes Nw . To simulate
the dynamics at a given Nw , Nsim simulations are performed; Nsim can be much less than Nw due to the application of symmetries. Each curve
is labeled in the legend with the notation Nsim → Nw (w).

where E0 and E1 are eigenvalues labeling eigenstates of H0

and H1, respectively. The TDE average can be viewed as a
Boltzmann-weighted average of the DE value of O for pure-
state quenches from every eigenstate of H0. We will say that
the system has equilibrated when the time average of 〈O(t )〉ρ0

reaches the TDE value.
In Fig. 3, we compare the exact result for 〈O(t )〉ρ to results

obtained by evaluating Eq. (2.1) using ρ (w). To calculate the
contribution of the Nw matrix elements to the dynamics, we
perform Nsim simulations to obtain the corresponding matrix
elements Onm. [We count Onm as one simulation, although
multiple simulations may be required using the superposition
states (2.4).] Many Onm are related by symmetry, so Nsim �
Nw, often much less. In Fig. 3, we explore how varying Nw

affects accuracy.
The observable dynamics in Fig. 3 is indicative of the

initial and final locations of the quench. If the quench begins
in the AFM phase [panels (a)–(c) and (d)–(f)] we use O = Mz

π

and perform dynamics simulations in the z basis; if it begins
in the PM phase [panels (g)–(i)] we use O = Mx and sim-
ulate in the x basis. Correlating the sampling basis with the
observable in this way minimizes the Nw needed to capture
the expectation value at time t = 0. The TDE average of the
observable, which indicates the late-time value of 〈O(t )〉ρ ,
is observed to be nonzero only for quenches within the PM
region (g0 = 1.5). For g0 = 0.5 [panels (a)–(c)], increasing β

generally results in larger w captured for a fixed Nsim. This
matches the expectation based on Fig. 2(a), where the largest-
β ρ (w) required the smallest Nw. For g0 = 1.0 [panels (d)–(f)],
the initial state is at the L → ∞ quantum critical point, but ev-
idently retains some residual AFM order at finite size. In this
case, a larger Nsim is required to capture the dynamics as com-
pared to the g0 = 0.5 results. Nevertheless, we still observe
the general trend that increasing β increases the w captured by
a fixed Nsim. Finally, for g0 = 1.5 [panels (g)–(i)], we can only
exclude simulations based on the smaller set of symmetries
of Mx. However, even after accounting for symmetries, we
observe that Nsim needs to be about an order of magnitude
larger to capture the dynamics than for g0 = 0.5. This is likely
due to the fact that the spins polarize in the x-z plane rather
than purely along the x axis when g = h = 1. Nevertheless,
we observe in all cases that exploiting symmetries reduces
Nsim by one to two orders of magnitude compared to Nw.

B. L = 16-site chain (DMQMC initial state)

We simulate thermal quench dynamics for L = 16 using
DMQMC to obtain ρ̃ [see Eq. (2.3)] for parameters g0 = 1,

h0 = 0, β = 0.5. The approximate initial value 〈Mz
π (0)〉ρ̃ (w)

clearly approaches this DMQMC value as a function of w.
Additionally, we see oscillations about 0 as expected for a
quench from the quantum critical point into the PM phase,
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FIG. 4. Quench dynamics for L = 16, β = 0.5, g0 = 1.0, and
h0 = 0.0 using ρ̃ (w) obtained from the DMQMC estimate ρ̃. The
black dot denotes the initial value of 〈Mz

π 〉 as calculated from the
diagonal elements of ρ̃. The curves have confidence bands indi-
cating the time-dependent value of the (statistical) error 
 〈O(t )〉ρ̃ ,
Eq. (A2). Note that the error band does not overlap with the initial
value due to the presence of truncation error. Curves are labeled as in
Fig. 3 and w is computed with respect to ρ̃.

which suggests that the dynamics have equilibrated. These
results further demonstrate the utility of symmetries, which
allow Nsim � Nw.

The curves in Fig. 4 are shown with confidence bands in-
dicating how the statistical uncertainty from finite Npsip in ρ̃mn

propagates into the dynamics calculation. The detailed deriva-
tion of this error propagation is presented in Appendix A. We
note that the uncertainty is time dependent due to variations
in the relative contributions of the 〈n|O(t )|m〉 as derived in
Eq. (A2). Of particular note is that the statistical error in the
dynamics scales down with increasing Nsim.

The dynamics plots in Fig. 4 are calculated using trun-
cated density matrices ρ̃ (w) capturing a weight of at most
w ≈ 0.36 of ρ̃. To understand why such a small weight might
be sufficient, Fig. 5 shows ρ̃ (w)

mn for the first 1000 matrix
elements sorted by magnitude from highest to lowest. We see
that the matrix elements rapidly become very small; however,
care must be taken since their smallness can in principle be
counteracted by their exponentially large number. Neverthe-

FIG. 5. Density matrix elements ρ̃ (w)
mn for L = 16, β = 0.5,

g0 = 1.0, and h0 = 0.0, plotted in order of decreasing magnitude.
The sign of the density matrix elements becomes more incoherent
as the elements become smaller. An Nsim of 50, denoted by the red
line, produces 2174 observable elements through symmetries of H1,
corresponding to approximately w = 0.2136 of ρ̃ (w). Each point has
an error 
ρ̃ (w)

mn [Eqs. (A3) and (A4)] indicated by the light green
confidence band.

less, we also observe that, as the density matrix elements
become smaller in magnitude, they begin to oscillate in sign
and therefore contribute incoherently to Eq. (2.1). Indeed,
such oscillations become more likely as the density matrix
elements become smaller and the statistics noisier. (This is
an example of a sign problem in Monte Carlo analysis.) This
sign incoherence motivates our choice of a relatively small w

in our simulations and suggests that the simulation cost may
scale favorably as a function of L.

VII. DISCUSSION AND OUTLOOK

The EρOQ algorithm [43] provides an approach to sim-
ulating quench dynamics from a thermal initial state using
a combination of classical and quantum techniques. The ini-
tial step of thermal state preparation is circumvented using a
classical stochastic algorithm, while the classically hard task
of time evolution is carried out on a quantum computer. The
desired operator dynamics is then reconstructed by a weighted
average of the basis state dynamics results. A crucial short-
coming of this approach is that, generically, the Nsim needed to
reconstruct the thermal quench dynamics grows exponentially
with system size. In this paper we have investigated the possi-
bility of mitigating this issue by systematically truncating the
initial density matrix. We have also shown that symmetries
can be exploited to further reduce the number of dynamics
simulations needed to account for a fixed number of density
matrix elements.

The efficacy of the methods developed here depends
strongly on the initial temperature and Hamiltonian pa-
rameters. For example, at low initial temperature and for
initial Hamiltonian parameters for which the zero-temperature
ground state is gapped, we find that the thermal quench dy-
namics of certain operators can be reconstructed from only a
handful of pure state dynamics simulations [see Figs. 3(c) and
3(i)]. However, at high temperatures or for initial Hamiltonian
parameters that correspond to a zero-temperature quantum
critical point, substantially more dynamics simulations are
required. Regardless of the parameters of the initial state,
we find that leveraging symmetries allows for a reduction by
one to two orders of magnitude in the number of pure state
dynamics simulations needed to capture the contribution from
a fixed number of density matrix elements. Although these
techniques do not eliminate the exponential scaling issue, we
expect that they will be indispensable for future implementa-
tions of EρOQ at system sizes comparable to or beyond those
accessible to ED.

One challenge worth addressing in future work is the diffi-
culty of quantifying the influence of density matrix truncation
error on the dynamics of observables. In this paper, we probed
the effect of truncation on the dynamics by changing Nsim,
but it would be desirable to have an estimate of the statistical
uncertainty in a dynamical expectation value due to trunca-
tion. This would allow one to estimate, from results with
a fixed Nsim, a confidence band around the simulated time
trace of the observable. Such an understanding would become
increasingly valuable as the simulations are scaled up to larger
system sizes, to the point where the “exact” dynamics from the
DMQMC initial state is no longer simulable, like in the case
of L = 16 discussed above. With access to exact dynamics,
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FIG. 6. Dependence of δw [Eq. (7.1)] on w for L = 12, β = 1.0,
h = 1.0, h0 = 0.0, g = 1.0, and g0 = 0.5, 1.0, 1.5 (see legend).
When g0 = 0.5 or 1.0, O = Mz

π and when g0 = 1.5, O = Mx . Some
points are labeled with the notation Nsim → Nw .

it is possible to calculate truncation error. Figure 6 shows the
complicated convergence of the truncation error defined as

δw =
√

1
T

∫ T
0 dt |〈O(t )〉ρ − 〈O(t )〉ρ (w) |2√

1
T

∫ T
0 dt |〈O(t )〉ρ |2

, (7.1)

with increasing weight w and for L = 12. The δw at fixed
Nsim (see, e.g., the points corresponding to Nsim = 4) is largest
for g0 = 1.0,where more states contribute significantly to the
dynamics.

A number of future applications of the techniques devel-
oped here can be envisioned. One example is the calculation
of thermal Green’s functions, which hinge on calculating
quantities of the form 〈A(t )B(0)〉ρ = Tr(ρA(t )B(0)). Here the
initial state and time evolution are defined with respect to
the same Hamiltonian H , unlike the thermal quench proto-
cols considered in this paper. Nevertheless, the same density
matrix truncation and symmetry approaches considered here
could readily be applied. We also note that pure-state two-time
correlation functions can be simulated on quantum computers
with only constant overhead [51]. Another direction is to
apply these methods to the simulation of dynamical phase
transitions [52,53], which have also been studied in the con-
text of mixed-state dynamics [54,55]. It would be interesting
to consider the fate of the zero-temperature dynamical phase
transition [52] when the initial state is at finite T . Simu-
lating such phenomena requires calculating the Loschmidt
echo, which can be achieved on quantum computers us-
ing Hadamard-test protocols [56,57] or ancilla-free versions
thereof [51]. It may also be possible to incorporate some of
the techniques considered here into classical tensor network
algorithms for calculating finite-temperature properties, such
as the minimally entangled typical thermal states method
[58–60].

ACKNOWLEDGMENTS

This material is based on work supported by the U.S.
Department of Energy, Office of Science, National Quan-
tum Information Science Research Centers, Superconducting
Quantum Materials and Systems Center (SQMS) under Con-
tract No. DE-AC02-07CH11359. Fermilab is operated by
Fermi Research Alliance, LLC under Contract No. DE-AC02-

07CH11359 with the United States Department of Energy.
This work was partially conducted (J.S., P.P.O., T.I.) at Ames
National Laboratory which is operated for the U.S. Depart-
ment of Energy by Iowa State University under Contract No.
DE-AC02-07CH11358. T.I. acknowledges the Aspen Center
for Physics, which is supported by National Science Founda-
tion Grant No. PHY-2210452, where part of this work was
performed. P.P.O. thanks A. Vishwanath and Harvard Univer-
sity for hospitality during the final stages of this project.

APPENDIX A: STATISTICAL ERROR

For a function f (x1, . . . , xn) with variables x1, . . . , xn, the

error is given by 
 f =
√∑

i(
∂ f
∂xi


xi )2. Consider 〈O(t )〉ρ̃ (w) =∑
m,n ρ̃ (w)

mn Onm. Here

ρ̃ (w)
mn =

{
χmn

χ
(w)
diag

|ρ̃mn| > ε

0 otherwise
(A1)

where χ
(w)
diag = ∑

(i,i)∈W χii where W is the set of nonzero
matrix elements of ρ̃ (w) (see Sec. IV; recall that in practice we
take χmn to be real). All three, ρ, ρ̃, and ρ̃ (w) are square and
symmetric. We write χmn = σmnNmn where Nmn is the number
of psips corresponding to the matrix element ρ̃mn and σmn =
±1 is the sign of the corresponding element, determined by
the net charge of the psips. We also define the number of
diagonal psips, N (w)

diag = ∑
(i,i)∈W |χii| = ∑

(i,i)∈W Nii. Poisson
statistics implies that 
N2

mn = Nmn. The error in the dynamics
of the observable is given by


 〈O(t )〉ρ̃ (w) =
√∑

m,n

(

ρ̃

(w)
mn Onm

)2
. (A2)

When m �= n, the error in ρ̃ (w)
mn is


ρ̃ (w)
mn =

√√√√(
∂ρ̃

(w)
mn

∂Nmn

Nmn

)2

+
∑
i=1

(
∂ρ̃

(w)
mn

∂Nii

Nii

)2

=
√

Nmn∣∣χ (w)
diag

∣∣
√√√√1 + Nmn(

χ
(w)
diag

)2 N (w)
diag. (A3)

When m = n, the error in ρ̃ (w)
mm is


ρ̃ (w)
mm =

√√√√∑
i=1

(
∂ρ̃

(w)
mm

∂Nii

Nii

)2

=
√

Nmm∣∣χ (w)
diag

∣∣
√√√√1 − 2χmm

χ
(w)
diag

+ Nmm(
χ

(w)
diag

)2 N (w)
diag. (A4)

APPENDIX B: CALCULATION OF OBSERVABLE
MATRIX ELEMENTS

Here we discuss two ways to calculate the time-dependent
matrix elements Onm on a quantum computer. For n = m,
the calculation is straightforwardly accomplished by a direct
measurement of O following the dynamics under H1 from the

134301-7



SARONI, LAMM, ORTH, AND IADECOLA PHYSICAL REVIEW B 108, 134301 (2023)

FIG. 7. Hadamard test circuit determining Re 〈ψ |U0|ψ〉 and
Im 〈ψ |U0|ψ〉 when a = 0 and a = 1 respectively.

initial pure state |n〉. For n �= m, and noticing that it is eas-
ier to compute diagonal expectation values 〈ψ |O(t )|ψ〉 than
off-diagonal overlaps 〈ψ ′|O(t )|ψ〉 where |ψ ′〉 �= |ψ〉, we can
perform time-evolution starting from |ψ±

nm〉 and |φ±
nm〉 defined

in Eq. (2.4). Efficient quantum circuits to prepare these states
are discussed in the next Appendix C. Computing the four
diagonal expectation values yields

〈ψ±
nm|O(t )|ψ±

nm〉 = 1
2 [Onn + Omm ± (Onm + Omn)], (B1)

〈φ±
nm|O(t )|φ±

nm〉 = 1
2 [Onn + Omm ± i(Onm − Omn)]. (B2)

If O is Hermitian, i.e., O† = O ⇒ Omn = O∗
nm, both expecta-

tion values are real,

〈ψ±
nm|O(t )|ψ±

nm〉 = 1
2 (Onn + Omm ± 2Re Onm), (B3)

〈φ±
nm|O(t )|φ±

nm〉 = 1
2 (Onn + Omm ∓ 2Im Onm). (B4)

Equation (2.5) follows directly from the above.
Another method to measure off-diagonal matrix elements

of observables is the Hadamard test [56,57], whose circuit is
shown in Fig. 7. The Hadamard test can be applied to measure
off-diagonal elements of a unitary operator U0. We can use it
to measure 〈n|O(t )|m〉 by expanding the Hermitian operator
O in the Pauli basis, O = ∑

α Pα where Pα are Pauli strings. If
|m〉 and |n〉 are related by |m〉 = ∏

j∈Smn
Xj |n〉, where Smn is

the set of sites where the computational basis states |m〉 and
|n〉 differ, then we can write

〈n|Pα (t )|m〉 = 〈n|eiH1t Pαe−iH1t
∏

j∈Smn

Xj |n〉 . (B5)

We can define |ψ〉 = |n〉 and U0 = eiH1t Pαe−iH1t
∏

j∈Smn
Xj in

Fig. 7 and then sum over α to obtain the desired result. The
Hadamard test is unwieldy because it requires a controlled-
U0 gate controlled by an ancilla qubit. As an alternative
to the Hadamard test, one can also explore protocols like
the ones proposed in Ref. [51] that avoid the need for an
ancilla-controlled U0 gate at the expense of running more
direct measurement circuits. Whether such methods are more
desirable than that of preparing the superposition states (2.4)
is hardware dependent.

APPENDIX C: INITIAL SUPERPOSITION
STATE PREPARATION

Here we consider the quantum resource cost of preparing
the superposition states (2.4) on a quantum computer. Prepar-
ing such states requires at most O(L) CNOT gates: indeed, for
|n〉 = |0 . . . 0〉 and |m〉 = |1 . . . 1〉, the states (2.4) are variants

FIG. 8. Circuit for preparing |ψ±
nm〉 and |φ±

nm〉, Eq. (2.4) for |m〉 =∏L
j=1 Xj |n〉, following Ref. [61]. The X gate powers ai ∈ {0, 1} de-

termine whether the X gates are applied or not in preparing a specific
state with i ∈ {1, ..., L}. The state |ψ±

nm〉 is given when a0 = 0 and
the state |φ±

nm〉 is given when a0 = 1 by application of an S gate.
The diagram shows the state preparation for L = 8 but generalizes
to L = 2k where k is a positive integer. The red lines distinguish the
circuit layers.

of the GHZ state [62]. More generally, the complexity of
state-preparation is highest for superpositions of states satis-
fying |m〉 = ∏L

j=1 Xj |n〉, i.e., ones that differ on all sites. The
circuit depth needed to prepare such states can be reduced
in certain cases by parallelizing the CNOT gates: Reference
[61] found that the circuit depth can be reduced to O(ln L)
assuming sufficient qubit connectivity and a system size that
is a power of two. A general example of such a circuit for
L = 8 is shown in Fig. 8. The 2L+1 superposition states |ψ±

nm〉
and |φ±

nm〉 for which |m〉 = ∏L
j=1 Xj |n〉 are indexed by X -gate

powers ai ∈ {0, 1}, i = 0, . . . , L. a0 determines whether the
state is of type |ψ〉 or |φ〉, a1 determines the ± sign, and

FIG. 9. An example circuit, adapting the construction of
Ref. [61], for preparing superposition states |ψ±

nm〉 and |φ±
nm〉,

Eq. (2.4), in cases where |n〉 and |m〉 differ on fewer than L sites.
When all ai = 0, this gives the state 1√

2
(|0〉⊗8 + |1〉⊗6 ⊗ |01〉).
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the remainder dictate the pattern of bits in each state. For
example, setting all ai = 0 in Fig. 8 gives the GHZ state

1√
2
(|0〉⊗8 + |1〉⊗8) while setting a2 = 1 gives the GHZ-like

states 1√
2
(|01010101〉 + |10101010〉). Fewer CNOT gates are

required for |m〉 and |n〉 that differ on fewer sites. For a
general off-diagonal element, |m〉 and |n〉 differ on at least
one qubit. Applying a Hadamard gate to one of these qubits,
followed by a set of appropriately parallelized CNOTs, gen-
erates the desired superposition. An example circuit is shown
in Fig. 9.

APPENDIX D: THERMAL DIAGONAL ENSEMBLE

We use the following expression for the TDE [U (t ) =
e−iH1t ],

〈O(t )〉ρ = 1

Z0
Tr[e−βH0U †(t )OU (t )]

= 1

Z0

∑
E0

〈E0|e−βH0 eiH1t Oe−iH1t |E0〉

= 1

Z0

∑
E0,E1,E ′

1

e−βE0 〈E0|E1〉 ei(E1−E ′
1 )t 〈E1|O|E ′

1〉 〈E ′
1|E0〉

(D1)

where the sum is performed over |E0〉 and |E1〉 , |E ′
1〉 are

eigenstates of H0 and H1 respectively. Taking the infinite-time
limit in analogy with Eq. (2) from [50], i.e., assuming attenu-
ation of the off-diagonal terms due to temporal dephasing, we
find

lim
t→∞

〈O(t )〉ρ = 1

Z0

∑
E0,E1

e−βE0 | 〈E0|E1〉 |2 〈E1|O|E1〉 . (D2)

In the infinite-temperature limit,

lim
t→∞ 〈O(t )〉ρ = 1

Z0

∑
E0,E1

〈E1|E0〉 〈E0|E1〉 〈E1|O|E1〉

= 1

Z0

∑
E1

〈E1|E1〉 〈E1|O|E1〉

= 1

Z0
Tr[O(t )] = 1

2L
Tr[O(0)] (D3)

as expected. In the zero-temperature limit,

lim
t→∞ Tr[ρO(t )] =

∑
E1

∣∣ 〈EG
0

∣∣E1
〉 ∣∣2 〈E1|O|E1〉 (D4)

in analogy with Eq. (2) from [50]. This corresponds to a pure-
state quench from |EG

0 〉, the ground state of H0.
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