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Transport in honeycomb lattice with random π fluxes: Implications for low-temperature
thermal transport in Kitaev spin liquids
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Motivated by the thermal transport problem in the Kitaev spin liquids, we consider a nearest-neighbor tight-
binding model on the honeycomb lattice in the presence of random uncorrelated π fluxes. We employ different
numerical methods to study its transport properties near half-filling. The zero-temperature dc conductivity away
from the Dirac point is found to be quadratic in Fermi momentum and inversely proportional to the flux density.
Localization due to the random π fluxes is observed and the localization length is extracted. Our results imply
that, for realistic system size, the thermal conductivity of a pure Kitaev spin liquid diverges as κK ∼ T 3e�v/kBT

when kBT � �v , and suggest the possible occurrence of strong Majorana localization κK/T � k2
B/2π h̄ when

kBT ∼ �v , where �v is the vison gap.

DOI: 10.1103/PhysRevB.108.134203

I. INTRODUCTION

Quantum spin liquids (QSLs) are an exotic state of matter
with no local symmetry breaking, deconfined fractionalized
quasiparticles, and emergent gauge excitations [1–3]. The
Kitaev model, an exactly solvable honeycomb model, pro-
vides a typical framework for describing such a phase, where
spins fractionalize to Majorana fermions and Z2 gauge exci-
tations (visons) [4]. Thanks to the proposal by Jackeli and
Khaliullin [5], which suggests that the Kitaev model can
be realized in certain strongly spin-orbit coupled systems,
a growing number of Kitaev candidate materials have been
discovered in the past decade [6,7].

Despite the theoretical proposal of QSLs for several
decades, their experimental identification remains challeng-
ing. Thermal transport experiments are a promising technique
for characterizing QSLs, as they allow the detection of charge-
neutral, mobile quasiparticles. For example, in the Kitaev
candidate material α − RuCl3, a half-quantized thermal Hall
conductance has been observed, indicating the existence of a
chiral Majorana mode at the edge of the non-Abelian Kitaev
spin liquid [8–10]. To fully understand the experimental re-
sults, it is crucial to predict the thermal transport signatures of
QSLs, particularly those proximate to the exact Kitaev model,
in various different regimes [11–21].

The longitudinal thermal conductivity κxx(ω, T ) of the
Kitaev model has been numerically investigated using Kubo’s
formalism, and the dc thermal conductivity κK(T ) can be
obtained by extrapolation of κxx(ω, T ) to the ω → 0 limit
[11–15]. When the temperature T is comparable to or smaller
than the vison gap �v , such extrapolation appears to give
results with significant error bars and calculations with larger
system sizes are needed [11,15], leaving the low-temperature
behavior of κK inconclusive. Neglecting the gauge excitations
in the Kitaev model, it is possible to regard an undoped
graphene as two stacks of the Kitaev model, and thus ex-
pect that the thermal transport of Kitaev spin liquid and the

electric transport of graphene may have similar low-
temperature behavior. It was proposed that in graphene there
exists a universal minimum electrical conductivity σmin =
e2/πh per valley per spin, regardless of the concentration of
disorders [22–24]. It is thus natural to ask whether a simi-
lar “minimum thermal conductivity” (MTC) also exists in a
pure Kitaev model. A previous quantum Monte Carlo study
seems to support the existence of MTC in the low-temperature
regime, i.e., limT →0 κK/T = k2

B/12h̄, but further justification
is required due to the significant uncertainties and finite-size
effects in the numerical simulation [11]. Moreover, at low
temperatures, the phase coherence length may exceed the
dimensions of a realistic sample, within which the quantum
interference effects are essential. Consequently, the thermally
excited random Z2 flux background may strongly localize
Majorana particles [14,25,26], provided that the localization
length is smaller than the system size. Such localization ef-
fects are uncaptured by previous calculations performed for
relatively small systems, and overlooking these effects may
crucially affect the interpretation of experimental results.

To understand the low-temperature thermal conductivity
of the Kitaev model in the absence of disorder and mag-
netic fields, in this work we numerically study the transport
of complex fermions in a random π -flux honeycomb model
(RPFHM) near half-filling. This approach is motivated by the
observation that the Kitaev model [see Fig. 1(a)] can be seen
as half of the RPFHM [see Fig. 1(b)], and the thermal conduc-
tivity of the former is linked to the electrical conductivity of
the latter via the Wiedemann-Franz (WF) law. Furthermore,
the RPFHM is of academic interest on its own, as this random
Z2-flux problem is less studied compared to random U (1)-flux
models [27–31].

We focus on the zero-temperature longitudinal dc con-
ductivity of the RPFHM and its localization properties as
a function of flux density and chemical potential. We ex-
tract the dependence of dc conductivity on flux density and
Fermi wavevector in the semiclassical diffusive regime. Our
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FIG. 1. (a) Kitaev on the honeycomb lattice, where different
colors denote different types of bonds. (b) The nearest-neighbor
tight-binding model on the honeycomb lattice threaded by random
π fluxes (grey areas), where the solid (dashed) lines denote the bonds
on which the Z2 gauge field takes value 1(−1).

analysis reveals Anderson localization due to random π

fluxes, and we obtain two-dimensional (2D) localization
lengths. Our results indicate that the low-temperature thermal
conductivity of a clean Kitaev model neither exhibits MTC
nor vanishes, but instead diverges as κK ∼ T 3e�v/kBT , which
is unexpected based on previous studies. Additionally, when
kBT ∼ �v , the thermal conductivity could be significantly
suppressed due to strong Majorana localization.

II. RANDOM π-FLUX HONEYCOMB MODEL

A. Model

We consider a spinless tight-binding model on the honey-
comb lattice [Fig. 1(b)] with Hamiltonian

HG = −t
∑
〈i, j〉

ui j f †
i f j, (1)

where 〈i, j〉 denotes the nearest-neighbor coupling between
site i and j, t is a real number, and ui j = u ji = ±1 is the
Z2 gauge field coupled to charge e fermions. The creation
and annihilation operators obey the anticommutation relation
{ fi, f †

j } = δi j . To avoid the gauge redundancy, one could de-
fine the gauge-invariant Z2 flux operator Wp = ∏

〈 jk〉∈p u jk =
±1 on each plaquette p. On each plaquette, the value of Z2

flux takes 1 with probability 1 − nv and −1 (π flux) with
probability nv , and Wp on different hexagons are uncorre-
lated. We emphasize that this differs from having independent
random Z2 gauge fields on each bond. According to the
Altland-Zirnbauer classification [32–34], the system is in the
orthogonal symmetry class AI when ε = E/t �= 0, while it
belongs to the chiral orthogonal symmetry class BDI at the
Dirac point ε = 0. We aim to calculate the quench average
of gauge-invariant observables, which are demonstrated in the
following.

B. Density of states

In the fluxless sector, Eq. (1) corresponds to the nearest-
neighbor tight-binding model of graphene, which can be
easily diagonalized and the analytic form of its density of
states (DOS) is well known [35]. When π fluxes are present,
as seen in Fig. 2, for nv � 0.1 the DOS close to the Dirac point
is greatly enhanced, while the DOS away from the Dirac point
but below the Van Hove point remains almost unaffected.

FIG. 2. The averaged DOS near the Dirac point for different
flux densities. The DOS for nv �= 0 is obtained via exact diagonal-
ization of 10 000-site systems and averaging over 190 random flux
configurations.

Remarkably, there appears a sharp DOS peak at the Dirac
point, which is a characteristic of the chiral orthogonal sym-
metry class BDI [36–41]. The nonvanishing DOS around the
Dirac point suggests that, as long as the low-energy states are
not fully localized, the conductance will be finite around the
Dirac point and might even be enhanced due to the increasing
DOS [42]. This contrasts with a pristine graphene whose
conductance is either zero or of a few conductance quantum
e2/h [43,44].

C. DC conductivity

To compute the dc conductivity, we employ the recursive
Green’s function method to calculate the transmission func-
tion T(E , M, L) between the left and right leads depicted in
Fig. 3, as a function of energy E , width M, and length L. The
conductance is given by the Landauer formula G = Te2/h
[45], and the conductivity can be extracted by subtracting the

FIG. 3. Schematics of the two-terminal setup used to compute
the dc conductivity of RPFHM. The middle region, which is pene-
trated by random π fluxes (grey areas), is sandwiched between two
semi-infinite “clean” leads.

134203-2



TRANSPORT IN HONEYCOMB LATTICE WITH RANDOM … PHYSICAL REVIEW B 108, 134203 (2023)

FIG. 4. (a) dc conductivity σG (in unit of e2/h) versus (kF rm )2 for
different nv when L ≈ M = 108

√
3a; the inset is the zoom-in plot.

(b) dc conductivity σG versus ln(L/a) for different energies and flux
densities nv = 0.02 (yellow), 0.03 (red), 0.05 (blue), and ε; from
top to the bottom, ε decreases by 0.05 for same nv . The error bars
are smaller than the marker size and hence not shown.

contact resistance from the total resistance

σG = GL

M
= L

M

1

T(E , M, L)−1 − T(E , M, 0)−1

e2

h
. (2)

The transmission coefficient can be calculated by [46,47]

T = Tr(
LGR
RGA), (3)

where GR(A) = (E − HG − �
R(A)
L − �

R(A)
R )−1 is the retarded

(advanced) Green’s function in the presence of semi-infinite
leads, �R(A)

α is the self-energy due to the lead α, and 
α =
i(�R

α − �A
α ). The self-energies of the leads can be obtained by

computing the transfer matrix iteratively [48,49] and the bulk
Green’s function can be calculated efficiently with recursive
method [50]. Although we only consider the case that the edge
is armchair type, we expect the result for the zigzag edge to
be similar in the thermodynamic limit, as the pure system
is isotropic at low energies. We compute the conductivity
of 2 000 different samples and then take the mean value. In
general, the conductivity depends on the aspect ratio M/L and
we fix it to be close to unity.

Figure 4(a) shows the dependence of dc conductivity
on the dimensionless parameter kF rm for fixed system size
L = 108

√
3a, where rm = (3

√
3a2/2πnv )1/2 is the average

distance between π fluxes. Due to the existence of particle-

hole symmetry, we only show results for positive ε hereafter.
We also only demonstrate the results away from the Dirac
point where the DOS is not significantly changed by π fluxes,
such that Eq. (2) is applicable and the conductivity is not
underestimated due to the vanishing DOS of leads [51]. The
failure of the Landauer approach at the Dirac point can also
be understood by noting that it is based on the calculation of
transition probabilities between different unperturbed states in
clean leads, while the unperturbed eigenstates may not be a
good description in the vicinity of the Dirac point where the
disorder effects are significant. When the Fermi wavelength
λF = 2π/kF of Dirac fermion is much shorter than the mean
flux distance rm, one observes that the dc conductivity is
approximately linear in (kF rm)2, namely

σG/(e2/h) ≈ d (kF rm)2 + b, (4)

where d ≈ 1.6, and b weakly depends on nv and L [see also
Fig. 4(b)]. In this work, we assume the above relation holds
as long as the momentum kF is small so that the dispersion
can be regarded as linear. Compared to the Drude conductivity
σsc = kF lee2/h, this suggests a semiclassical transport regime
where, for sufficiently large σG, the mean free path le is ap-
proximately inversely proportional to nv and proportional to
the Fermi wavevector kF . Using the Drude formula, we esti-
mate that in Fig. 4(a), the largest mean free path le,max ≈ 80a
is smaller than the system size L, consistent with the diffusive
transport regime for which the Drude formula is applicable.
When σG � e2/h, which also coincides with kF rm � 1, the
system enters the quantum regime where the conductivity
starts to saturate, evidenced by the upturn at small kF rm shown
in the inset of Fig. 4(a). In graphene, the inter- (intra-)valley
scattering leads to (anti-)localization due to the constructive
(destructive) quantum interference of backscattering ampli-
tude [35,52,53]. In RPFHM, the π fluxes may be regarded as
short-range scatters that mix different valleys and are hence
expected to localize the Dirac fermions. According to the
theory of weak localization [54], the conductivity acquires a
logarithmic quantum correction, namely

σG = σsc − αe2

h
ln

L

l0
, (5)

where l0 is the lower cutoff length of the diffusive transport
regime and is comparable to the mean free path le. Our results
in Fig. 4(b) suggest that the conductivity decreases logarith-
mically with the system size, thus supporting the existence of
weak localization. By numerical fitting, we obtain α ≈ 0.39,
which is close to α = 1/π predicted for the orthogonal uni-
versality class AI.

D. Anderson localization

To further study the effects of localization in the RPFHM,
we use the transfer matrix method [55,56] to compute the
Lyapunov exponent of the system around its Dirac point.
We consider the same geometry as shown in Fig. 3, in which
the system can be divided into successive slices labeled by n.
The Schrödinger equation at given energy E can be written in
the form of (|
n+1〉

|
n〉
)

= Tn

( |
n〉
|
n−1〉

)
, (6)
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FIG. 5. (a) Log-log plot of λM/M versus M/a for nv = 0.05; we choose M/(
√

3a) = 48, 60, 72, 90 for 0.05 � ε � 0.5 (black, the
arrow denotes the ascending order and ε increases by 0.025 between adjacent lines), M/(

√
3a) = 48, 49, 50, 60, 61, 62, 72, 73, 74, 90, 91, 92

for ε = 0.025 (red) and ε = 0 (blue). (b) One-parameter scaling of the Mackinnon-Kramer parameter λM/M. The circles denote the data for
ε ∈ [0.025, 0.5](nv = 0.02, 0.03, 0.05, 0.1, 0.2, 0.5); to linearly fit the scaling function at small ξ/M we also compute the parameter range
ε ∈ [2.96, 3](nv = 0.05), represented by the triangles. (c) The 2D localization length ξ extracted by the scaling analysis as a function of ε.

where |
n〉 is the wavefunction of slice n, Tn is the transfer
matrix

Tn =
(

H−1
n,n+1(E − Hn,n) −H−1

n,n+1Hn,n−1

1 0

)
, (7)

and Hm,n is the Hamiltonian matrix between slice m and n. By
iteration, one obtains(|
n+1〉

|
n〉
)

= Mn

(|
1〉
|
0〉

)
, (8)

where Mn = TnTn−1 · · · T2T1. There exists a limiting ma-
trix M∞ = limn→∞(MnM†

n )1/(2n), which has eigenvalues eγi ,
where γi is the Lyapunov exponent. The Lyapunov exponents
must come in opposite pairs and the quasi-one-dimensional
localization length λM can be defined as the inverse of the
smallest positive Lyapunov exponent. In all the simulations,
we implement Gram-Schmidt orthonormalization every 8
steps for numerical stability (e.g., see Ref. [28] and references
therein) and the relative error of all the data is controlled
within εerror � 1%.

According to the one-parameter scaling theory of
Anderson localization [55,56], the MacKinnon-Kramer pa-
rameter λM/M is a single-parameter function of ξ/M, namely
λM/M = f (ξ/M ), where the 2D localization length ξ depends
on all parameters except M, which are nv and ε in our case.
For the system in the orthogonal universality class AI, the
scaling function f (x) is a monotonically increasing function
and f (x) → x when x → 0. We find that all states near the
Dirac point except ε = 0 are consistent with this hypothesis
(see Fig. 5), confirming the disorder-free localization also
observed earlier. The extracted 2D localization length ξ shown
in Fig. 5(c) indicated that the low-energy states could be
strongly localized in mesoscopic systems with size larger than
102–103a.

The case of the exact Dirac point ε = 0 requires special
attention, as the RPFHM belongs to the chiral orthogonal class
BDI at this special energy. As shown in Fig. 5(a), we observe
significant oscillations of λM/M at ε = 0 (blue line) due to
the finite-size effects, in contrast to the ε = 0.025 (red line)
case where the fluctuations are negligible. The oscillation has
a period of three, which is likely related to the quasiperiodic-
ity of the finite-size gap in a clean armchair-type graphene

nanoribbon [44,57]. Similar behaviors have also been seen
in random flux models on the square lattice, where λM/M is
sensitive to the parity of the width (in units of lattice spacing)
[28,58–60]. It seems that the amplitude of oscillations tends to
zero and λM/M remains finite when M → ∞, supporting the
existence of critical and delocalized state at the band center of
chiral metals [36,37,39,59,61]. A definite conclusion requires
careful numerical analysis with a substantially larger system
size and fine-energy resolution, which is beyond the scope of
this work. We note that this band-centered state may hardly
affect the transport at realistic temperatures as it only exists
within a very narrow energy window, making its identification
challenging.

III. THERMAL CONDUCTIVITY OF THE KITAEV MODEL

The low-temperature behavior of thermal conductivity κK

of the Kitaev model can be inferred using earlier results. We
first briefly introduce the Kitaev model [4]

HK =
∑
〈i j〉λ

Jλσ
λ
i σλ

j , (9)

where Pauli matrices �σi = (σ x
i , σ

y
i , σ z

i ) describe the spin
degrees of freedom on site i, 〈i j〉λ denotes the λ-type nearest-
neighbor bond (λ = x, y, z) between site i and j, and each
bond is only summed once, as shown in Fig. 1(a). In this
work, we are only interested in the isotropic case so we
set J = Jx = Jy = Jz hereafter. The Kitaev model can be ex-
actly solved by mapping spins to Majorana fermions and the
Hamiltonian becomes

HKSL =
∑
〈i, j〉

iJũi j

2
γiγ j, (10)

where the Majorana fermions satisfy anticommutation rela-
tions {γi, γ j} = 2δi j , and the bond operator ũi j = −ũ ji = ±1
acts as a Z2 gauge field.

After making a gauge transformation f †
j → −i f †

j , j ∈ A

sublattice, followed by a Majorana transformation f †
i =

(γ 1
i + iγ 2

i )/2 to Eq. (1), one can see the RPFHM Eq. (1)
is exactly two copies of the Kitaev model Eq. (10), with
t = 2J . Therefore the thermal conductivity of the Kitaev
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model Eq. (9) is half of that of the RPFHM Eq. (1), namely
κG = 2κK, provided both have the same flux configuration. At
thermal equilibrium, κK can be expressed as the weighted av-
erage of thermal conductivity κ�

K over every flux configuration�, namely κK = (
∑

� Z�κ�
K )/(

∑
� Z�). Here Z� = Tre−βH�

is the partition function for specific flux configuration � de-
scribed by the Hamiltonian H�, and

∑
� denotes sum over

all flux configurations. In the Kitaev model the ground state
contains no flux [62], while at temperatures much lower than
the vison gap �v ≈ 0.1536J [4], thermally excited visons
are dilute and may be regarded as uncorrelated on different
plaquettes, with flux density approximately given by

nv = 1

e�v/kBT + 1
. (11)

Here we emphasize that although the calculation of κK seems
a quenched disorder problem, it is an artifact as the bond
variables ui j commute with the Hamiltonian. In fact, it is still
an annealed average problem, as the free energy is given by
F = −kBT ln

∑
� Z�, where the logarithm is taken after the

sum over all flux configurations is computed.
The thermal conductivity κG of RPFHM is linked to the

electrical conductivity σG by the Wiedemann-Franz (WF) law
κG = σGLT where L is the Lorentz number. For a noninter-
acting Fermi liquid, the Lorentz number is a universal constant
L0 = π2k2

B/3e2, while around the Dirac point, the Lorentz
number may be a few times larger than L0 even for the
noninteracting case [63,64]. Combining the above arguments,
one obtains

κK(T )

σG(nv, T, μ = 0)
= L

2
T, (12)

where σG(nv, T, μ) denotes the dc conductivity of RPFHM,
which has flux density nv , Fermi level μ, and temperature T .

We shall now demonstrate the low-temperature behav-
ior of κK using Eq. (12). As kBT 
 |μ|, the conduction is
mainly contributed by the thermally excited quasiparticles
with energy E ∼ kBT . When kBT � �v , we observe that the
thermal de Broglie wavelength λth ∼ T −1 is much shorter
than the mean flux distance rm ∼ e�v/2kBT . This indicates that
the transport is away from the Dirac point and in the semi-
classical regime. As the localization length is exponentially
large ξ ≈ l0eπkF le in this regime, the localization effects are
negligible for realistic system size, or when the phase co-
herence length is much smaller than the localization length
Lφ � ξ due to the coupling to environments. Substituting
the thermal de Broglie wavevector kth = 2π/λth to Eq. (4)
(see Appendix for the justification), which is applicable when
kthrm 
 1, and using Eqs. (11) and (12), one obtains diverg-
ing thermal conductivity κK ∼ T 3e�v/kBT at low temperatures.
When kBT ∼ �v ≈ 0.15J , which corresponds to λth � rm, the
thermal transport is in the quantum regime and localization
effects are non-negligible. We assume both the system size L
and phase coherence length Lφ is much larger than the thermal
localization length ξT = ξ (nv (T ), kth(T )), which is estimated
to be a few hundred of lattice spacing from Fig. 5(c). In this
case, the Majorana fermions are strongly localized and signifi-
cantly suppressed thermal conductivity κK/T � k2

B/2π h̄ may
be observable. This is in contrast with the low-temperature
case kBT � �v where κK/T 
 k2

B/2π h̄ and analogous to

FIG. 6. Schematics of the low-temperature thermal conductivity
versus temperature. Note that the Boltzmann constant kB = 1.

the large resistivity ρ 
 h/e2 observed in graphene due to
the strong localization [65–67]. We note that it is difficult
to obtain κK at higher temperature kBT ∼ J 
 �v using our
calculations, as the thermal transport is also contributed by
quasiparticles at high energies that are not considered in this
work. Besides, in this regime visons can no longer be regarded
as dilute, and the validity of Eq. (11) becomes questionable.

IV. CONCLUSION

In this work, we have utilized a combination of numerical
methods to investigate the transport of RPFHM near the Dirac
point. Our results reveal that when the wavelength of Dirac
fermion is much shorter than the average flux spacing, the
semiclassical dc conductivity is quadratic in the Fermi mo-
mentum and inversely proportional to the flux density. We
have also demonstrated that intervalley scattering by the π

fluxes leads to weak (strong) localization of Dirac fermions
at high (low) Fermi energy. Our results imply that the thermal
transport of the Kitaev model is semiclassical at low temper-
atures kBT � �v , and that the thermal conductivity diverges
as κK ∼ T 3e�v/kBT . When kBT ∼ �v , the itinerant Majorana
fermions may be strongly localized, leading to a significantly
suppressed thermal conductivity κK/T � k2

B/2π h̄. Our pre-
dictions are expected to hold even in the presence of disorder
as long as τ−1

v 
 τ−1
d , where τ−1

v (τ−1
d ) is the scattering rate

due to vison (disorder). When the temperature is much smaller
than the crossover temperature Td at which τ−1

d = τ−1
v , the

disorder becomes the dominant source of elastic scattering
and the transport is similar to that of an undoped graphene.
Consequently, κK/T should reduce with decreasing tempera-
ture and finally saturates to a value comparable or smaller to
1/2π h̄ [35,52,53]. Such temperature dependence, as shown
in Fig. 6, was unseen in previous numerical simulations and
may be observable in a clean sample at very low temperatures.
In realistic Kitaev materials, non-Kitaev-type interactions also
allow the hopping of visons and may have important conse-
quences [16,18], which are left for future studies.
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APPENDIX: THE DC CONDUCTIVITY OF RPFHM
AT INTERMEDIATE TEMPERATURES

In this Appendix, we calculate the finite-temperature dc
conductivity of the RPFHM at half-filling and show that it
is proportional to T 2, when a/rm � kBT/t � 1. This justi-
fies that, in this temperature regime, the finite-temperature
conductivity of RPFHM at half-filling can be inferred from
the zero-temperature conductivity of RPFHM at finite Fermi
energy, by replacing the Fermi momentum kF in Eq. (4) with
the thermal de Broglie wavevector kth = 2π/λth.

The current can be calculated using the Landauer formula

I = e

h

∫
dE [ f (E − μL ) − f (E − μR)]T(E ), (A1)

where f (E ) = 1/(eE/kBT + 1) is the Fermi distribution func-
tion, and μL(μR) is the chemical potential of the left(right)
lead. In the linear response regime, the above equation gives
the conductance

G = e2

h

∫
dET(E )

(
−df (E )

dE

)
, (A2)

where we have used μL + μR = 0 and μL − μR = eV . The
finite-temperature conductivity can then be extracted using
Eq. (2) for fixed flux density nv and system size, and the

FIG. 7. The dc conductivity σG (in units of e2/h) of the RPFHM
versus (T/t )2 for nv = 0.01 when L ≈ M = 108

√
3a (the Boltzmann

constant kB is set to unity).

result is shown in Fig. 7. We note that σG shows a T 2

temperature dependence at intermediate temperatures a/rm �
kBT/t � 1, which originates from the k2

F dependence of the
zero-temperature conductivity [see Eq. (4)]. The deviation
from the T 2 dependence at low temperatures kBT/t � a/rm

is due to the quantum transport near the Dirac point, for
which Eq. (4) no longer applies. The discrepancy at high
temperatures kBT/t ∼ 1 is attributed to the nonlinearity of
Dirac dispersion and the thermally excited carriers above
the Van Hove point. We remark that although the Landauer
approach fails near the Dirac point E = 0, it does not af-
fect our finite-temperature calculation significantly, as long as
a/rm � kBT/t .
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