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Helium (He) plays a critical role in numerous areas ranging from the study of celestial objects like brown
dwarfs and gas giants to modern-day technologies like nuclear energy and rocket propulsion. For many of these
applications, it is essential to have a reliable equation of state (EOS) for He that yields an accurate representation
of its thermodynamic behavior. To help constrain and develop such EOS models, we have performed a series of
shock-compression experiments on cryogenic liquid He to pressures exceeding 100 GPa using a magnetically
accelerated flyer plate on Sandia National Laboratories’ Z-machine. We have also performed quantum molecular
dynamics simulations that are consistent with our shock measurements. None of the previously available EOSs
agree with our experimental and simulation results, motivating the development of a fluid-phase He EOS that we
present in this study. We show that our EOS yields good agreement with published data that span temperatures
and pressures encountered across a diverse array of applications.
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I. INTRODUCTION

As the second-most abundant element in the universe, the
ubiquitous presence of helium (He) is apparent in many fields
of study and applications. As an inert gas with an incredibly
low melting point, it finds wide use in industrial applications
as a benign working fluid and for cryogenics [1]. Since He is
also produced in nuclear decay, it plays an important role in
the aging of nuclear reactors, and multiple studies motivated
by this application have examined the behavior of compressed
He bubbles embedded in metals [2–7]. Under more extreme
thermodynamic conditions, it is a major constituent of stars,
brown dwarfs, Jovian planets, and other astrophysical bodies
[8–10].

Modeling the behavior of He at macroscopically rele-
vant scales for these applications requires equations of state
(EOSs), which specifies thermodynamic properties (e.g., in-
ternal energy) as a function of temperature and density or
pressure. Many of the available equations of state for He
are domain specific. For EOSs targeting industrial applica-
tions, the wealth of experimental data at ambient or relatively
close to ambient conditions (typically temperatures below
1000 K and pressures below 1 GPa) allows the construc-
tion of empirical multiparameter EOS models [1,11–14]. Key
properties that these multiparameter models try to reproduce
are the critical point, which lies at around 5 K and 2 bar,
and the vapor-liquid dome. In contrast, astrophysical EOS
models are designed primarily for high temperature and pres-
sure regimes where known asymptotic limits and simplified
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models of atomic structure can produce accurate equations of
state, though these models also attempt to describe ambient
or near-ambient conditions where He exists as a dense super-
critical fluid or a gas. The most well-known such model is
that by Saumon, Chabrier, and van Horn, which is commonly
referred to as the SCvH (or SCVH) EOS in the literature [8].
This model, as well as more recent ones by Chabrier et al.
[10] and Becker et al. [9] that are based in part on SCvH, have
shown considerable success in modeling Jovian planets and
white dwarfs.

For inertial confinement fusion and dynamic materials ex-
periments fielded at institutions such as Lawrence Livermore
National Laboratory’s National Ignition Facility [15,16] and
Sandia’s Z-machine [17], domain-specific equations of state
break down: the multiparameter models extrapolate past the
limited range of data over which they were fit, and the astro-
physical models typically end up having insufficient fidelity to
capture the complicated material properties of cooler denser
conditions. There is thus a strong motivation to construct
equations of state that are capable of describing the properties
of He from ambient conditions all the way to multimegabar
conditions. Because of this wide range of conditions con-
sidered by such EOS models, which necessarily requires
accounting for ionization and electronic excitations, they are
typically represented in a tabular form (e.g., with pressure
printed out over a grid of temperatures and densities), rather
than closed-form, analytical expressions. One such EOS for
He is the LEOS 20 table, which we henceforth refer to as
L20, that was developed by Young et al. over 30 years ago
[18–20]. Another example is the SESAME 5764 (S5764)
table developed by Kerley [21], which is a two-phase (fluid-
solid) EOS published back in 2004, more than a decade after
the development of L20. Both of these models were fit to
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experimental data available at the time, usually in the form
of static-compression (diamond-anvil cell) data [22–26] at or
near room temperature and limited dynamic-compression data
[27]. While L20 and S5764 have their regimes of validity,
recent experiments and ab initio calculations at higher tem-
peratures and densities have exposed inaccuracies in both of
these tables.

To this end, through a combined experimental, model-
ing, and theory effort, we have constructed a fluid-phase
EOS, which we refer to as L21. We have performed strong
shocks on He samples at cryogenic conditions using San-
dia’s Z-machine, which reached pressures between 50 GPa
and 125 GPa, the highest shock pressures attained on cryo-
genically cooled, liquid He. In addition, we have performed
quantum molecular dynamics (QMD) simulations up to
250 GPa to complement our experiments. Building on our
recent EOS work for other materials [28–30], we use these
data in conjunction with existing experimental and ab initio
data to constrain our L21 EOS model and demonstrate its
performance. We divide the rest of this paper as follows. Sec-
tion II describes our experiments, QMD simulations, and EOS
models. Section III provides a comprehensive comparison of
L21 with published results on He, as well as our own data.
We conclude with some brief remarks in Sec. IV. Appendix A
provides a concise summary of the EOS construction details.

II. OVERVIEW AND METHODOLOGY

A. Experimental materials and methods

To better constrain EOS models, we have conducted a se-
ries of shock-compression experiments to measure the Hugo-
niot state using Sandia National Laboratories’ Z-machine
[31,32]. The Z-machine is a pulsed-power source capable
of delivering ∼26 MA of current over a few 100 ns to a
target. The large current produces a strong magnetic field, and
the combined current and magnetic field generate a Lorentz
force ( �F = �J × �B) that accelerates an aluminum 6061-T6
flyer plate. The current pulse is carefully tailored to shock-
lessly accelerate the flyer plate to very high impact velocities
and also maintain several hundred microns of solid density
aluminum on the impact side of the flyer plate to produce a
shock in the target [33–35]. The magnetically accelerated flyer
technique has been successively refined and validated against
conventional shock-compression techniques [36–38].

The helium target configuration is similar to targets suc-
cessfully fielded on the Z-machine for shock-compression
experiments on other cryogenic noble liquids xenon [39],
krypton [40], and argon [41]. Figure 1 shows a schematic
view of the experimental configuration. The target consists
of a copper cell body with a z-cut α-quartz drive plate, a
copper spacer, and a z-cut, α-quartz top-hat rear window.
The copper spacer along with the quartz top-hat defined the
ambient temperature sample thickness between the quartz
drive plate and rear quartz top-hat. The gap between the
quartz windows (approximately 300 µm) was filled with high-
purity He gas (Matheson Trigas >99.9995%) to a pressure of
18.5 psi (1.27 bar). To reach liquid He temperatures, we used a
conduction refrigerator with a vacuum pumped liquid He bath
[42]. The target cell was connected to the liquid He reservoir

FIG. 1. Schematic illustration of the target geometry.

via a copper link. Once the reservoir filled with liquid He, a
mechanical pump reduced the pressure above the He reservoir
and began lowering the temperature of the liquid He in the
reservoir. Using this method, we could reduce the temperature
of the He gas in the target cell to below 4.2 K and completely
fill the cell with liquid He. The target cell showed a change in
pressure from 18.5 psi to approximately 17.6 psi (1.21 bar).
Visual observation of target cells with identical fill volumes
in offline testing showed that the target completely filled with
liquid He and that the change in pressure was a reproducible
marker to verify the transition to liquid He. The initial liquid
He density was determined from density versus temperature
data in Kerr [43] and ranged from 0.128 to 0.147 g/cm3.

A Velocity interferometry System for Any Reflector
(VISAR) [44] measured the Al flyer velocities and shock
velocities in the quartz drive plate, the helium sample, and
the rear quartz window to within uncertainties of <0.8%.
We recorded multiple VISAR signals, each with a different
velocity per fringe (VPF) to eliminate 2π phase shift am-
biguities in determining the shock velocities. We used the
index of refraction for quartz (n = 1.547) and the index of
refraction for liquid He as a function of temperature from the
data in Edwards [45] to correct the VPF in each material [38].
Additionally, integrating the shock velocity with respect to
time verified that the distance was consistent with the sample
thickness calculated using the Cu spacer thickness, its thermal
contraction at liquid He temperature, and the quartz top-hat
thickness. Figure 2 shows a typical analyzed VISAR trace
from a Z experiment along with the raw data VISAR signal.
With the transparent quartz windows, the 532 nm laser for the
VISAR passes through the target cell and reflects off the Al
flyer. The VISAR tracks the Al flyer velocity up to impact
on the quartz drive plate. The shock causes the quartz to melt
into a conducting fluid [38] and the VISAR directly measures
the shock velocity (Us) as the shock transits the quartz. The
shock front in the liquid He is also reflective, providing a
direct, accurate measurement of the shock velocity. As the
shock transits from the helium into the rear quartz tophat, the
VISAR measures directly measures the shock velocity in the
quartz tophat. The shock velocity measurement in the quartz
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FIG. 2. VISAR trace from Shot Z3158 showing the flyer velocity
and the shock velocities in the quartz drive plate, helium sample, and
quartz rear window.

top hat shows jumps in velocity caused by reflected shocks
originating from the interface between the quartz drive plate
and the helium.

With the measured shock velocities, we determined the
liquid He Hugoniot state using a Monte Carlo Impedance
Matching method [47]. First, we determined the initial quartz
Hugoniot state prior to the shock transiting into the He using
the measured quartz shock velocity and the known Hugoniot
for quartz [38,48,49]. In this case, we used the modified Uni-
versal Hugoniot fit presented in Knudson et al. [38,48,49].
The initial quartz density was 2.65 g/cm3 with an uncertainty
of 0.3%. We then impedance matched to the Mie-Grüneisen,
Linear Release (MGLR) quartz release model developed us-
ing deep release data on shocked quartz [48–50]. The Monte
Carlo Impedance Matching method accounts for uncertainties
in the measures shock velocities, initial densities, and the
quartz model fit parameters. Table I lists the experimentally
determined He Hugoniot data. Figure 3 plots our Hugo-
niot data alongside data from some representative studies.
Section III provides a detailed analysis of these studies, as
well as others not shown in the figure. Also plotted in the
figure are our QMD simulation results (see Sec. II B) and
Hugoniot curves from two EOS models mentioned in the
Introduction: L20 [18–20] and S5764 [21]. Figure 3 shows
that neither of these EOS models completely capture the QMD

FIG. 3. Hugoniot data on fluid-phase helium. In this figure and
all subsequent figures on the EOS, we list the name of only the first
author due to space limitations. Here, we illustrate results from our Z-
machine experiments and our QMD simulations, which we compare
with experimental results from Nellis [27] and QMD simulations
from Militzer [46]. The prior EOS models L20 (dashed curves) and
S5674 (solid curves) are plotted for the bounding initial densities of
0.128 and 0.147 g/cm3.

and experimental results. However, we reiterate that the earlier
EOS models were made with limited lower-pressure exper-
imental data and should not be expected to match the new
data. The experimental and computational results prompted us
to develop our L21 EOS for fluid-phase He that is discussed
further in Secs. II C and III, and Appendix A.

B. Density functional theory methods

Molecular dynamics based on ab initio density functional
theory (DFT) [51,52] has demonstrated good agreement with
equation of state data for materials at extreme conditions, and
has a long history in this area in both shock-compressed solids
and cryogenic liquids [38–41,50,53,54]. We have simulated
shock-compression experiments by performing DFT-based
QMD calculations using forces determined from the finite-
temperature Mermin functional [55]. Tables II and III
summarize our QMD results. We used PBE as the underlying
exchange correlation functional [56]. All calculations were

TABLE I. Summary of our experimentally determined Hugoniot states for He initiated from cryogenic, liquid-phase initial conditions. In
order from left to right, the columns indicate the shot label, the initial temperature T0, the He initial density ρ0, the He index of refraction,
the shock speed Us of the quartz window, and various information about the shock state achieved in He: its shock speed Us, particle speed Up,
density ρ, and pressure P.

T0 He ρ0 Quartz Us He Us Up ρ P
Shot (K) (g/cm3) He Index (km/s) (km/s) (km/s) (g/cm3) (GPa)

Z3158 4.06 0.128 ± 0.001 1.026 18.31 ± 0.06 24.28 ± 0.11 18.44 ± 0.12 0.532 ± 0.014 57.3 ± 0.6
Z2981 3.52 0.135 ± 0.001 1.028 24.68 ± 0.06 34.48 ± 0.28 26.96 ± 0.16 0.619 ± 0.024 125.5 ± 1.2
Z3050 2.64 0.144 ± 0.001 1.029 20.91 ± 0.07 28.04 ± 0.10 21.73 ± 0.14 0.640 ± 0.017 87.7 ± 0.8
Z2742 2.14 0.147 ± 0.001 1.030 22.02 ± 0.11 29.60 ± 0.16 23.18 ± 0.19 0.678 ± 0.025 100.9 ± 1.1
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TABLE II. Our QMD results (DFT-based MD simulations with
the PBE functional) for the Hugoniot of fluid He with a T0 = 4.06 K,
ρ0 = 0.128 g/cm3 initial state.

T (K) ρ (g/cm3) P (GPa) ρ/ρ0 Up (km/s) Us (km/s)

10000 0.410(2) 13.49(4) 3.21(1) 8.52(2) 12.38(2)
20000 0.452(1) 27.00(5) 3.53(1) 12.30(1) 17.15(1)
35000 0.525(6) 51.0(5) 4.10(4) 17.4(1) 22.96(7)
42000 0.556(2) 70.4(2) 4.34(2) 20.58(3) 26.73(4)
50000 0.581(3) 88.5(4) 4.54(2) 23.22(5) 29.77(7)
60000 0.606(3) 112.0(3) 4.73(3) 26.27(4) 33.30(6)
75000 0.627(2) 153.5(4) 4.90(2) 30.89(4) 38.81(5)
90000 0.645(2) 195.8(3) 5.04(1) 35.02(3) 43.69(4)
100000 0.651(5) 222.2(6) 5.08(4) 37.38(4) 46.5(1)

performed with VASP 6.2.0 using the all-electron He GW
pseudopotential [57,58], which has a PAW radius of 1.2 Å.

Extensive convergence studies were done, which were used
to determine the following run parameters for our simulations
[59]. Each simulation was run at the Baldereschi mean-value
point with 128 atoms and a plane wave cutoff of 1400 eV. We
ran isotherms at 10, 20, 35, 42, 50, 60, 75, 90, and 100 kK,
with the time step varying between 0.2 fs and 0.01 fs at the
highest temperatures. We used 10 uniformly spaced density
points starting at 0.343 g/cm3 and ending at 1.307 g/cm3

for all isotherms except 10 kK, which included included two
additional density points starting at 0.272 g/cm3. The number
of bands used for each isotherm was chosen to ensure ensure
adequate convergence, which corresponded to 1024 bands at
100 kK.

Equilibration was done at all considered densities along the
10 kK isotherm, which were then used to initialize the config-
urations at other temperatures. We removed the equilibration
period for each simulation before accumulating thermody-
namic averages. The length of the transient was between 0.1
and 0.5 ps, and the thermodynamic averaging was performed
over roughly 1 ps, though was as short as 0.5 ps at the highest
temperatures. All simulations used a velocity scaling NVT
thermostat with a frequency of 100 time steps.

Nuclear quantum corrections to our reported isotherms
were ignored, since the thermal DeBroglie wavelength is
found to be significantly smaller than the average He–He

TABLE III. Our QMD results (DFT-based MD simulations with
the PBE functional) for the Hugoniot of fluid He with a T0 = 2.5 K,
ρ0 = 0.145 g/cm3 initial state.

T (K) ρ (g/cm3) P (GPa) ρ/ρ0 Up (km/s) Us (km/s)

10000 0.455(3) 15.71(1) 3.13(2) 8.60(4) 12.63(5)
20000 0.503(2) 31.55(1) 3.47(1) 12.41(2) 17.44(2)
35000 0.586(2) 60.39(2) 4.04(2) 17.77(4) 23.61(3)
42000 0.618(3) 80.25(3) 4.26(2) 20.57(4) 26.87(4)
50000 0.645(2) 100.8(3) 4.45(2) 23.20(4) 29.93(4)
60000 0.672(1) 128.0(2) 4.64(1) 26.31(2) 33.55(2)
75000 0.699(5) 173.3(8) 4.82(3) 30.70(7) 38.7(1)
90000 0.717(5) 220(1) 4.95(4) 34.7(1) 43.5(1)
100000 0.723(11) 249(2) 4.99(8) 37.2(1) 46.5(2)

separation at all densities considered. However, due to the
cryogenic conditions of our reference points, we estimated
nuclear quantum corrections to both the initial state energies
and pressures to determine if they had any effect on our com-
puted Hugoniots. We did this by using path-integral molecular
dynamics to compute the nuclear quantum corrections to both
the energy and the pressure. Due to the very good accuracy of
classical pair potentials for modeling helium at low pressures
and temperatures, we used classical exponential-six potentials
in lieu of a full-DFT solve for the assessment of nuclear
quantum effects. Specifically, the He–He interaction is given
by

φExp−6(r) = ε

α − 6

{
exp

[
α

(
1 − r

r∗

)]
− α

(
r∗

r

)6
}

, (1)

where ε/kb = 10.57 K, r∗ = 2.97 Å, and α = 13.6. These
specific parameters were taken from existing work in the area
[60]. All PIMD calculations were performed using i-PI [61]
with LAMMPS [62] as the force calculator.

Sixty-four time slices were found to be sufficient to con-
verge the kinetic energy, potential energy, and pressure to less
than 1% in the PIMD simulations. We have conducted simu-
lations to calculate Hugoniot curves from two different initial
states (reference points): (1) T0 = 2.5 K, ρ0 = 0.145 g/cm3

and (2) T0 = 4.06 K, ρ0 = 0.125 g/cm3. The nuclear quan-
tum corrections to the energy and pressure were found to be
4.3 meV/atom and 27.6 bar for the 2.5 K reference point, and
3.91 meV/atom and 19.8 bar for the 4.06 K reference point.
These corrections are negligible, but we added these correc-
tions onto the PBE-based QMD simulations with classical
nuclei for the 2.5 K and 4.06 K reference points, respectively,
and the resulting Hugoniot curves are summarized in Tables II
and III. Due to the extreme temperatures and relatively mod-
est densities for this work, nuclear quantum effects are not
included anywhere else except at the reference points.

C. EOS models

Like in previous EOS work on other materials
[21,28–30,63–68], we represent the EOS of He in terms
of its Helmholtz energy F as a function of temperature T and
density ρ, and we divide F into three contributions:

F (T, ρ) = Fcold(ρ) + Fion(T, ρ) + Felectron(T, ρ), (2)

where Fcold(ρ), Fion(T, ρ), and Felectron(T, ρ) are the cold,
ion-thermal, and electron-thermal contributions, respectively.
The physical meaning of each term, and particular mod-
els we have used are explained in the earlier studies
[21,28–30,63–68], and so we give only a brief description
here.

The cold energy Fcold(ρ) designates the energy of He at
0 K and is often referred to as the cold curve since it depends
on only one independent variable (i.e., ρ). It excludes ther-
mal motion of the nuclei, and instead reflects the potential
energy in the ground-state electronic configuration, as well
as the zero-point energy. We represent the cold curve as a
series of cubic splines [69] on which we employ a piecewise-
smoothing procedure (localized fits to analytical EOS models
or polynomials) to reduce some of the numerical noise. In the
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case of a fluid, the cold curve is a theoretical construct since
it is not the stable phase at 0 K, notwithstanding the ultra
low-temperature superfluid He that is not even considered
in our EOS. Nevertheless, it is useful to include Fcold(ρ) in
our formulation because out of the three free-energy terms
in Eq. (2), it makes the largest contribution to the total free
energy at the intermediate densities and low temperatures
where static compression experimental data collected on flu-
ids are available. For fluid He, we have room-temperature
isotherm experiments [22–25,70] that span a range from about
0.1–1.0 g/cm3. We adjust the splines in this density range to
give a good representation of that set of experimental data.
Below this intermediate range, the cold curve is stitched to a
soft-sphere model [28,63,64] whose coefficients are adjusted
to give a reasonable critical temperature, though an accurate
representation of critical properties and the vapor-liquid dome
is not the focus of the present study.

At higher densities, the cold curve is extrapolated to agree
with predictions from the PURGATORIO code [71,72]. PUR-
GATORIO employs an atom-in-jellium model, which it solves
through all-electron, relativistic DFT calculations. Like the
Thomas-Fermi model [63], PURGATORIO asymptotically ap-
proaches the limit of a one-component plasma [73] at high
densities, but it includes additional physics (e.g., account-
ing for shell structure) that are neglected in Thomas-Fermi,
and so it yields generally more accurate behavior below
the one-component-plasma limit. For this reason, we utilize
PURGATORIO to also calculate the electron-thermal contri-
bution Felectron(T, ρ), which represents thermally activated
processes like electronic excitation, ionization, and recom-
bination events. We obtain the electron-thermal free energy
Felectron(T, ρ) by subtracting PURGATORIO’s prediction for the
cold energy from its prediction of the total free energy:
Felectron(T, ρ) = Fpurgatorio(T, ρ) − Fpurgatorio(T = 0, ρ). An un-
desired byproduct of performing this subtraction is that it
creates numerical pathologies at lower temperatures and
densities, which we resolve with the empirical “cleanup”
procedure described in our earlier study on a beryllium
EOS [29].

The ion-thermal term Fion(T, ρ), which accounts for the
motion of the ions (the positively charged nuclei), presents
the most interesting challenges in terms of the construction of
L21. It plays an important role at moderately high temperature
and density states, such as those along the shock Hugoniot
where He still behaves like an ordinary liquid (and not an
ionized plasma dominated by the electron-thermal term). Ini-
tially, we tried to represent Fion(T, ρ) with the Cell model
developed by Correa et al. [29,30,74], which we have pre-
viously applied to fluid phases in metallic systems [29,30].
However, we found the Cell model always resulted in Hugo-
niots too compressible (i.e., it yields too large of a density
for a given pressure along the Hugoniot) compared to the
experimental and theoretical studies. In retrospect, this is un-
derstandable given that the Cell model is partly inspired from
previous atomistic studies on the liquid phase of dense metals
[65–67], and He atoms interact through weak van der Waals
forces rather than the delocalized electron sea that character-
izes typical metallic bonds. Thus, to model Fion(T, ρ) in He,
we have instead turned to the Cowan model [28,63], which is

a legacy model developed over 40 years ago [75] to describe
fluids.

The Cowan model treats a fluid as if it were a dense,
nonideal gas where the perturbative correction term scales as
a function of the ratio of the temperature to the corresponding
melt temperature at the given density [63]. The tempera-
ture ratio is a measure of the intensity of the interatomic
interactions, with higher temperatures signifying weaker in-
teractions. This physical picture encapsulated in the Cowan
model seems to be more representative of the nature of van
der Waals interactions, and this is reflected in our ability to
construct a reasonably accurate fluid-phase He EOS with it.
We use the Cowan prescription described by More et al. [63],
in which

Fion(T, ρ) = FCowan(T, ρ) = kBT

M
f (u,w), (3)

where kB is the Boltzmann constant, M is the molar mass, and
the dimensionless function f = f (u,w) is defined in terms of
two dimensionless variables, u = θ/T and w = αθ2/(ρ2/3T ),
as

f = −11

2
+ 9

2
w1/3 + 3

2
ln

(
u2

w

)
. (4)

Here, α is a material-specific constant and θ = θ (ρ) is a
density-dependent Debye temperature. The Debye tempera-
ture θ (ρ) serves as an adjustable function that we calibrate
to available Hugoniot data and other properties of interest. It
is closely associated with the ion-thermal Grüneisen parame-
ter γion through the relation γion(ρ) = d ln θ/d ln ρ. It can be
shown [63] that FCowan approaches the appropriate ideal-gas
limit at high temperatures where T � Tm.

III. RESULTS AND DISCUSSION

As discussed in Sec. II C, the L21 EOS involves two ad-
justable terms, the cold energy Fcold(ρ) and the ion-thermal
Grüneisen parameter γion = γion(ρ), both of which we treat as
functions of density ρ only. Sections III A–III C describe how
the available experimental data, including our own shock-
compression experiments presented in Sec. II A, constrain
Fcold(ρ) and γion(ρ). In particular, Sec. III A focuses on the
room-temperature isotherm experiments that serve mainly to
constrain Fcold(ρ), while Secs. III B and III C describe how
dynamic-compression experiments constrain γion(ρ). The last
section, Sec. III D, compares the EOS to other published re-
sults that we have not used to constrain the EOS and instead
serve as “holdouts” to test the EOS performance. Appendix A
presents a focused summary of the EOS and a concise descrip-
tion of how we have fit Fcold(ρ) and γion(ρ).

A. Room-temperature isotherm

Figure 4 shows results for the pressure versus density along
the room-temperature (≈ 297 K) isotherm. The experimental
data, which are inferred from sound-speed and refractive-
index measurements, suggest that L20 [18–20] is too soft,
while the astrophysical EOSs—a grouping that includes
SCvH [8], Chabrier et al. [10], and Becker et al. [9]—are too
stiff. These EOSs feature an almagation of different models
that are stitched together to collectively account for phe-
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FIG. 4. The room-temperature isotherm of He from our L21 EOS, various other EOS models (S5764 [21], Chabrier et al. [10], SCvH
[8], Becker et al. [9], L20 [18–20]) and experimental data [22–25]: (a) complete range over which the fluid is thermodynamically stable;
(b) magnified view of (a); (c) comparison of the different pressure contributions to the total pressure P = Pcold + Pion + Pelectron in L21 along
the isotherm, in which we compute all of these terms in a self-consistent manner by evaluating volumetric derivatives of the Helmholtz energy
F in Equation (2) [i.e., P = −(∂F/∂V )T = −(∂Fcold/∂V )T − (∂Fion/∂V )T − (∂Felectron/∂V )T ]. As stated in the text, the electron-thermal
contribution to F and P is virtually zero at room temperature.

nomena like nuclear quantum effects, interatomic interactions
(including electrostatic screening), and electronic excitations,
but at the particular conditions along the room-temperature
isotherm, all of these EOS models essentially reduce to an
ideal-gas term plus some type of configurational term (e.g.,
a virial series expansion, or an integral over a product of a
pair-correlation function with an interatomic potential) that
corrects for nonideal interactions. Soft behavior indicates that
the EOS overestimates the strength of attractive interactions
between atoms, leading to an overly compressible, dense fluid.
On the opposite end, a stiff EOS underestimates the strength
of the attractive interactions, leading to an underdense fluid.
In contrast, both S5764 [21] and our L21 EOS are designed to
agree with the experimental data, suggesting a proper balance
of attractive-to-repulsive interactions. Thus, out of the EOSs
depicted in Fig. 4, these two models are the ones most suitable
for applications involving He at room temperature or rela-
tively close to room temperature (say, within a few hundred
degrees), such as the studies mentioned in the Introduction
that have examined compressed He bubbles to probe the ef-
fects of aging in nuclear reactors [3–7]. We will henceforth

focus primarily on S5764 and the Chabrier et al. EOS (this
last one being the latest SCvH-like EOS currently available)
when comparing L21 with other EOS models.

For a typical solid, the room-temperature isotherm is de-
termined almost completely by the cold energy Fcold(ρ) and
is virtually unaffected by the other two free-energy terms in
Eq. (2). However, for a fluid, especially the fluid phase of a
light element like He, the ion-thermal term Fion(T, ρ) makes a
non-negligible contribution to the behavior of the EOS along
the isotherm at lower densities (although the electron-thermal
term Felectron is virtually zero at room temperature), as shown
in Fig. 4(c). This complicates the EOS-construction process
because it introduces a coupling between Fcold and Fion. Never-
theless, the temperature of the isotherm is low enough that it is
still largely a reflection of Fcold. We have adopted an iterative
procedure whereby we adjust Fcold to match the data along the
isotherm, then tune Fion to agree with data for other properties
of interest presented later in this paper (e.g., Hugoniot curves),
then revisit the isotherm and make small refinements to Fcold

to account for the newly modified Fion, and so forth, until we
are able to reproduce the data for all desired properties.
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FIG. 5. Comparison of the ambient-pressure entropy (He is a gas
along the conditions shown in this figure) of L21 with data obtained
from the National Institute of Standards and Technology (NIST)
database, which comes from a multiparameter EOS designed for
low-pressure industrial applications [12].

B. Shock compression up to 1 g/cm3

and ambient-pressure entropy

We now turn our attention to the ion-thermal term Fion,
which is specified by setting the density dependence of the
ion-thermal Grüneisen parameter γion(ρ) = d ln θ (ρ)/d ln ρ

and a value θref for the Debye temperature θ (ρ) at a particular
reference density ρref . We fit the latter to data on the ambient-
pressure entropy in the gas phase (Fig. 5). The Grüneisen
parameter γion is fit to various dynamic-compression data,
notably Hugoniot curves obtained through shock-compression
experiments. These experiments provide convenient con-
straints because they allow us to largely separate the cold
energy from the thermal terms in Eq. (2) when constructing
the EOS. This is because they access high-temperature condi-
tions where the cold energy makes only a small contribution
so that the total free energy is instead largely a reflection of the
ion-thermal term, and possibly also the electron-thermal term
at sufficiently high temperatures (for strong enough shocks).
Since γion(ρ) is a function of only ρ in our models, we divide
the dynamic-compression data according to the density range
that they access. The dynamic-compression data that we dis-
cuss in the present subsection (Sec. III B) provide constraints
on γion(ρ) at densities below 1 g/cm3, while the data dis-
cussed in Sec.III C provide constraints on γion(ρ) at densities
above 1 g/cm3.

We start with Fig. 6, which features two sets of shock-
compression experiments: (1) our experiments described in
Sec. II A and (2) those presented by Seagle et al. [76] These
two sets of experiments access the same range of densities,
up to about 0.7 g/cm3, although they probe quite different
temperatures and pressures, owing to the different initial states
that they examine. Also included in Fig. 6 are results from
our QMD simulations described in Sec. II B. S5764 yields
Hugoniot curves in the illustrated density range that appear
to be too stiff, implying that it overestimates γion so that its
ion-thermal pressure is too high for a given density. As a

result, the Hugoniot temperatures from S5764 must also be
notably higher than those from L21 throughout most of the
density range (assuming that the heat capacities CV from the
two EOSs are comparable in this range, which is the case) in
order to satisfy the Rankine-Hugoniot equation

E − E0 = 1
2 (P + P0)(V0 − V ), (5)

where E0, P0, and V0 are the initial internal energies, pres-
sures, and volumes corresponding to the initial temperatures
T0 and densities ρ0 listed in the figure. The discrepancy is
more prominent in our experiments [Figs. 6(a), 6(c), and 6(e)],
where the predictions from S5764 lie outside of the error
bars for three out of our four shots. We have also performed
Hugoniot calculations with the Chabrier et al. EOS [10], but
we do not show its results in the figure because that EOS does
not agree at all with the Seagle et al. experiments (it is far
stiffer than S5764), which involve room-temperature initial
states. We have not attempted to perform calculations for our
experiments with the Chabrier et al. EOS because the lowest
temperature in their EOS table is 100 K, which is above that
of the cryogenic initial states in our experiments.

We have constructed our L21 EOS to fall within the error
bars of both sets of experiments. The agreement is imperfect,
however, as the data suggest that our EOS is perhaps a lit-
tle on the stiff side for our shock-compression experiments
(especially at higher pressures), while it may be somewhat
on the soft end for the Seagle et al. experiments. The results
in Fig. 6 represent a reasonable compromise with satisfying
the opposing demands from these two sets of experiments.
In order to further improve the agreement, one would need
to either adopt a different electron-thermal model from our
choice of PURGATORIO, and/or assume that γion is a function of
both temperature and density. (We note that although the ion-
thermal Grüneisen parameter γion in L21 depends on density
only, the total Grüneisen parameter in the EOS is, in fact, a
function of T as well because the electron-thermal term intro-
duces a temperature dependence.) All of these modifications
would introduce additional challenges such as ensuring that
adopting a particular temperature-dependent γion still allows
the ideal-gas limit to be satisfied.

Figure 7 portrays results for the shock-compression experi-
ments performed by Nellis et al. [27] Like in our experiments,
they start from a cryogenic initial temperature T0 of about 4 K.
Their initial density ρ0 of about 0.123 g/cm3 is comparable
to the lowest initial density in our experiments, but their final
shock states are lower in pressure. In addition, Nellis et al.
performed a double-shock experiment in which a shock state
at a density of about 0.41 g/cm3 on the T0 ≈ 4 K Hugoniot
is subjected to a second shock wave. By design, both L21
and S5764 agree well with the single-shock experimental data
shown in blue in Fig. 7. Additionally, S5764 falls within the
error bars of the double-shock experiment, while L21 is too
soft. It is not possible to adjust γion in L21 to agree with the
double-shock experiment without significantly worsening the
agreement for the Hugoniot data in Figure 6. For example,
the data point for the double-shock experiment is centered
at a density that is similar to those of the orange and green
experimental points in Figs. 6(a) and 6(b), respectively. Com-
paring these three data points, one can see that it is difficult
to develop a model that agrees with all three of them. S5764
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FIG. 6. Comparison of the Hugoniot curves examined by our shock-compression experiments [(a), (c), and (e)], in which the initial states
are cryogenic liquids, with the Hugoniot curves examined by Seagle et al. [76] [(b), (d), and (f)], in which the initial states are precompressed
fluids at room temperature: [(a) and (b)] pressure vs density; [(c) and (d)] shock speed vs particle speed; and [(e) and (f)] temperature vs
density. The different initial conditions and their associated curves/symbols are colored according to the scheme shown in the legends. The
solid curves, dashed curves, squares, and circles represent our L21 EOS, the S5764 EOS [21], experimental data (with the lines extending out
from the squares indicating error bars), and our QMD simulations, respectively.

noticeably overpredicts the pressure for both the orange and
green data points, yet despite that, it may still be somewhat
underpredicting the pressure for the Nellis et al. double-shock
data point since it falls near the edge of the experimental
uncertainties for that particular point on the soft side. We
note that a recent study on argon [41] also demonstrated that

EOS models have difficulties in matching reshock states off of
the principal Hugoniot. Employing more sophisticated models
could possibly improve the performance in the off-Hugoniot
states. However, it may also be possible that inconsistencies
exist among the data and that further experimental work to
measure the reshock states in He are needed.
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FIG. 7. Pressure vs density for the shock-compression experi-
ments conducted by Nellis et al. [27] Results for the single-shock
experiments are colored in blue, while those for the double-shock
experiment are in red. The theoretical results in this figure are taken
from the L21 and S5764 [21] EOS models, as well as ab initio
simulations performed via path-integral Monte Carlo and QMD by
Militzer [46].

Unlike the previous shock-compression experiments con-
sidered so far, which feature liquid-phase (or liquidlike
supercritical fluid) initial states, the initial states examined by
Cai et al. (Fig. 8) are all gaslike states. They have performed
experiments where He is shocked from a temperature of 293 K
and one of three different pressures: 6, 12, and 50 bar. These
different initial states lie close enough to each other that
the resulting shock states can all be described by the same
linear shock speed-particle speed (Us–Up) relation within the
experimental uncertainties. The densities spanned by their ex-
periments cover a range of about 0.001–0.01 g/cm3, and they
are therefore useful in constraining γion in this low-density
regime. We have been able to adjust γion in L21 to give good

agreement to the experimental Us-Up data, but our resulting
shock temperatures lie on the low end of the range spanned
by the data. However, Cai et al. do not report uncertainties
in their temperature data. Given the difficulties in measuring
temperature in shock-compression experiments, it is not un-
reasonable to assume error bars of at least ±10%, as shown in
Figs. 9 and 11 below. If we assume this level of uncertainty,
L21 would fall within the error bars of most of the points.

C. Shock compression and quasi-isentropic
compression beyond 1 g/cm3

Figure 9 presents Hugoniot results for laser-driven shock-
compression experiments [78–80]. The final shock pressures
and densities attained in these experiments were originally re-
ported by Eggert et al. [79], while Celliers et al. [80] reported
the corresponding shock temperatures obtained through py-
rometry. The setup in these experiments involve a quartz
plate that serves as a reference to enable a determination of
the shock velocities. Brygoo et al. [78] later reanalyzed the
results reported by Eggert et al. and Celliers et al. with a
new quartz release model, and it is this corrected set of data
that we examine in Fig. 9. These experiments are similar to
Seagle et al. [76] in that they involve initial states where fluid
He is precompressed at room temperature, but they cover a
broader range of initial densities and also access much higher
shock pressures of up to about 200 GPa. For the purposes of
comparison, we have included a few data points from Seagle
et al., which are depicted by the green circles in Fig. 9.
Discussions in earlier studies [78–82] have pointed out that
at lower initial densities, the first-principles simulations by
Militzer [46,81] and Preising et al. [82] are stiff compared to
Brygoo et al., but that the agreement with experiment tends to
get progressively better with increasing precompression. It is
perhaps not surprising then that L21 and S5764 display similar
behavior with respect to Brygoo et al., since we have seen
from Fig. 7 that L21, S5764, and Militzer all lie rather close
to each other for the Nellis et al. Hugoniot. Interestingly, the

(a)
2 4 6 8 10

Particle speed (km/s)

2

4

6

8

10

12

14

S
h
oc

k
sp

ee
d

(k
m

/s
)

L21

S5764

Chabrier

Cai

(b)
2 4 6 8 10 12 14

Shock speed (km/s)

2000

4000

6000

8000

10000

12000

14000

16000

T
em

p
er

at
u
re

(K
)

L21

S5764

Chabrier

Cai

FIG. 8. Results for shock-compression experiments performed by Cai et al. [77]: (a) shock speed vs particle speed and (b) temperature
vs shock speed. The solid curves, dashed curves, dotted curves, and squares represent L21, S5764 [21], the Chabrier et al. EOS [10] (which
overlaps closely with S5764 for this particular data set), and the experimental data, respectively. The Hugoniot curves from the EOS models
are computed from an initial temperature and pressure of 293 K and 20 bar, respectively.
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FIG. 9. Results for shock-compression experiments reported by Brygoo et al. [78], who have reanalyzed the original set of results for
these experiments that were originally published by Eggert et al. [79] and Celliers et al. [80]: (a) pressure vs density and (b) temperature vs
pressure. The different initial conditions and their associated curves/symbols are colored according to the scheme shown in the legends. The
solid curves, dashed curves, dotted curves, and squares represent L21, S5764 [21], the Chabrier et al. EOS [10], and experimental data from
Brygoo et al., respectively. The green circles below 20 GPa in (a) are three experimental data points from Seagle et al. [76] where the initial
densities [0.212–0.224 g/cm3; see Fig. 6(b)] are close to 0.220 g/cm3.

Chabrier et al. EOS significantly overpredicts the pressure for
Seagle et al. [as can be seen in Fig. 9(a) and as stated in our
discussion of Fig. 6(b)], but it seems to provide slightly better
overall agreement with Brygoo et al. in pressure-density space
than does L21 or S5764, although none of these EOS models
are able to pass through the error bars of all the data points.
The uncertainties on the shock temperatures are large enough
that they cannot clearly discern a “best” EOS, though the
temperatures from S5764, which are portrayed by the dashed
curves, lie outside of (above) the error bars of all the green
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FIG. 10. Pressure vs density along the quasi-isentropic loading
path in the multiple-shock-compression studies of Mochalov et al.
[83–88] and Zhernokletov et al. [89,90]. The gray dashed–dotted
curve depicts the isentrope that Mochalov et al. [88] have computed
with their EOS. This isentrope passes through the ρ0 and P0 indicated
in the legend, which is the density and pressure of the shock state
from which the isentrope is initiated. The other curves are calcula-
tions of that same isentrope with L21, S5764 [21], and the Chabrier
et al. EOS [10].

and orange data points in Fig. 9(b). Further experiments with
improved precision would help further constrain the models
in this region.

At much higher densities, we consider the data illustrated
in Fig. 10, which features results reported by Mochalov
et al. [83–88] and Zhernokletov et al. [89,90] Over sev-
eral publications spanning nearly a decade, Mochalov et al.
have performed experiments in which fluid He in a spherical
chamber is compressed by a series of multiple, reverberating
shocks. This type of multiple-shock compression typically re-
sults in a quasi-isentropic loading path that crosses through the
initial temperature and density. But in their experiments, the
entropy generated during the first shock is so large that the He
more closely follows a shock-ramp path in which the second,
third, fourth, etc. shock states define a quasi-isentrope that is
initiated from the first shock state. Figure 10 shows this quasi-
isentropic portion of their loading path. Also included in this
figure are data from Zhernokletov et al., who have performed
similar experiments and analyses. The data reported by these
studies are not derived purely from experiments, but rather
are obtained by applying theoretical models to experimental
data. More specifically, the density is estimated by examining
through x-ray imaging how the geometry of the spherical
chamber (i.e., its radius) changes with compression, while the
pressure is computed through hydrodynamic simulations and
EOS models. Mochalov et al. [88] report that an isentrope
computed from their EOS that is initiated from an assumed
first-shock state of ρ0 = 1.45 g/cm3 and P0 = 188 GPa is able
to give a good representation of their data. The other EOSs
in Fig. 10 yield roughly the same results for that isentrope.
Although the data points in the figure were not obtained purely
through experimental means, we still consider them in the
construction of our EOS because they are the only results
currently available for He at relatively high densities that
involve some form of experimental measurements, and thus
to some degree, they provide constraints on the high-density
behavior of the EOS.
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FIG. 11. Results for the quasi-isentropic loading path in the multiple-shock-compression studies of Zheng et al. [91]: [(a) and (b)] pressure
vs density and temperature vs density in shots 1, 2, and 3, where the initial states are at room temperature and a density of 0.03 g/cm3;
[(c) and (d)] pressure vs density and temperature vs density in shots 4, 5, and 6, where the initial states are at room temperature and a density
of 0.05 g/cm3. The different shots and their associated curves/symbols are colored according to the scheme shown in the legends. The solid
curves, dashed curves, dotted curves, and symbols represent L21, S5764 [21], the Chabrier et al. EOS [10], and experimental data from Zheng
et al., respectively. The curves generated from the EOS models are isentropes that pass through the temperature and density of the leftmost
points in (b) and (d).

D. Comparison to other experimental data
and theoretical results

With the two adjustable functions Fcold(ρ) and γion(ρ) in
our EOS having now been determined, we compare the re-
sulting EOS to other published data that were not used to
constrain our EOS and instead serve as a holdouts to further
test the EOS. Figure 11 shows results from Zheng et al. [91],
who have performed a set of six experiments where fluid He
initially precompressed to either 0.03 g/cm3 (shots 1, 2, 3) or
0.05 g/cm3 (shots 4, 5, 6) at room temperature is subjected
to a series of 8–10 reverberating shock waves. Similar to
the behavior exhibited in the multiple-shock experiments of
Mochalov et al. described above, Zheng et al. find that the first
three shocks in each of their shots generates a non-negligible
amount of entropy, while the path mapped out by the sub-
sequent shocks can be roughly thought of as an isentrope
that passes through the third shock state. Figure 11 illustrates
this quasi-isentropic part of their experiments, where the isen-
tropes from the EOS models are calculated to pass through

the temperatures and densities reported by Zheng et al. for
the third shock state in each of their six shots. These shock
states are represented by the leftmost points in the figure; the
first and second shock states are not plotted since the figure fo-
cuses on just quasi-isentropic compression. S5764 [21] agrees
fairly well with the experimental data on the pressure, but its
predicted temperatures tend to be too high. On the other hand,
the Chabrier et al. EOS [10] falls within the error bars of
most of the experimentally reported temperature points, but its
predicted pressures tend to be too low. L21 falls somewhere
in between the two opposite extremes represented by these
two other EOS models. The pressures from L21 agree fairly
well with the Zheng et al. [91] data, and while its predicted
temperatures for most of the points are too high like in the
case of S5764, they are significantly lower and closer to the
experimental data.

Finally, we conclude the discussion of our results with
Fig. 12, which compares high-temperature isotherms from
L21 and S5764 [21] with predictions from two theoretical
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FIG. 12. High-temperature isotherms from L21 (solid curves) and S5764 [21] (dashed curves) compared against theoretical predictions,
where (a) compares Stixrude and Jeanloz [92] (squares) with the EOS models, and (b) compares Winisdoerffer and Chabrier [93] (circles) with
the EOS models.

studies: 1) Stixrude and Jeanloz [92] and 2) Winisdoerffer
and Chabrier [93]. For clarity, we do not show results from
the Chabrier et al. EOS [10] in the figure, but we find that it
yields similar results as L21 and S5764. Stixrude and Jeanloz
perform ab initio QMD simulations, while Winisdoerffer and
Chabrier employ a “chemical model” [8,94,95] that mini-
mizes a free-energy function to determine the composition
of neutral He, He+, He++, and electrons e− as a function
of temperature and density. The EOS models agree with
both sets of theoretical simulations [92,93] at the low-density
end, and they also agree with the high-density end in Win-
isdoerffer and Chabrier, confirming that all of the results in
the figure approach the one-component plasma limit. It is
at intermediate densities from about 10–100 g/cm3 where
differences can be seen. In this density range, the EOS models
predict pressures that are higher than those from Winisdo-
erffer and Chabrier, but lower than those from Stixrude and
Jeanloz, though they appear to be closer to the pressures from
the latter study, especially at densities near 10 g/cm3. This
seems to imply that the chemical model from Winisdoerffer
and Chabrier underpredicts the extent of ionization in this
intermediate density range, though no experimental studies
are available in this range to validate this hypothesis. The
only available set of results that provide any overlap with this
10–100 g/cm3 density range are the quasi-isentropic data
(derived through a combination of experimental measure-
ments and hydrodynamic/EOS models) from Mochalov et al.
[83–88] illustrated in Fig. 10, which extend up to about
10 g/cm3 and show good agreement with the EOS models.

IV. CONCLUSIONS

We have performed experiments in which liquid He at
cryogenic temperatures is shock compressed to a peak pres-
sure of 125 GPa. These experiments probe conditions that
have not been accessed in previous experiments. We have
also performed ab initio QMD simulations, with nuclear
quantum corrections for the zero-point energy and pressure,
that are consistent with our shock measurements. Our results

demonstrate that for He, the quantum effects are negligible
at our initial conditions. Comparisons of the available EOS
models with our experiments and QMD simulations motivated
the development of our own He EOS, which we refer to
as L21. This EOS covers temperatures and pressures rele-
vant to multiple different fluid states, ranging from gases, to
compressed liquids, to high-temperature shocked plasmas. It
is not intended, however, to give an accurate representation
of the vapor–liquid dome or the critical point; an improved
treatment of that region will be reserved for a future study.
By design, L21 gives good agreement with our experimental
and QMD results. We have demonstrated that L21 also yields
good overall agreement with the published static-compression
data and other shock-compression data on He.

Although the aforementioned studies have collectively
done an excellent job in furthering our understanding of He,
much of the relevant phase space has still not been explored.
Further experimental work would help provide additional con-
straints on the thermodynamic behavior of He at extreme
conditions. Moreover, we note that a highly accurate, mul-
tiphase He EOS that covers a wide range of conditions,
including those pertaining to the hcp and fcc solid phases,
has still not been developed. The closest such EOS model
currently available in this regard may be S5764 developed
by Kerley [21], which is a two-phase EOS that covers fluid
(including the various incarnations like gases, ordinary liq-
uids, and ionized plasmas) and hcp, but not the fcc phase. A
necessary step in developing an accurate multiphase EOS for
He is to construct a fluid-phase EOS that can describe both
the vapor-liquid dome and high-temperature plasma states to
a high degree of fidelity, as well as all states in between these
two extremes. This could perhaps be achieved by patching
L21 to one of the published multiparameter fluid EOS models
[1,11–14], the latter of which provides a highly parametrized
fit to the vapor-liquid dome, critical point, and other low-
temperature, low-pressure regimes. The resulting fluid-phase
model could then be combined with separate models for hcp
and fcc to construct the multiphase EOS.
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APPENDIX: EOS MODEL SUMMARY

The EOS in its most fundamental form is given by Eq. (2),
which reads F (T, ρ) = Fcold(ρ) + Fion(T, ρ) + Felectron(T, ρ).
The electron-thermal term Felectron(T, ρ) is fixed by virtue of
our choice to model this term with PURGATORIO, which does
not involve any adjustable parameters and is an all-electron,
relativistic DFT-based atom-in-jellium model developed by
Wilson, Sterne, and others [71,72]. The cold curve Fcold(ρ)
is experimentally constrained over the range from about
0.1–1 g/cm3 through the room-temperature isotherm data il-
lustrated in Fig. 4. Although the ion-thermal term Fion(T, ρ)
makes a non-negligible contribution along this isotherm
[as shown in Fig. 4(c)], the isotherm is nevertheless
largely a reflection of Fcold(ρ), and so the data pro-
vide a powerful constraint on Pcold(ρ) = −ρ2dFcold(ρ)/dρ,
from which we can obtain Fcold(ρ) by integration. Be-
low 0.1 g/cm3, we utilize splines to join Fcold(ρ) to a
soft-sphere model [28,63,64], although we have noted that
an improved treatment of the critical region could be
achieved in the future by replacing this low-density region
of the EOS with one of the multiparameter EOS models
[1,11–14] that are specialized for lower densities and tem-
peratures. At extreme compressions (say, densities above
50 g/cm3), we assume that PURGATORIO provides an accurate
description of the cold curve, as explained in Sec. II C and our
earlier publications [28–30]. We again use splines to connect
Fcold(ρ) in the experimentally constrained 0.1–1 g/cm3 range
to the PURGATORIO calculations that reside at much higher
densities.

TABLE IV. Polynomial fits over the range from 0.1–3 g/cm3 for
the cold energy Fcold (ρ ) = ∑3

k=0 ckρ
k in units of kJ/mol and Debye

temperature θ (ρ ) = ∑4
k=0 ckρ

k in units of K, with the coefficients ck

listed here.

Property c0 c1 c2 c3 c4

Fcold 5.295 −32.152 50.313 −4.544
θ −5.032 109.002 −38.068 15.152 −2.112

The ion-thermal free energy Fion(T, ρ) is represented with
the Cowan model in Eq. (3). This model is described by two
parameters: α and θ = θ (ρ). As an alternative to working
directly with the Debye temperature θ (ρ), one could in-
stead integrate the ion-thermal Grüneisen parameter γion(ρ) =
d ln θ (ρ)/d ln ρ and set the integration constant by specify-
ing a value for the Debye temperature θref = θ (ρref ) at an
arbitrarily chosen reference density ρref . For the purposes of
EOS construction, it is generally easier to work with γion(ρ)
rather than θ (ρ) because adjustments to γion have more of
a visible effect on the pressure P = P(T, ρ) returned by the
EOS, and the majority of data available to constrain the EOS
pertain to the pressure. The room-temperature isotherm data
in Fig. 4, together with the shock- and ramp-compression
data discussed in Secs. III B and III C, provide constraints on
γion(ρ) over a density range from about 0.001–20 g/cm3. Be-
low this density range, we employ splines to extrapolate γion

to the ideal-gas (zero-density) limit of γion = 2/3, and above
this density range, we extrapolate γion to the one-component
plasma limit [29,96] of γion = 1/2. The two free-energy terms
Fcold(ρ) and Fion(T, ρ) are coupled since they both make non-
negligible contributions to the room-temperature isotherm,
and so γion(ρ) is adjusted together with Fcold(ρ) through the
iterative procedure described near the end of Sec. III A. There
is some degeneracy between the parameter α and the reference
Debye temperature θref in that both provide a constant offset
and a T, ρ-independent scaling on the free energy, as can be
seen from Equation (3). If we were developing a multiphase
EOS, more constraints (e.g., melt curves) may be available
to break this degeneracy. However, for the fluid-phase-only
EOS that we construct in the present study, we have chosen to
arbitrarily set α to a value of 100 g2/3/(K · cm2), and adjust
θref to reproduce the entropy results in Fig. 5, leading to
θref = 11.5 K at ρref = 0.1624 g/cm3.

The EOS is stored in tabular form over a grid of points
in temperature-density space. For this paper, we have used
a 3000×600 grid, with the 3000 temperature (600 density)
points spaced logarithmically from 1 K to 109 K (10−10

to 5000 g/cm3). An electronic copy of this table may be
available for distribution upon reasonable request. The broad
range of conditions spanned by the EOS, along with the use
of PURGATORIO, preclude the possibility of representing the
EOS over the entire range with a single analytical model, but
Table IV presents polynomial fits for Fcold(ρ) and θ (ρ) over
the limited range 0.1–3 g/cm3.
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