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Nonergodic dynamics for an impurity interacting with bosons in a tilted lattice
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The fate of a single particle immersed in and interacting with a bath of other particles localized in a tilted
lattice is investigated. For tilt values comparable to the tunneling rate a slow-down of the dynamics is observed
without, however, a clear localization of the impurity. For a large tilt and strong interactions the motion of the
impurity resembles that in the Kronig-Penney potential. The dynamics of the impurity depends on the initial
distribution of majority particles. It shows delocalized dynamics for a regular, density-wave-like distribution and

localization if majority particles are randomly distributed.
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I. INTRODUCTION

Studies of a small impurity interacting with the medium it
is immersed in have a long history. The modern formulation
dates back to Landau [1], who considered the motion of an
electron in a dielectric crystal. Due to interactions, the electron
dresses in the phonon cloud forming a complex object—a
polaron—named and studied by Solomon Pekar [2-5]. More
modern studies have considered an impurity interacting with
seas of ultracold bosons [6—16] or fermions [17-24]. The
motion of an impurity in the Bose-Einstein condensate may
be considered as an example of a quantum walk [25-36].

Recently, the study of an impurity interacting with a disor-
dered medium received significant attention. Delocalization of
a particle, in the presence of disorder, due to an additional cou-
pling to a bath [37—42] was studied in a variety of situations.
A single impurity interacting with the Anderson-localized
medium was considered in detail in Refs. [43—-46]. Small
system studies indicated impurity induced delocalization for
small disorder [43], while studies of larger systems at large
disorder indicated localization at short times [44,45]. How-
ever, it was shown that this conclusion must be treated with
caution when longer interaction times were considered [46].
The latter study extended the analysis to the quasiperiodic
disorder.

The aim of the present work is to consider the dynamics
of an impurity interacting with majority particles in a one-
dimensional tilted lattice. This problem is disorder-free, yet
recent studies have shown that known Stark localization for
noninteracting particles extends also to the interacting case
[47-56]. Both the spectral statistics (such as gap ratio [57,58])
as well the as time dynamics reveal significant similarities
between disorder-induced or tilt-induced localization. It is in-
teresting, therefore, to see whether the motion of the impurity
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in disordered and tilted lattices also reveals common features.
Some differences may be expected because it is well known
that localization may be vulnerable to external perturbations,
e.g., a coupling to additional phononic [37] or bosonic baths
[41]. Here the impurity may be considered [44,45] to be a very
small bath perturbing the Anderson- or Stark-localized sys-
tem. Often, in such situations one may observe subdiffusive
transport [39,42].

The paper is organized as follows: In Sec. II we describe
the model studied as well as define observables that we use
to characterize the system. Section III describes the results
obtained for a relatively small system with the Hamiltonian
exponentiation approach [59,60] that allows us to analyze
long-time behavior while in Sec. IV we consider larger sys-
tems using a variational approach based on tensor networks.
Both approaches are compared briefly in the Appendix. Sec-
tion V considers the role of random positional disorder in
the initial state for the dynamics—here we consider larger
systems only. We conclude in Sec. VI.

II. THE MODEL AND METHODS

We consider two species of hard-core bosons residing in a
common one-dimensional lattice with open boundary condi-
tions described by the Hamiltonian:

L-1 L
H=J) (dd+He)+ Y hig,
i=1 i=1
L—-1 L
+J Y (@ +He) +U Y heitai (D

i=1 i=1

where J denotes the tunneling amplitude assumed, for sim-
plicity, to be the same for both ¢ and d species (later on we fix
the units with J = /i = 1). d;, d, (&;, ¢]) are the annihilation
and creation operators for d (c) bosons at site i, while 71, ; (i, ;)
are their occupation number operator at site i. The interaction
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strength between the two species is characterized by U, while
the on-site chemical potential acting on the d particles is char-
acterized by h;. A single-c particle does not feel any potential
and it would move freely for U = 0. We shall study how the
interactions with d particles affect the c-impurity dynamics
and how the presence of the impurity affects the d particles.

A similar model was introduced in Refs. [44,45], where it
was assumed that 4; is randomly and uniformly distributed,
h; € [-W, W], resulting in Anderson localization for d par-
ticles alone. While short-time study [44,45,61] hinted at the
appearance of many-body localization (MBL) in the system
for sufficiently large interactions U between d particles and ¢
and appropriately chosen disorder amplitude W, the study of
longer times showed that MBL-like behavior is rather a tran-
sient effect and the impurity spreads subdiffusively in the sys-
tem, leading also to the slow delocalization of d species [46].

Let us underline that the hard-core bosons model maps
to spin 1/2 system (with an empty site corresponding to the
spin-down state while the occupied site to the spin-up state
or vice versa). Those in turn, via the Jordan-Wigner transfor-
mation, may be transformed into spinless fermions. Thus the
model, (1) is quite general. The hard-core assumption arises
in cold atomic physics when the on-site interaction among
particles is huge. Then the double (or higher) occupancy on
a given site is energetically very costly and the motion of
particles may be restricted to a single occupancy subspace.
Such an approach is widely utilized in studies of dynamical
and ground-state properties of, e.g., dipolar systems [62—-64].
Also the impurity localization problem in hard-core boson
models has been studied in prior works [44—46].

In our study we shall use a similar set of parameters as
Refs. [44-46], concentrating, in particular, on U = 12 case,
but we shall replace the random uniform disorder with a
constant tilt of the lattice h; = Fi. Also, we use similar ap-
proximate numerical approach to study time dynamics, i.e.,
the time-dependent variational principle (TDVP) technique
with matrix product states. Specifically, we follow the pre-
scription given in Refs. [65,66] and use a combination of
two-site and one-site codes, for details see Ref. [46]. For small
system sizes, up to L = 24, we use also the exact time propa-
gation as supplied by the QuSpin code [59,60] comparing its
results with that of TDVP propagation for similar system sizes
in the Appendix.

Note that the Hamiltonian (1) is particle-hole symmetric so
the motion of a single ¢ impurity in the presence of 7 filling of
d bosons will be the same as for 1 — 7 filling. For this reason,
we consider two filling cases. Inspired by Refs. [44-46] we
consider first the 1/3 filling of d bosons prepared in a Fock,
charge-density wave-like state, i.e., |0,1,0,0,1,0,0,...).
Those particles, in the presence of a constant lattice tilt, un-
dergo Wannier-Stark localization. Next, we discuss the 1/2
filling with d particles being in the |1, 0, 1, 0...) initial state
that leads to stronger interactions for the same U. Finally,
we consider the situation when d particles are randomly dis-
tributed, introducing the positional disorder. In all cases, a
single ¢ boson is placed in the middle of the chain at the site iy
which is initially empty. Its spreading in the lattice is affected
by the interaction with d particles.

Note that it is also possible to place the impurity in the site
already occupied by the d particle. This, however, shifts the

energy of the system by a large value of U, so the system is
strongly perturbed by the impurity. The tunneling from such
a state is strongly nonresonant slowing down considerably the
initial time evolution.

The full dimension of the Hilbert space for our problem is

. L
dimH = L x (Nd>, ®)

with the first term corresponding to the Hilbert-space dimen-
sion of the impurity ¢ and the second term associated with
the number of d-type hard-core bosons (or fermions), N,;. The
filling is, therefore, n = N, /L. In the following, we present the
“exact” numerical data for L around 20, which corresponds to
the Hilbert-space dimension of the order of a few million. For
larger systems, of the order of L = 60, we use an approximate
TDVP algorithm based on matrix product states (MPSs) (for
details see the Appendix and Ref. [46]).

We consider the following observables: The impurity
density, n.;(t) = (7. ;(t)), which reveals a possible spreading
of the ¢ boson through the chain, and the density of
the background bosons affected by the tilt of the lattice,
ngi(t) = (g ;(t)). We find that useful information is provided
by the mean square deviation (MSD) for the ¢ boson position
defined as

L L 2
MSD(t) = > " nei(i —ig)* — (Z nc,i(i—io)) )

The MSD is similar to the quantity studied in Refs. [67,68]
in the context of MBL. The diffusive spread is indicated by a
linear growth MSD(¢) o< . A saturation after an initial growth
is a hallmark of Anderson localization. It is believed [67,68]
that the growth of MSD in a genuine many-body interacting
system in the MBL phase is slower than any power in time
and persists for a long time.

Additionally, we consider the time correlation function of
d particles defined as

L—L,

Calt.Ly) =Y [na)(t) —Allng,(0) —7l, (4

I1=Ly+1

where 7, the mean density which, for our initial state, is
typically n = 1/3. L; denotes the number of sites on both
edges of the chain removed from the correlation function. To
avoid boundary effects we take L, = 3. If the memory of the
initial state is lost, ny ;(¢) should reach 7 at all sides leading to
vanishing Cy(¢, Lp).

We analyze also the entropy of entanglement by splitting
the system on the i-bond into two subsystems A and B with
A containing the first i sites. This allows us, in principle, to
test whether the logarithmic entropy growth, considered as
another feature of MBL appears in the system studied. Let
us define the density matrix for the subsystem A as p4(¢) =
Trg|y(2)) (¥ (¢)] where |1 (¢)) is the quantum state of the sys-
tem at a given time ¢. Then the entanglement entropy across
this bond reads

S = —Tr[paln psa] = — Zpk In oy, Q)]
k
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FIG. 1. Impurity density, n, (left) and tilted hard-core bosons
density, n, (right) for different values of the tilt F', as indicated in the
panels. The initial state of tilted bosons is [010010. .. 010), while the
impurity is placed in an initially empty central site of L = 24 chain
(total Hilbert-space dimension being 1.76 x 107). The interaction
strength is U = 12. Dotted lines indicate equilibrium occupations.

where p; are the squares of the Schmidt basis coefficients
fulfilling Zk or =1 (see, e.g., Ref. [69]). Furthermore, we
can split the entanglement entropy S into two parts [70]:

S =38y + S, (6)

where Sy denotes the number (classical) entropy describing
particle number fluctuations between A and B subsystems and
Sc denotes the configurational (quantum) entropy (describing
various particle configurations in A and B). Denote by p,, the
probability of occupying the n-particle sector in A and by p™
the corresponding block of the density matrix ps = > p,p™.
Then [70],

Se == paTe(p™ In p™), ™

Sv=—2) palnp, ®)

III. SMALL SYSTEM SIZES

We begin our analysis with systems of small sizes
amenable to an exact time propagation. They allow us also
to reach longer times of evolution. We consider 1/3 filling
first. Figure 1 presents the time dynamics of both the impurity
and the background bosons in the tilted lattices for different
values of the tilt, /. We assume the interaction of ¢ and d
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FIG. 2. Time dependence of the correlation function for d par-
ticles for different values of the interaction strength U (as indicated
above in the figure), different tilt values (indicated in the panels), and
L = 21 chain shows that only for strong interactions does the motion
remain nonergodic on the timescales considered. To avoid boundary
effects, we drop L, = 3 sites from both edges in the calculation of
Ca(t, Ly).

species to be quite high, U = 12, as in Refs. [44,45]. For a
small tilt (F = 1), the impurity decays from the initial site
and tends to spread over the whole lattice, suggesting a slow
delocalization towards its thermal behavior. This tendency
to an ergodic behavior can also be seen by looking at the
density profile of the d-type bosons, where they lose com-
pletely the memory of their initial configuration, “melting” to
ng,; = n. An interesting scenario emerges when we increase
the magnitude of the tilt to F = 2. Despite an initial spread,
the impurity density seems to freeze in a specific configura-
tion, thus suggesting some sort of localization. This localized
behavior is also reflected in the background bosons, which
do not completely lose the memory of their initial configu-
ration, even when the system is evolved for a very long time
(up to 10*J71).

This is confirmed by the time dependence of the correlation
function, (4), shown in Fig. 2. Here we show the system
dynamics for different interaction strengths, U. For smaller U
values, the correlations, after initial oscillations, decay fast to
zero indicating ergodic behavior. This is to be contrasted with
large U, in particular the U = 12 case, where the oscillations
of the correlation function decay slower and the asymptotic
values (not reached even for long 10* times considered) seem
to be nonzero, at least for the F > 2 cases. The oscillations
are the remnants of Bloch oscillations, which would dominate
the dynamics of d particles for U = 0.

The interesting, nonergodic dynamics therefore occurs for
strong interactions, from now on we shall consider mostly the
U = 12 case.

The hat-like behavior of the impurity density with the max-
imum at its original position, particularly visible for F = 2,
suggests some sort of memory of the initial position of the
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FIG. 3. (a) Mean square deviation MSD(¢) time dependence for
c-particle distribution for U = 12 and different values of F for sys-
tem size L = 24. (b) Time dynamics of the entanglement entropy in
the middle of the chain for slightly smaller system size, L = 21.

¢ particle. It is accompanied by a strong modification of the
background d-boson distribution in this central position. This
behavior persists at quite large times (up to 10*J~!) where
both n.; and n,;; seem to keep their shape, being extremely
weakly dependent on time.

To provide a more quantitative picture of the impurity
dynamics, Fig. 3 shows the growth of MSD, Eq. (3), for
different F values and strong interactions. This growth nec-
essarily reflects the trends that may be invoked from Fig. 1.
For small F =1 the wave packet apparently spreads quite
fast, the spread slows down in time but does not stabilize on
the timescale considered. Markedly different is the growth of
MSD for the F = 2 case. The initial growth saturates around
t = 200 and then remains practically constant with possibly
a very slow growth. On the other hand, for still bigger tilt,
F =3, 4, one observes initially a fast superdiffusive growth
(~t* with ¢ > 1) of MSD which then stops growing but rather
undergoes significant oscillations. By comparing the results
obtained for different system sizes, not shown, one may verify
that the time when the first maximum of MSD is formed is
roughly proportional to the system size L and is related to the
moment when the front of the wave packet reaches the edges
of the system. At roughly the same time the entanglement
entropy growth, Fig. 3(b), changes from a steep growth to a
slow logarithmic-like behavior for F' = 3, 4 while for smaller
F values studied, the growth is substantially faster. Let us note
that we report calculation of S for a slightly smaller system
size, L = 21, since the corresponding calculations for L = 24
would require excessive computer time. Still, we show MSD
in Fig. 3(a) for the largest L we could handle.

Let us leave aside for a moment the fast initial growth of
MSD in the initial ¢ € [0, 100] period. Clearly, the dynamics
for t+ > 100 and larger values of F studied shows features
expected for MBL: the distribution of ¢ as well as d par-
ticles stabilizes in out-of-equilibrium configurations with a

100
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t

FIG. 4. Comparison of the exact dynamics and that generated by
a static Kronig-Penney (KP) potential of amplitude U = 12, Eq. (9).

close to exponential distribution for ¢ particles centered at
its initial position (and revealing fast oscillations as visible
from MSD fast changes at later times). Still, the mean value
of MSD changes very slowly, following the MBL signature
of Refs. [67,68]. The entanglement entropy shows a slow
logarithmic-like growth, in agreement with another hallmark
of MBL [71,72].

Can we somehow provide a physical understanding of this
dynamics? An interesting picture emerges noting the fact that
d particles for such large F values are practically localized at
their initial positions. Suppose that they are strictly immobile.
Then, they provide a periodic Kronig-Penney (KP) §-type
potential [73] of amplitude U for the motion of ¢ particles.
Then the effective Hamiltonian governing the motion of the ¢
impurity is

L—-1
Her =7 (@lei1 +He) +U Y e, ©)
i=1 €O

where O is a set of sites occupied initially by d particles, i.e.,
0=1{2,5,8,...}.

Such an asymptotic picture may only be approximate, as it
does not depend on F value (still under the assumption that
F is large). However, already in Fig. 3, the time dependence
of MSD for F =3 and F =4 looks quite similar, Fig. 4
compares F = 4 case with the dynamics obtained with the
Hamiltonian (9). The latter is a strictly periodic problem sol-
uble by extended Bloch waves. Still, the fact that the potential
acts only on every third site has pronounced consequences
for the impurity dynamics. Notably, the occupation of sites
remains nonuniform, with sites where the (repulsive) potential
U is present being less occupied than other sites, observe the
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FIG. 5. Comparison of the exact dynamics with the KP approx-
imate one for strong tilt, F = 10 and different U values. Observe
that the deviations from KP approximation as well as a partial decor-
relation of d particles is the strongest for resonance F' = U when
the difference in energies between neighboring sites due to the tilt
may be compensated by the interaction energy. Here the system size
L =21

black squares in Fig. 4(a). This may be seen also in MSD(¢)
which undergoes fast oscillations (after the initial ballistic
growth) around a value (r ~ 30).

Let us note that apparently the effective Hamiltonian ex-
plains the character of the fast growth of MSD for small times.
It represents ballistic motion in the approximate KP potential.

Interestingly, in the presence of interactions, the MSD re-
mains very similar to that obtained for the noninteracting case
while the entanglement entropy dramatically changes. For a
single particle in an immobile background, the entanglement
entropy grows,reaching the value In(2). This contribution
comes solely from the number entropy, with the value em-
phasizing that the particle is either on the left or on the right
of a given bond. In the interaction case the entanglement
entropy grows fast initially until times of the order of hun-
dred when the first bump in MSD occurs. Then the growth
slows down and remains logarithmic up to the longest times
(10*) considered, as seen in Fig. 3(b). Thus, despite similarity
with the noninteracting KP case in particle distributions, we
observe here a hallmark of MBL—the logarithmic growth of
the entanglement entropy.

The validity of the KP potential approximation depends
also on U value. Consider a really strong F' = 10 case. Fig-
ure 5 shows MSD and the correlation function of d particles
for different U values. For both weak and strong interactions
one observes that the KP approximate description works well
for the impurity, also correlations between d particles are
close to their original value. At resonance, F = U (and in
its vicinity) this picture partially breaks. When F = U the
difference of energies between neighboring sites due to the
tilt is equal the interaction energy present if ¢ and d parti-
cles meet at a given site. Thus locally the tunneling becomes

—_— U=2 — U=4 — U=28 —_— U=12

40

L =22

= 30

MSD(t
S

—_
o

S(t)

O N Wk ot O

(b)
1 10t 102 103 10?
t

FIG. 6. The time dynamics at half filling. (a) Mean square devi-
ation MSD(¢) time dependence for ¢ particle distribution for F = 2
and different values of U. (b) The corresponding time dynamics of
the entanglement entropy in the middle of the chain for a slightly
smaller size L = 20.

resonant. This is, however, a local process and does not extend
over many sites, thus leading to a partial decorrelation of d
particles only. Large U > F leads to almost impenetrable
barriers of the KP potential, which slows down the dynamics,
as seen by comparing time dynamics in top row of Fig. 5. At
the same time a full correlation between d particles is pre-
served. Note that the timescale in Fig. 5 is up to t = 10* only
because computer simulations for large F' and U values are
time costly.

Consider now, briefly, the “optimal” density of d parti-
cles, i.e. m = 1/2. As an initial state we take a product state
[101010 - - -). We observe a similar behavior to that for n =
1/3. Figure 6 presents the MSD(t) and the corresponding
entanglement entropy for different interaction strengths U and
F = 2. For smaller U values a fast growth of both MSD and
S indicates a lack of localization, while the data for U = 12,
on the other side, show a very modest value of MSD with
an almost logarithmic growth of the entanglement entropy.
Note that while the data are obtained for L = 22 with the
Hilbert-space dimension of 1.55 x 107, for the entanglement
entropy dynamics we report the data for L = 20 with the
corresponding dimension of 3.7 x 10°.

We inspect again the U = 12 case, comparing now MSD
for different F' values shown in Fig. 7. While for large F
we observe a similar behavior as for the smaller density—the
MSD time dependence shows great similarity with results
for the KP potential with frozen d particles, even for F' =
2, MSD(t) grows slowly being accompanied by a similarly
slow, logarithmic growth of the entanglement entropy. Thus
increased effective interactions for half filling clearly favor
MBL also for smaller tilt values. In particular, already for
F =2 we observe a (sub)logarithmic growth of the entangle-
ment entropy. Importantly for that F' value MSD grows also
very slowly and is limited to low values indicating freezing of
the corresponding time dynamics.
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FIG. 7. Long time evolution of MSD in the highly interactive
regime (U = 12) for different tilts. For small tilts, the mean-square
deviation shows a really slow growth followed by a saturation at a
small value. When F is large, MSD experiences a fast ramp followed
by oscillations around a fixed value.

IV. LARGE SIZES

Larger system sizes require different numerical methods
to treat, as exact time evolution requires exponential mem-
ory resources. Fortunately, we can use for this purpose a
thoroughly tested TDVP algorithm [65,66] which we used
in a number of situations involving the dynamics in noner-
godic regimes [46,74—78]. We use a combination of single-site
and double-site algorithm with dynamically grown auxiliary
space dimension up to typically x = 384. Tests on a num-
ber of cases (see the Appendix for more details), and in
particular smaller x, show that we obtain typically below
1% error for local variables (occupation of sites) with a
few percent for the entanglement entropy and MSD up to
times t = 1000 considered. The typical time step used was
dt =0.05/J.

Consider first the one-third filling by d particles. The rem-
nants of the impurity localization observed in Fig. 1 could
be at first attributed to the small system size, but TDVP
evolution of much larger L = 60 system (for a considerably
shorter time) confirms that quasistationary long-time impurity
distribution seems to carry the information about its ini-
tial position—compare Fig. 8. The particle seems to spread
quite fast for short times with an apparent slowdown around
t ~ 100, as observed by the time evolution of MSD—Fig. 8(c).
While initial growth seems diffusive for later times, ¢t > 100,
one may fit MSD with a subdiffusive growth, r* with « &~ 0.5.
This explains the small difference between c-particle density
distributions at late times, as shown in Fig. 8(a). The motion
of d particles feeling the tilted lattice is also interesting. The
initial density wave distribution of tilted particles significantly
evolves in time. One can observe two regions. In the central
zone, around the original position of the ¢ boson, the density
of d bosons seems to reach the mean 1/3 value apparently
loosing any memory of initial occupations. However, moving

10° 1.0
(b)
10-21 0.8 1
i 0.6 1
S 10741 s v
—6
10 0.21
10-8 0.0 . . .
0 20 40 60
102 1.0 site
(d) —_—1,=3
0.8+ — L, =25
= E 0.6 1
% 10" 4 5047
= S 027 |
0.0 1
100 : : —0.2 . .
1 10! 102 10 480 490 500 510
t t

FIG. 8. Time dynamics for L =60 chain. The interaction
strength is U = 12 and the tilt /' = 2. The ¢ impurity spreads signifi-
cantly initially, as seen (a) from the n, distribution and (c) MSD. The
latter plot reveals that, even at long time the spreading is significant.
Panel (b) shows the distribution of d particles, delocalized in the
middle of the chain but keeping a partial memory of the initial state at
larger distances from the center. The correlation function (d) shows
significant Bloch oscillations that occurs mainly in the outer regions.
The red line traces weak local correlations in the central region.

outside, closer to the edges, the partial memory of the initial
distribution persists (except very close to the edges). Compar-
ing data at different times one may observe that the density
around the center is almost stationary while in the outside
region, Bloch-like oscillations are still visible as could be
inferred from Fig. 8(b). This is better visualized by the time-
dependent correlation function, Eq. (4). If only the edges are
removed by taking L, = 3, Bloch-like oscillations of Cy(z, 3)
are quite pronounced. On the other hand for L, = 25, when
we measure the correlation function on ten central sites only,
the oscillations are to a large extent suppressed as shown in
Fig. 8(d). Let us observe also that for the relatively large
system, L = 60, no apparent asymmetry and accumulation of
particles at one edge occurs.

Figure 9 presents the time dynamics of the entanglement
entropies at different cuts of the system. Black lines corre-
spond to the central cut at the initial position of the impurity,
and red (green) lines correspond to cuts 5 (10) sites to the
right, respectively. One clearly observes the delay of the
entropy growth, the perturbation induced by the impurity
spreads with a finite velocity across the system. Observe that
while the configurational part of the entropy grows smoothly
the number entropy reveals strong oscillations corresponding
to fast Bloch density oscillations. The growth of the entropy
is quite significant pointing out towards the spreading of in-
formation across the whole system.

The corresponding scenario at F = 3 for L = 60 is quite
similar to the story for small sizes as shown in Fig. 10. The
c particle spreads over the whole system revealing, however,
traces of localization at the center. Contrary to F = 2 case,
the density shows a “teeth” structure as the ¢ particle avoids
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FIG. 9. (a) The time dynamics of the full entanglement entropy,
(b) of its quantum (configurational) part Sc, and (c) the classical
number entropy Sy, for the same parameters as in Fig. 8,i.e.,U = 12,
F = 2. Black, red, and green lines give entropies at the center of the
chain at site iy = 30, at iy + 5, and iy + 10, respectively. Observe
that the entropy growth is delayed for bonds further from the center.
The central bond entropy seems to be growing slightly faster than
logarithmically.

sites where d particles are present. Still one may try to fit the
exponentially decaying function, n(i) = Aexp(—Bl|i — iy]),
centered at the initial c-particle position to the long time, t =
900, density. The result, on one hand, seems to reproduce the
envelope quite well, on the other the numerical density shows
small upward trend close to the edges of the chain. Also the re-
sulting “localization length,” 1/B~8 seems quite large show-
ing again that the finite size of the system may affect the dis-
tribution. The d particles, on the other hand, are almost frozen
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FIG. 10. Same as Fig. 8 but for a larger tilt F' = 3. Dashed lines
in panel (a) represents an attempt at exponential fit of the density
~exp(—Bli — 30|) with B = 0.13.

in their original positions thus intuition coming from the
KP potential seems again applicable. The MSD [Fig. 10(c)]
reveals a characteristic small maximum in its initial spread.
The later growth as well as the growth of the entanglement
entropy (not shown) appears to be logarithmic. Putting all
these observations together, this case seems to be very close to
being localized. We have no evidence, up to the longest time
studied by TDVP, of delocalization of d particles, also the
practical freezing of the c-particle distribution and the slow
growth of MSD and S points toward this interpretation which
cannot be made definitive due to the finite times studied.

Let us now move to the arguably more interesting d-
particle half filling case for which more clear signatures of
MBL have been observed for small systems. It is particularly
interesting in view of a recent study of size dependence of
MBL and of its thermodynamic limit. Several works observed
a clear shift of MBL threshold with the system size, see,
e.g., Refs. [79-82]. It is interesting to see whether the same
behavior occurs for our impurity.

In the top row of Fig. 11 the gradual spreading of the ¢
particle may be seen. The fast initial expansion slows consid-
erably for r > 100, practically freezing for F =2 or F = 3.
The F = 2 case is particularly interesting with n, revealing an
exponential-like envelope that is as low as 107> at the edges.
For smaller F = 1 the spreading is still significant even at late
times, while for ' = 3, localization is clearly weaker reaching
around 1073 at the edges. This is reflected in Fig. 11(g), which
shows the time dynamics of MSD. Its growth is slowest for
F = 2, notice also the small (keeping in mind that we consider
L = 60) value of MSD even at + = 1000. For F = 1 MSD
grows faster while for ' = 3 it is much larger. The entropy of
entanglement seems to grow logarithmically for all F' values
considered. Still neither F/ = 1 nor F = 3 case seems to show
features typical for MBL. Thus the slow, logarithmic-like
entanglement entropy growth should not be considered as a
proof of MBL.

V. THE ROLE OF POSITIONAL DISORDER

Up until now we considered the situation when d particles,
feeling the tilted lattice potential, were distributed regularly
in the density wave pattern, either |1,0,1,0,...) for half
filling or, at the beginning for 1/3-filling, |0, 1,0,0, 1,0, ...).
In both cases for a strong tilt this structure of the d-particle
distribution imitated, to some extend, the KP potential for ¢
particles due to interactions. Instead of the regular density
wave pattern, one may consider a random distribution of d
particles over the sites. In this way, making d particles for a
moment immobile, we create the position-disordered potential
for ¢ particle which should then become Anderson localized.
Of course, the tunneling of d particles destroys this picture but
if the tilt is sufficiently strong, the Stark localization of d par-
ticles prevents their tunneling so the ¢ particle sees something
approximating a disordered potential. Do we observe MBL in
this case?

Indeed this seems to be the case for a strong tilt, F = 4,
as shown in Fig. 12. We present here results obtained after
averaging over 24 realizations of distribution of d particles
for 1/3 filling, i.e., for random distribution of 20 d particles
on 60 sites. For all the realizations, the ¢ particle was initially
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FIG. 11. Time dynamics for half filling by d particles and U = 12 case for F = 1, 2, 3 as indicated in the panels. Top row [panels (a)—(c)]
shows the density of ¢ particles while the middle row [panels (d)—(f)] shows the entanglement entropy at different cuts: in the middle (black),
five sites to the right (red) and at site 40 (10 sites from the center, green line). Panel (g) shows MSD for F =1 (black) F = 2 (red) and
F = 3 (green) while panels (h) and (i) show the distribution of d particles for F = 2 and F' = 3 for the same times as in panels (b) and (c).
Additionally, panels (b) and (c) show exponential fits to the density n, = A exp(—B|i — ip|) with B = 0.30 for F = 2 and B = 0.15 for F' = 3.

located at the center at site number 30. We have taken only
those random realizations in which this middle site was not
occupied by a d particle. This enables a comparison with
a density wave scenario where also the central site was not
occupied by a d particle.

For F = 4 the situation seems very clear. The entangle-
ment entropy reaches a little above unity at final times ¢t =
1000 revealing a clear logarithmic growth. Its oscillatory
character indicates also that the entanglement entropy is domi-
nated by the number entropy. Similar is the fate of MSD which
grows logarithmically. For F = 2 it seems, at first glance,
that entropy also grows logarithmically, a careful inspection at
later times reveals a slightly faster growth. This signature of a
long time delocalization is magnified by the behavior of MSD
which seems to grow much faster at late times. The correlation
of d particles reveals very smooth Bloch-like oscillations, re-
gardless of the random particle distribution which apparently
does not affect the regularity of these oscillations.

VI. CONCLUSIONS AND PERSPECTIVES

We have analyzed in detail the behavior of an impu-
rity interacting with other particles that alone would be
Wannier-Stark localized due to the lattice tilt. On purpose, we
considered a very similar situation to that studied in recent
works [44-46,61], where the background particles were An-
derson localized.

Analysis of small system sizes, performed by Hamilto-
nian exponentiation technique [59,60], allowed us to study
long-time dynamics. We have shown that, even for strong
interactions, comparable to that studied in earlier works on
random systems [44—-46,61], for a low density of d particles
(one-third filling), the resulting dynamics while clearly noner-
godic could not be considered as truly many-body localized.
On the other hand, for the optimal one-half density, when the
interactions are effectively maximized, clear manifestations of
MBL were observed, e.g., via the slow logarithmic growth of
the entanglement entropy or of the mean squared deviation of
c-particle distribution.

We have observed an interesting effect absent in the
random-localized case and present here for significant inter-
species interaction strength U and a sufficiently large tilt, F.
Such a tilt makes the Wannier-Stark localization length (and
the amplitude of Bloch oscillations) very small, much smaller
than the lattice spacings. This pins down d particles to their
original positions and they generate an effective potential for
¢ particles. For regular distribution of d-particles the result-
ing potential is periodic resembling Kronig-Penney potential
and c particles spreads in it. Interestingly, at later times the
distribution reveals some signature of stabilization (with large
fluctuations of MSD) accompanied by a logarithmic in time
entropy growth. This suggests localization.

The results for small systems were fully confirmed with
tensor network TDVP numerical calculations that could be
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FIG. 12. Time dynamics for 1/3 filling (randomly distributed
d bosons), U = 12 case for F = 2 (left column) and F = 4 (right
column). Strong exponential-like localization of ¢ boson (top row) is
observed. It is accompanied by (d) a log growth of the entanglement
entropy and a similar growth of MSD [panel (e), red line] for F = 4.
(c) For F = 2 entanglement entropy grows slightly faster than log-
arithmically, also MSD grows faster, indicating lack of localization
in that case. As in the previous figure we show the entropies at three
different bonds: in the middle position iy and at iy + 5. ip + 10 to
visualize spreading of entanglement in the system. Panel (f) shows
correlations of d bosons which remain very large and reveal fast
Bloch oscillations.

carried out up to 1000 tunneling times (i.e., well below current
experimental capabilities [50]). The fact that the calculations
could reach such long times indicates limited entanglement
build-up and localized character of observed distributions.

The situation dramatically changes for a random distribu-
tion of d particles in the tilted potential. Then for large tilt,
they form a random potential due to their random positions.
The coupled evolution of the full system shows then much
stronger signatures of MBL with much slower entanglement
entropy growth as well as an extremely slow spread of the ¢
particle density. Clearly, such a combination of a strong tilt
and random particle distribution leads to robust many-body
localization.

This suggests that even in the absence of a tilt one could
observe MBL more clearly in the random case as the one
studied in Refs. [44—-46,61]. One needs then sufficiently strong
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FIG. 13. Comparison of time dynamics obtained with Hamil-
tonian exponentiation with results of TDVP algorithm for L = 21,
F =4,U = 12. Top row shows the occupations of sites for the impu-
rity (left) and d particles. The agreement is spectacular. The middle
row shows the number and configurational parts of the entanglement
entropy. Their errors (note the change of the vertical scale) are shown
in the bottom row.

disorder to have the Anderson localization length of the order
of the lattice site spacing for d particles but, importantly, they
should be randomly and not regularly (as in Refs. [44-46,61])
distributed. A study in this direction is in progress.
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APPENDIX

We provide here more details on the TDVP algorithm and
its application to the problem studied. The foundation of the
method as well as details of its implementation may be found,
e.g., in a recent review [65]. We mention that our implemen-
tation has been tested already in several numerical studies of
dynamics in many-body systems, in particular, those related
to MBL [46,53-55,74-77].

In numerical studies performed in this study we use a
hybrid version of TDVP [65,66]. At the initial stage it uses
a two-site version of TDVP. The initial state is represented as
a matrix product state (since we start the time evolution from
product states this is straightforward). During the time evolu-
tion the auxiliary bond dimension grows reflecting the buildup
of the entanglement in the system. We assume some maximal
allowed bond dimension x and the evolution is followed with
the two-site version until this value of yx is reached. Then we
switch to the single-site version. That allows us to partially
avoid errors related to the truncation of the singular values in
the two-site version [65,66]. Controlling the errors related to

a necessary restriction of the Hilbert-space dimension as well
as comparing the results for different x allows us to assess the
convergence of the results.

A comparison of the TDVP performance with the “ex-
act” results may be carried out for small system sizes only.
Figure 13 shows such a comparison for the F =4, U = 12
system for L = 21. In the whole time interval studied the
agreement is highly satisfactory, the curves resulting from
the exact and TDVP evolution practically coincide. In fact,
the occupation of sites is not a very sensitive measure of this
agreement, more details are provided by comparison of time
dynamics of entropies. As shown in the bottom row of Fig. 13
some differences between exact entropies and those obtained
using TDVP are visible for late times. Still even for the largest
time considered, r = 1000 the errors for y = 256 are below
1%, being about six times smaller for x = 384. For larger
system sizes no comparison with “quasi-exact” time dynamics
is possible so we could compare the results of simulations for
different x only. A comparison with smaller x results showed
small differences (for entropies) at large times, differences
that did not affect the conclusions presented.

We must note, at the same time, that large values of U
and F made the TDVP algorithm very costly in the execution
time. Some of the data presented required about two weeks
of single-processor time. Our version of TDVP uses a typical
for standard density matrix renormalization group (DMRG)
technique of sweeping along the chain that prevented us from
an otherwise possible parallelization of the algorithm.
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