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Barium titanate (BaTiO3, BTO) is a typical ferroelectric material with a series of complex phase transitions.
Understanding its phase transitions and related properties from an atomic perspective is of scientific significance
and practical importance. In this paper, based on first-principles calculation, a second-principles model is
constructed to investigate the phase transition and related properties of BTO at the atomic level. By using the
constructed second-principles model, the full phase-transition sequence from high-temperature paraelectric cubic
phase to the low-temperature rhombohedral phase through tetragonal and orthorhombic intermediate phases
have been successfully predicted at the atomic level. To reveal the underlying mechanism of phase transition,
the influences of different anharmonic terms on phase transition are investigated in detail. We found that the
interaction between strain and Ti-O bond plays an essential role in phase transition. Furthermore, dielectric
properties and the P-E loop of BTO are successfully obtained with the model. In this paper, we not only provide
a model to predict the phase transitions and related properties of BTO from the atomic level but also extend the
application of the second-principles method.
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I. INTRODUCTION

Perovskite oxides are a class of materials following the
ABO3 formula, which have received much attention due to
their multifunctional properties, such as ferroelectric, piezo-
electric, dielectric, and magnetoelectric properties [1–4].
Barium titanate (BaTiO3, BTO) is one of the most represen-
tative perovskite oxides and has been widely investigated due
to its rich and complex ferroelectric phase transition [5]. At
a temperature >398 K, BTO is paraelectric and has a cubic
structure with the Pm3m space group. When the temperature
gradually decreases, BTO undergoes three phase transitions,
namely, from cubic phase to the tetragonal P4mm phase at
398 K, from the tetragonal phase to the orthorhombic Amm2
phase at 281 K, and from the orthorhombic phase to the
rhombohedral R3m phase at 202 K [6]. Compared with the
temperature-driven phase transitions of other perovskite ma-
terials such as PbTiO3 or SrTiO3, the phase transition of BTO
is much more complicated and is challenging to accurately
model.

To investigate the phase transition and related properties
of ferroelectric materials at atomistic level, first-principles
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calculations based on density functional theory (DFT) are
widely used in the literature. The double well energy sur-
face was calculated by first-principles calculation for BTO
[7]. After that, first-principles calculations had been devoted
to predicting the structure, energy, polarization of different
phases of BTO [8,9], but these calculations were restricted
to zero temperature. Although finite-temperature properties
can be studied via ab initio molecular dynamics (MD) [9,10],
the expensive computational cost limits the simulation system
to hundreds of atoms and prevents the study of the phase
transition of BTO at larger time and length scales.

To overcome these limitations and investigate the complex
series of phase transitions of BTO, several approaches have
been proposed, such as the thermodynamic Landau-Ginsburg-
Devonshire (LGD) model [11,12], the effective Hamiltonian
method [13,14], the core-shell model [15,16], and the bond-
valence model [17]. The LGD approach can predict the
same phase-transition sequence as experimental observation
[12]. Nevertheless, the empirical parameters of the LGD
model need to be determined from experiments. Further-
more, as a phenomenological model, it also cannot reveal
the mechanisms of material behavior at the atomic level. To
avoid empirical parameters, a first-principles-based effective
Hamiltonian method was developed to study the tempera-
ture phase diagram of BTO by Zhong et al. [14]. Although
the effective Hamiltonian method successfully captured the
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phase-transition sequence of BTO, the phase-transition tem-
perature Tc is underestimated. Moreover, this method is
limited to a restricted subspace, implying the contribution
from other lattice distortions is ignored. As a result, it failed
to describe the heat expansion [18].

The core-shell model [19] and bond-valence theory [20]
were also used to investigate the phase transition of BTO.
Although both have captured the phase-transition sequence of
BTO, the phase-transition temperatures tend to be too small
when comparing with experiment data [16,17]. Recently de-
veloped machine-learning-based methods [21–24] have also
been applied to study the phase transition and dielectric re-
sponse of BTO [22]. However, due to the uninterpretability of
machine learning models, this method for BTO can only char-
acterize the properties of a material without a clear physical
interpretation. Moreover, this method is computationally in-
tensive and was only applied on a small supercell (6 × 6 × 6).
Since the phase-transition temperature changes with cell size
when it is not large enough, a small supercell is not conductive
to study phase transitions [13].

The limitation of the above methods can be overcome to
some extent by the second-principles method. The second-
principles method is an atomic model based on a Taylor
expansion of the potential energy surface around a reference
structure [25]. This method includes many more degrees of
freedom than the effective Hamiltonian method, which can
describe more properties of materials, especially those related
to high-frequency modes. Moreover, the second-principles
method makes full use of phonon dispersion of a reference
structure from density functional perturbation theory (DFPT)
calculations, which means that all the coefficients of the har-
monic part are exact. The computational cost of this method
is less, and we can study larger systems than a machine
learning model or ab initio MD. The second-principles models
have been built for CaTiO3, PbTiO3, SrTiO3, and PTO/STO
superlattices, which have been used to study the negative
capacitance [26], polar skyrmions [27], and energy storage
[28] of the materials. However, as one of the most typical fer-
roelectric materials with complex phase-transition characters,
the second-principles model for BTO is absent.

In this paper, a second-principles model for BTO is
constructed based on the potential energy surface from first-
principles calculation. The accuracy of this model is examined
by comparing with first-principles calculations. The finite-
temperature properties of BTO, such as structural phase
transition, and dielectric properties are studied by the model.
The model successfully captures the series of phase transi-
tions. The phase-transition temperature is very consistent with
experimental results after hydrostatic pressure is added to the
model. The relationship between different anharmonic energy
terms and temperature are studied, which provides deep in-
sight into the phase transitions of BTO.

II. METHODOLOGY

A. First-principles calculations

First-principles calculations are performed using the
ABINIT package [29,30] with a cutoff energy of 40 Ha. PBEsol
is used as the electron exchange-correlation potential [31].
Valence electrons of Ba (5s2 5p6 6s2), Ti(3s2 3p6 3d2 4s2), and

O(2s2 2p4) are used in the calculation. The Brillouin zone
is sampled with an 8 × 8 × 8 k-point grid for a unit cell
and a 4 × 4 × 4 k-point grid for a 2 × 2 × 2 supercell. In
the relaxation, the structures are fully optimized until all the
forces on the atoms are <10−6 Ha/Bohr. The interatomic
force constants and Born effective charges are obtained by
DFPT in the ABINIT package [32]. The phonon dispersions are
computed using the ANADDB program [33,34].

B. Second-principles calculations

The first step of the second-principles method is to generate
a model that describes the potential energy surface around the
reference structure as a function of all the displacements of
atoms and strain [25]. The harmonic terms of this model are
obtained directly from phonon dispersion calculated by first-
principles calculations. The anharmonic terms are fitted on a
series of DFT calculated configurations, which can be called
training set. The second step is to carry out molecular dynamic
simulations to predict behavior of materials at finite temper-
ature. Due to the periodic boundary conditions used during
the fitting procedure and MD simulations, this model is used
for bulk materials. In this paper, our model is generated by
the software package MULTIBINIT, which is released within the
ABINIT package [30]. The ideal cubic phase is selected as the
reference structure. The harmonic energy terms are obtained
from phonons of reference structure. The phonon dispersion
from DFT calculation of the cubic phase is shown in Fig. 1(a).
All the unstable modes in phonon dispersion indicate that
the second derivatives of energy are negative. Therefore, the
M, X, and � points of the cubic Brillouin zone need to be
considered when building the training set. The training set
we used contains 741 different lattice configurations. As is
shown in Fig. 1(b), the training set includes 15 nodes and con-
figurations generated from the linear interpolation between
them. These nodes include cubic, tetragonal, orthorhombic,
and rhombohedral phases of BTO; three directions of M and
X points of the Brillouin zone; two 90 ° domains; and three
configurations in which only one atom is moved.

To get better performance from the second-principles
model, the maximum energy of configurations is selected to
be <81.6 meV per unit cell above the reference structure,
which is about three times of the energy of the rhombohedral
phase, and the configurations with higher energy are excluded
from the training set. The total energies of the training set
are shown by the blue dots in Fig. 2(a). During the fitting
procedure, the cutoff is selected to be 2.89 Å, which is

√
2

2 a0,
and 18 anharmonic terms are chosen. The final convergence
value of the goal function with respect to forces and stresses
is 2.38 × 10−4 eV2/Å2, which seems to be good enough com-
pared with the second-principles model for SrTiO3 [35]. The
mean standard deviation value of the effective potential with
respect to the training set is 4.7177 meV2 per atom after the
fitting procedure. All the generated anharmonic terms and
their parameters are listed in Table I.

Figures 2(a) and 2(b) give the comparison of energies
between DFT calculations and the second-principles model.
The average energy difference is 1.19 meV/f.u., and most
of the differences originate from the underestimation at the
lower-energy region. After that, the bounding procedure is
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FIG. 1. (a) Phonon dispersion of cubic BaTiO3 obtained from first-principles calculations. The arrows in the insets show the corresponding
displacements of Ti atoms. (b) Sketch of the training set. Each node represents a structure, and the solid line between nodes represents the
linear interpolation between two structures.

applied to avoid potential divergence problems. The bounding
procedure checks all the anharmonic terms, and if the pa-
rameter of the highest-order terms is negative, this procedure
will add new higher-order terms to the model and prevent the

energy of the model from going to negative infinity. After
the bounding procedure, 64 high-order anharmonic terms are
added to the model, and they are listed in Table S1 in the
Supplemental Material [36]. Figure 2(c) gives the energies of

FIG. 2. Total energies of the training set from density functional theory (DFT) calculations and their comparison with (a) and (b) unbound
second-principles model and (c) bounded second-principles model. (d) Energy comparison between bounded and unbounded second-principles
model.
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TABLE I. Anharmonic terms and their parameters.

No. Parameters Anharmonic terms

1 −5.7929374644×10−2 (Bax − O1x )2η1

2 −5.3329546486×10−3 (Bax − O1x )2(Bax − O1x[0, 0, −1])2

3 3.4168544341×10−2 (Bax − O1x )(Bax − O1x[0, 0, −1])η1

4 2.9066257673×10−3 (Bax − O1x )3(Bax − O1x[0, 0, −1])
5 −2.6344794045×10−2 (Bax − O1x )2η2

6 8.9170528880×10−4 (Bax − O1x )4

7 1.5531687831×10−2 (Tix − O1x )3(Tix − O2x )
8 −5.9597829673×10−1 (Tix − O1x )(Tix − O1x[1, 0, 0])η1

9 1.3005784211×10−2 (Tix − O1x )2(Tiy − O2y )2

10 −3.7937624116×10−2 (Tiy − O1y )(Tix − O2x )η6

11 −8.1917338897×10−2 (Tix − O1x )2η2

12 4.5137690189×10−2 (Tix − O1x )(Tix − O2x )η2

13 1.2423922774×10−2 (Tix − O1x )2(O1x − O2x[−1, 1, 0])2

14 −3.4742146459×10−2 (Tix − O1x )3

15 −2.5410991693×10−2 (Tiy − O1y )2η3

16 6.9615236200×10−3 (Bax − O1x )(Tix − O1x )η2

17 −1.3126444251×10−3 (Bax − O1x )(Tix − O1x )3

18 −1.4073204203×10−2 (O1x − O2x )2η1

the training set from the bounded model and their compari-
son with DFT calculations. The bounding procedure slightly
raises the average energy difference to 1.20 meV/f.u., and
the comparison with the results of the unbounded model is
shown in Fig. 2(d). All the points are on a straight line at
x = y, indicating that the bounding procedure has almost no
influence on the potential energy surface.

C. MD simulations

The MD simulations are carried out on 16 × 16 × 16
supercell that contains 20 480 atoms with periodic bound-
ary conditions. The isobaric-isothermal (NPT) ensemble is
adopted. For structural phase transitions, the simulations be-
gin at 10 K and proceed in steps of 10 K increments until the
temperature arrives at 450 K. Here, 20 000 MD steps, which
is equal to 24.2 ps, are used for each temperature. We checked
that 20 000 MD steps are large enough to converge the energy
and pressure, as is shown in Figs. S1 and S2 in the Sup-
plemental Material [36]. The average of the last 10 000 MD
steps is used to obtain the lattice constant, polarization, and
the initial structure of the next temperature step. For dielectric
properties, the simulations are carried out on the tetragonal
phase of BTO. The simulation begins at 210 K and proceeds
in steps of 1 K increments until the temperature reaches
250 K. The electric fields are applied on z-direction ranges
from 0.004 to −0.004 V/Å for dielectric properties and
0.0085 to −0.0085 V/Å for P-E loops.

III. RESULTS AND DISCUSSION

A. Model validation

First, the second-principles model is validated by compar-
ing the calculated ground-state structure with the DFT and
experiment results. As is shown in Table II, although the
energy obtained from our model is slightly lower than the
DFT result, the lattice constant and unit cell volume agree well

TABLE II. Ground state properties from DFT, second-principles
model, and experiment.

Second Experiment
DFT principles [37]

Lattice constant (Å) 3.993 3.9945 4.004
Angle 89.858 89.842 89.839
Volume (Å3) 63.675 63.739 64.234
Etot (meV) −23.102 −27.955 –
Polarization (μC/cm2) 42.93 44.89 –

with the DFT and experimental results, which are measured at
15 K [37]. Next, all the identified metastable phases of BTO
from DFT calculations are relaxed with the second-principles
model. All the local minima energies with respect to the cubic
phase are compared, as is shown in Fig. 3. The phases with
symmetries P4mm, Amm2, and R3m correspond to three polar
phases in BTO, which represent the tetragonal, orthorhombic,
and rhombohedral phases, respectively. The phases with sym-
metries P4/nmm and Pmma correspond to antipolar motions
of Ti atoms along z directions. The phases with symmetries
Cmcm and Pbcm correspond to antipolar motions of Ba and
Ti atoms along y and z directions. Although the energies ob-
tained from the second-principles model are lower than DFT
calculations, the order of energy from highest to lowest is the
same, which is essential for reproducing the phase-transition
sequence. The ISOTROPY program is used for the space group
analysis [38]. The amplitudes of different modes are shown in
Fig. 4. These results indicate that our model reproduces the
same structure as DFT results at local minima.

Furthermore, we compare the phonon dispersions of tetrag-
onal, orthorhombic, rhombohedral, and cubic phases obtained
from the bounded second-principles model with those of
ab initio DFPT calculations. The phonon dispersions from
the second-principles model are calculated with the PHONOPY

FIG. 3. Comparison of total energies for different phases from
density functional theory (DFT) calculation and bounded second-
principles model. It should be noticed that the structures at which
the energies are calculated from DFT and second-principles model
are fully relaxed to obtain the local minimum.
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FIG. 4. Amplitude of different modes for the local minimum
from density functional theory (DFT) calculation and second-
principles model. The color represents the proportion of different
modes, and the rectangle with/without slash are the results from
model/DFT.

program [39,40]. As is shown in Fig. 5, the phonon dispersion
of our model coincides quite well with the DFT calculation,
and the band gap and widths are well reproduced by our
model; these results ensure the validity of our models. It
should be noticed that there is almost no difference between
DFT and the second-principles model on the phonons of the

cubic phase since the harmonic terms are directly obtained
from DFT calculations and the reference structure is the cubic
phase. Moreover, from Fig. 5(c), it can be seen clearly that
there is no extra unstable mode in the phonon dispersion of
the rhombohedral phase, which indicates that our model is
sufficient to provide a precise potential energy surface around
the ground state. We also checked the phonon dispersion
from the unbounded second-principles model, as is shown in
Fig. S3 in the Supplemental Material [36]; both bounded and
unbounded models provide similar phonon dispersions for the
ground state, which indicates the bounding procedure only has
little influence on potential energy surface.

B. Structural phase transition

After the validation of the model, the temperature-
dependent phase transitions of BTO were investigated. The
polarization and lattice constant changes with temperature
from the bounded model are shown in Fig. 6. The results
from the unbounded model are shown in Figs. S4 and S5
in the Supplemental Material [36]. At low temperature, the
polarization is aligned along the [111] direction, which in-
dicates a rhombohedral phase. When the model is heated up
to 140 K, a sudden decrease of Py, which is accompanied by
the changes in lattice constants, indicates a phase transition
to the orthorhombic phase. After that, two additional phase
transitions occur at 180 and 224 K, which are the phase

FIG. 5. Comparison of phonon dispersion at (a) tetragonal, (b) orthorhombic, (c) rhombohedral, and (d) cubic phase. The dash line is
calculated by second-principles model while the solid line is obtained from DFT calculations.
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FIG. 6. (a) Polarization and (b) lattice constant changes with temperature from bounded second-principles model.

transitions from orthorhombic to tetragonal and tetragonal to
cubic, respectively. The sequence of phase transitions from
the second-principles model is the same as that observed
from experiment. Moreover, the lattice constants increase
slowly when the temperature is >224 K, which indicates that
our second-principles model can describe thermal expansion,
while the effective Hamiltonian method failed to do so [25].

Next, we compare our simulations with the results from the
literature, which also used PBEsol as the exchange-correlation
functional. The phase-transition temperatures from different
methods are listed in Table III. It can be seen clearly that all
the methods underestimate the phase-transition temperature
except a recently developed effective Hamiltonian model with
anharmonic terms. This anharmonic effective Hamiltonian
model introduces anharmonic terms up to the eighth order,
and after the comparison, we found that, although there are
also eighth-order terms in our model after the bounding pro-
cedure, they have almost no influence on the potential energy
surface, which can be seen clearly from Fig. 2(d), since they
are introduced to the model through the bounding procedure
instead of the fitting procedure. Thus, the underestimate in the
phase-transition temperature might result in the truncation at
the fourth order during the fitting procedure.

The negative hydrostatic pressure has been used to
compensate underestimation of the local density approxi-
mation result for the cubic lattice constant in the effective

TABLE III. Comparison of phase-transition temperatures from
different methods that used PBEsol as the exchange-correlation func-
tional and experiment.

R-O O-T T-C

Second-principles method (this paper) 140 K 180 K 224 K
Machine learning model [22] 18.6 K 91.4 K 182.4 K
Effective Hamiltonian [41] 119 K 158 K 257 K
Core-shell model [16] 150 K 210 K 260 K
Bond-valence model [17] 100 K 110 K 160 K
Effective Hamiltonian (anharmonic) [41] 186 K 255 K 395 K
Experiment [42] 183 K 278 K 403 K

Hamiltonian method or the second-principles model of
PbTiO3 [14,25]. Since the lattice constant for the cubic phase
from PBEsol is also slightly lower than that from experiment,
we carried out MD simulations under negative hydrostatic
pressure. The polarization and lattice constant changes with
temperature under −5 Gpa are shown in Fig. 7. The sequence
of phase transitions is still observed to be R-O-T-C, and the
phase-transition temperature is much closer to experimental
results. The pressure-temperature phase diagram is shown
in Fig. 8. The phase-transition temperature changes linearly
with applied hydrostatic pressure, and the critical pressure
when the phase transitions disappears is 7 Gpa. Comparisons
between experiment and the effective Hamiltonian method on
dTc/dP for different phase transitions are listed in Table IV
[14,43]. Although our model gets almost the same value on
dTc/dP of the O-T phase transition, it fails to correctly re-
produce two other phase transitions on dTc/dP. Since our
model is based on the Taylor expansion of the potential energy
surface, the omission of high-order terms might be the reason
for this difference. Moreover, in Ref. [14], the difference on
dTc/dP between experimental and simulation is attributed to
the neglect of higher-order strain coupling terms. Although
high-order terms are applied to our model by the bounding
procedure, as shown in Table S1 in the Supplemental Material
[36], they have little influence on the model. The high-order
strain coupling terms are still neglected in our model, as
shown in Table I. Therefore, improving the accuracy of the
phase diagram might require adding high-order strain cou-
pling terms during the fitting procedure, which will be studied
in the future.

TABLE IV. dTc/dP from this paper and the literature.

Effective Experiment
Hamiltonian Method from

This Paper from Ref. [14] Ref. [43]

R-O (K/Gpa) −27 −15 −15
O-T (K/Gpa) −29 −22 −28
T-C (K/Gpa) −30 −28 −40
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FIG. 7. Polarization changes with temperature from bounded second principles model under −5 Gpa pressure.

C. Roles of different interactions

The balance between long- and short-range interactions is
believed to be the origin of ferroelectricity [44]. Weakening
or strengthening them can greatly change phase-transition
properties of ferroelectric materials. Based on the effective
Hamiltonian method, it has been found that elimination of the
long-range interaction can lead to an antiferroelectric phase,
and the accuracy of the short-range interaction leads to dif-
ferent phase-transition temperatures or even different ground
states [14]. Compared with the effective Hamiltonian method,
our approaches allow us to investigate short-range interaction
more precisely. Instead of taking the short-range interactions
as a whole, we isolated anharmonic terms and studied how
their energies changed with temperature. Although the bound-
ing procedure provided 64 more energy terms to the model,
their energies are close to zero. Therefore, in this paper, we
only analyze the original 18 anharmonic terms of our model.
Figures 9(a)–9(c) give the energy of different terms around
R-O, O-T, and T-C phase-transition temperatures. The seventh
and eighth energy terms are always dominant at different tem-
peratures, and not all energy terms are essential to the phase

FIG. 8. Stress-temperature phase diagram of BTO from second-
principles method.

transitions. The energy terms related to phase transitions are
the 7th, 8th, 9th, 11th, and 12th. As is shown in Table I,
these terms are all related to displacements of Ti and O atoms,
which indicates the structural phase transition is driven by the
interaction of Ti and O atoms.

Moreover, all the strain-coupling terms are third order,
which is like that in the effective Hamiltonian method or
Landau-Devonshire expansion [12], suggesting an explana-
tion to why the effective Hamiltonian method can get the
right phase-transition sequence without any high-order strain–
phonon coupling included. Furthermore, we studied how
these energy terms change with temperature. As is shown in
Fig. 9(d), the phase transitions are accompanied by a sud-
den decrease or increase of different energy terms. A sudden
decrease of the 9th, 11th, and 12th terms and increase of
the 7th and 8th terms lead to the R-O phase transition. The
competition between the 7th and 8th terms leads to the O-T
phase transition, and the eighth term presents a T phase when
it dominates. If we turned off the eighth term by modifying
its parameter to zero, there only exists a directly phase tran-
sition from rhombohedral to cubic ∼190 K, as is shown in
Fig. 10. In contrast with the case of the disappearance of the
orthorhombic and tetragonal phases, when the homogeneous
strain is fixed to zero, as reported in the Ref. [14], in this paper,
we further reveal that the interaction between the strain and
the Ti-O bond is responsible for the appearance of the correct
phase-transition sequence.

D. Permittivity and P-E loops

Finally, we focus on the response of BTO to the external
electric field. After the electric field is applied, there are two
important features of ferroelectric materials, which are the
peaks in dielectric permittivity around phase transitions and
polarization–electric field hysteresis curves. The dielectric
permittivity changes with temperature around the tetragonal-
to-cubic phase transition are shown in Fig. 11(a). The electric
field is applied in the z direction, and the dielectric permittivity
is derived from the derivative of polarization to the electric
field at zero field. The trend of the permittivity agrees well
with experiment, in which the permittivity increases as the
temperature goes up and the ferroelectric phase transition is
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FIG. 9. (a)–(c) The energies of different terms in the potential energy of second-principles model. (d) Energies of different terms changes
with temperature, in which there are abrupt changes for the seventh and eighth energy terms at the phase-transition temperatures of 130 and
180 K.

FIG. 10. Polarization changes with temperature once the eighth
term of second-principles model is fixed to zero. The polarization in
all three directions goes to zero at 180 K implying a direct phase
transition from rhombohedral to cubic.

accompanied by peaks in the dielectric permittivity. The max-
imum value of ε33 is 7945.1, which is higher than experiment
and the effective Hamiltonian results [41]. Figure 11(b) shows
the inverse dielectric constant as a function of temperature,
and it is fitted by ε−1

33 = aT + b. It can be seen clearly that
there is a linear relationship between the inverse dielectric
constant and temperature, and the ratio of the slope before
and after phase transition is 7.2. These two properties indi-
cate that there is an intrinsic first-order phase transition of
BTO ∼ 224 K.

The polarization–electric field hysteresis curve (P-E loop)
is another symbol for ferroelectric materials. In this paper, we
simulated the P-E loop with the bounded second-principles
model at zero temperature. The electric field is applied along
the z-direction range from −0.0085 to 0.0085 V/Å, and
the polarization in the z direction changes with the electric
field are shown in Fig. 12(a). From the hysteresis loop we
have obtained, we can see that the coercive electric field is
0.00245 V/Å, which agrees well with the experimental results
measured at 77 K [45]. The domain structure before and after
the coercive electric field are shown in Figs. 12(b) and 12(c).
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FIG. 11. Dielectric constant and inverse dielectric constant changes with temperature around the cubic to tetragonal phase transition.

IV. CONCLUSIONS

In summary, the atomistic second-principles model is built
to describe the structure phase transition and dielectric proper-
ties of BTO. The model is validated by comparing energy and
phonons of different phases, lattice constants, and polarization
of the ground state with those of DFT calculation. Based
on the second-principles model, the temperature-dependent
lattice constants and polarization are obtained, and the R-O-
T-C phase-transition sequence is captured, which is consistent
with experimental results. With this model, the effects of
external stress are also investigated. It is found that, in the
absence of higher-order strain coupling terms, compared with
experimental results, only the effect of stress on the O-
T phase-transition temperature can be accurately captured.
Furthermore, this method allows us to investigate short-
range interaction more precisely than other methods. The
calculation results show that the coupling between strain

and the titanium-oxygen bond plays a decisive role in the
phase-transition sequence. Finally, the dielectric permittivity
and P-E loops are predicted by the model. The dielectric
permittivity predicted by the model indicates an intrinsic first-
order phase transition of BTO. In this paper, we provide
insights into the phase transitions of BTO from the atomic
level and expand the application of the second-principles
method.
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