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Role of electrostriction on domain switching near the morphotropic phase region in a ferroelectric
solid solution: Thermodynamic analysis and phase-field simulations
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Enhanced room-temperature electromechanical coupling in the equimolar lead-free ferroelectric solid solution
of barium zirconate titanate and barium calcium titanate is attributed to the existence of an intermediate
morphotropic phase region. Initial studies suggested that the existence of a polar orthorhombic phase in the
morphotropic region between terminal solid solutions of rhombohedral barium zirconate titanate and tetragonal
barium calcium titanate causes this enhancement. However, recent experiments suggest the coexistence of two or
more of these phases in the morphotropic region. Such coexistence can often arise due to changes in anisotropy
in electrostriction. To understand the effect of anisotropy in electrostriction on the stability of these phases and
the consequent polarization switching characteristics in the equimolar solid solution, we performed systematic
phase-field simulations of domain evolution to the steady state in this system under stress-free conditions as
a function of anisotropy in electrostriction defined by Qz = 2Q44/(Q11 − Q12 ), where Q11, Q12, and Q44 are
the independent coefficients of the electrostriction tensor (expressed using Voigt notation). Our results show a
systematic reduction in polarization anisotropy with increasing Qz. For example, a single-phase configuration
consisting of orthorhombic variants corresponding to isotropic electrostrictive moduli (Qz = 1) transforms to
a three-phase configuration containing tetragonal, orthorhombic, and rhombohedral variants when the moduli
show strong anisotropy (Qz = 2.5). We use the effective in-plane and out-of-plane piezoelectric coefficients
and their ratio as a measure of the electromechanical switching characteristics. Unlike polarization anisotropy
behavior, these characteristics do not exhibit such monotonic behavior. The effective piezo coefficients depend
not only on the number of coexisting polar phases but also on their spatial configuration with respect to the
applied field. Our predictions pertaining to the coexistence of tetragonal and orthorhombic variants and the
corresponding effective out-of-plane piezoelectric coefficient show good agreement with experimental findings.
We also discuss how clamped or constrained conditions can modify the phase stability observed under stress-free
conditions.
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I. INTRODUCTION

One of the key challenges in the field of oxide-based elec-
tronics is the development of environment friendly lead-free
ferroelectrics that can replace the high-performance lead-
based counterparts, such as lead zirconate titanate (PZT)
and lead magnesium niobate - lead titanate (PMN-PT) sys-
tems [1–4]. Although several lead-free ferroelectric systems
have been identified in the last decade, attaining a room-
temperature piezoresponse superior to the best available
lead-based system is still a challenge [5–7].

There is renewed interest in barium titanate (BTO), the
first discovered perovskite ferroelectric with perfect cubic per-
ovskite structure (ABO3 with point group m3̄m) above 120 ◦C,
which transforms to tetragonal 4mm symmetry at room tem-
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perature [2,8]. However, the piezoresponse of undoped bulk
BTO at room temperature, characterized by electromechan-
ical coupling coefficients d33 and d31, is far lower than that
of PZT. Therefore there are continuing efforts to improve
the electromechanical coupling efficiency or piezoresponse
of BTO at room temperature using a combination of doping,
nanostructuring, and strain-tuning [8–18].

Recently, a new BTO-based solid solution with
zirconium-doped BTO and calcium-doped BTO as the
two components [chemical formula: (1 − x)Ba(Zr0.2Ti0.8O3)-
x(Ba0.7Ca0.3)TiO3 (0 � x � 1), abbriviated as BZCT] has
emerged as one of the most promising lead-free ferroelectric
for electromechanical applications at room temperature.
The highest piezoresponse of equimolar (x = 0.5) BZCT
at room temperature is around 620 pC N−1, which exceeds
that of PZT [13–16]. Moreover, structural studies of BZCT
and PZT reveal a unique similarity in thermodynamic
characteristics—both show morphotropic phase transition
below their Curie temperatures at or around the equimolar
composition [19–21].
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The morphotropic phase region (MPR) bounded by mor-
photropic phase boundaries (MPB) is a region of high
electromechanical activity and consists of an intermediate
phase between the terminal solid solutions. Presence of an
intermediate phase having lower crystallographic symmetry
than the terminal ones introduces tetracritical points marking
the coexistence of the ferroelectric phases. It also results in
an increase in polarization rotation by reducing the energy
barrier for transition between the phases. Moreover, lower
crystallographic symmetry of the intermediate phase increases
the number of polar variants which are also ferroelastic. Thus
there is an enhancement of strain accommodation within the
MPR that softens effective elastic moduli of the ferroelec-
tric thereby increasing the effective electromechanical moduli
[22,23].

Although initial structural studies of BZCT described the
MPB as a region of coexistence of R + T [13,24], Keeble
et al. used high-resolution synchrotron x-ray diffraction to
characterize the structure of BZCT for the entire range of
compositions (0 � x � 1) and temperatures varying between
100 and 500 K to reveal an intermediate phase region with
orthorhombic symmetry for the composition range (0.45 <

x < 0.55) at room temperature [25]. However, there exists
uncertainty in determining phase stability within this interme-
diate region (MPR) even at the room temperature [26–28].

Brajesh et al. implemented a powder poling technique
to study electric field induced structural transformations in
BZCT at the MPB. Structural analysis of poled BZCT powder
using x-ray diffraction and Rietveld refinement showed the
coexistence of T , O, and R phases for the morphotropic com-
position range (0.45 < x < 0.55) at room temperature [26].
Later, they showed a stress-induced ferroelastic transforma-
tion above the Curie temperature preceding the ferroelectric
to paraelectric transformation in equimolar BZCT. In order to
relieve the stress associated with high-temperature ferroelas-
tic transformation, BZCT samples were annealed at 400 ◦C
(which is well above Tc = 120 ◦C). Subsequently, they ob-
served a change in phase coexistence where the amount of
R reduced significantly with a corresponding increase in the
fractions of T and O [27]. These studies suggest appreciable
structural distortion in the oxygen octahedra during process-
ing, which is responsible for higher electrostrains near MPB.
The presence of higher electrostrains can notably alter the
phase stability.

Since, coefficients of electrostriction are inherently re-
lated to oxygen octahedral structure in perovskite oxides of
the form ABO3, electromechanically induced phase transi-
tion in these will lead to distortion of oxygen octahedra
often resulting in anisotropic electrostrictive coefficients [29].
Since electrostrictive coefficients couple spontaneous strain
and spontaneous polarization, change in electrostriction will
alter the free energy of ferroelectrics leading to change in
thermodynamic stability of polar phases [30].

It should be noted that the physical properties of the par-
ent paraelectric phase with cubic crystal structure that are
represented by fourth rank or higher “even” rank tensors,
such as electrostriction (Qi jkl ) or elasticity (Ci jkl ), can show
cubic anisotropy at the most (Neumann’s principle) [31]. For
example, bulk barium titanate and lead-based perovskite solid

solutions show large cubic anisotropy at room temperature
when the anisotropy parameter is defined as Qa = Q11−Q12

Q44
>

1, where Q11, Q12, Q44 are the independent electrostrictive
coefficients [29]. Note that, here we use Voigt notation to
represent a symmetric tensor by reducing its order, such
as Qi jkl → Qαβ [32]. Moreover, the change in anisotropy
in spontaneous strain during the paraelectric-to-ferroelectric
transition can affect the switching behavior of perovskite
ferroelectrics manifested in large differences between the
measured transverse (d31) and longitudinal (d33) piezocoef-
ficients [29,33–35].

To relate stability of polar domains and domain dynam-
ics with electromechanical switching properties of BZCT
solid solution, we require a thermodynamic potential inte-
grated with elastic and electrostatic interactions which can
not only predict the stability of polar phases in the stress-
free, electrically neutral state as a function of temperature
and composition, but can also capture changes in phase sta-
bility with application of electromechanical loading [36,37].
There have been extensive efforts to develop thermody-
namic potentials of ferroelectric solid solutions. Here we
list the most significant ones. Cao and Cross made the
first attempt to develop a thermodynamic description of a
ferroelectric solid solution where they combined the classi-
cal Ginzburg-Landau-Devonshire formalism for ferroelectrics
with a regular solution model describing interactions between
the components of the ferroelectric system [38]. Later, Bell
and Furman modified the regular-solution term and included
additional coupling between polarization order parameters
and Landau free energy coefficients [39]. The modified model
could successfully describe phase coexistence at the MPB of
PZT. Li et al. made further modifications to the thermody-
namic potential using a single order parameter free energy for
the entire composition range and introduced composition- and
temperature-dependent Landau coefficients [40]. The model
was used to study ferroelectric/ferroelastic domain evolu-
tion in epitaxially grown PZT films. Later, Heitmann and
Rossetti developed a generalized thermodynamic model for
ferroelectric solid solutions containing MPB/MPR, wherein
they incorporated direction-dependence of polarization field
and described Landau polynomial in terms of isotropic and
anisotropic polarization components [41]. Since MPB defines
the coexistence of low-symmetry phases marked by vanishing
polarization anisotropy at the tricritical points, their model
could accurately predict both location and shape of MPBs
in several lead-based and lead-free solid solutions [37]. Yang
et al. [42] developed a thermodynamic potential for BZCT
based on the polar anisotropy theory of Heitmann and Ros-
setti [37,41]. Although the model could predict the stability
of orthorhombic phase within MPR of BZCT around the
equimolar composition, it does not show correspondence with
the phenomenological Landau-Ginzburg-Devonshire (LGD)
theory and does not correlate stability of polar domains with
electromechanical response.

Since ferroelectric phases are inherently ferroelastic, ac-
curate prediction of phase stability requires coupling of elec-
trostatic and elastic interactions. Recently Huang et al. [43]
developed a thermodynamic potential for barium zirconate
titanate (BZT) including coupling between electrostatic and
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elastic interactions that showed excellent agreement with
experimental phase stability data. Here, we build upon the
thermodynamic potential proposed by Yang et al. [42] to
develop a free energy based on LGD formalism [37] to
study phase stability, evolution of polar domains and po-
larization switching behavior in BZCT. To understand the
role of electromechanical anisotropy on polar domain sta-
bility and polarization switching in BZCT, we introduce a
parameter Qz = 2Q44/(Q11 − Q12) in a similar sense to Qa.
Furthermore, we systematically vary Qz to investigate domain
evolution within MPR and the resulting electromechanical
switching characteristics. In each case, we compare the effec-
tive piezoresponse coefficients, d33 and d31, computed from
the simulated phase loops, with those measured experimen-
tally [25].

The paper is organized as follows. In the following section,
we present our formulation where we derive a thermodynamic
potential for BZCT solid solution incorporating electrostatic
and elastic interactions and develop a phase-field model
based on this potential to study domain evolution in BZCT
under applied electromechanical fields. In the subsequent
section, we present our results correlating the changes in
the predicted diffusionless phase diagrams with the change
in electromechanical anisotropy. We also present our results
of three-dimensional phase-field simulations of domain evo-
lution and relate them to the switching characteristics in
BZCT due to applied electromechanical fields. We have com-
pared our simulated data on phase stability and effective
piezoelectric coefficients with the best available experimental
measurements. Finally, we summarize the key conclusions
from this study.

II. MODEL FORMULATION

We begin with the description of energetics of BZCT
system using the Landau-Ginzburg-Devonshire (LGD) ther-
modynamic formalism. We draw equivalence between the
LGD free energy and a thermodynamic potential based on
the theory of polar anisotropy to derive thermodynamic
criteria defining the MPBs in stress-free, electrically neu-
tral BZCT system [37,42]. Next, we describe electrostatic,
elastic and external electromechanical field contributions to
the total free energy of the system and develop a three-
dimensional phase-field model to study domain evolution in
BZCT. The phase-field model consists of a set of Allen-
Cahn equations describing the spatiotemporal evolution of
the polarization order parameter field P(r, t ) coupled with
an electrostatic equilibrium equation for the electric field
and a mechanical equilibrium equation for the strain field.
Since the model includes external field effects, it can be
used to correlate domain configuration with the polariza-
tion switching characteristics. In what follows, we have
used indicial notations (with Einstein summation convection)
to describe vector and tensor quantities in terms of their
components. Otherwise, we denote vector fields with bold
letters and higher order tensor fields using standard matrix
notations.

A. Thermodynamic potential

The total free energy F of a ferroelectric system is ex-
pressed as follows [36,44]:

F (Pi, εi j, Ei ) =
∫

V
( fbulk + felectric

+ felastic + fgradient )dV (i, j = 1, 2, 3),
(1)

where fbulk, felectric, felastic, and fgradient denote the bulk, elec-
tric, elastic and gradient energy densities, respectively. Pi are
the components of the spontaneous polarization order param-
eter field, εi j denotes spontaneous strain field related to Pi

through the third-rank piezoelectric tensor di jk and fourth rank
electrostrictive tensor Qi jkl with i, j, k, l = 1, 2, 3.

Using the unpolarized, stress-free and centrosymmetric
paraelectric state (cubic) as the reference state, fbulk for
BZCT is expressed using a sixth-order Ginzburg-Landau
polynomial:

fbulk = 1
2α1

(
P2

1 + P2
2 + P2

3

) + 1
4α11

(
P4

1 + P4
2 + P4

3

)
+ 1

6α111
(
P6

1 + P6
2 + P6

3

) + 1
2α12

(
P2

1 P2
2 + P2

2 P2
3 + P2

3 P2
1

)
+ 1

2α112
(
P4

1

(
P2

2 + P2
3

) + P4
2

(
P2

3 + P2
1

) + P4
3

(
P2

1 + P2
2

))
+ 1

6α123P2
1 P2

2 P2
3 , (2)

where P1, P2, P3 are the components of the polarization field
P(r). The phenomenological Landau expansion coefficients
(α1, α11, α12, α111, α112, α123) are functions of composition
(x) and temperature (θ ) and determine the energy of the stress-
free, electroneutral state of the system. The coefficients are
chosen appropriately to ensure a first-order transition (α1 < 0,
α11 < 0, α111 > 0) between the paraelectric and ferroelectric
states.

To derive thermodynamic stability conditions during
paraelectric to ferroelectric phase transition and compute
diffusionless phase diagrams of BZCT system, Eq. (2) is ex-
pressed in an alternate form based on polar anisotropy theory
where we separate isotropic part of the free energy from
the direction-dependent anisotropic part [37,41]. Therefore
we define the spontaneous polarization field P as a product
of the magnitude of spontaneous polarization P = |P| and
a unit vector n = (n1, n2, n3) along the direction of sponta-
neous polarization: P = nP. Thus, separating the isotropic
and anisotropic parts, we rewrite the modified bulk free energy
density as

f modified
bulk = f iso

bulk + f aniso
bulk , where

f iso
bulk = 1

2α1P2 + 1
4β1P4 + 1

6γ1P6

f aniso
bulk = 1

4β2
(
n4

1 + n4
2 + n4

3

)
P4

+ 1
6

[
γ2

(
n6

1 + n6
2 + n6

3

) + γ3n2
1n2

2n2
3

]
P6, (3)

where f modified
bulk is the alternate form of the bulk free energy

density which separates isotropic and anisotropic contribu-
tions. Note that the isotropic part of the energy describes
the transition from a nonpolar phase to a polar glassy
state with no preferential direction, while the anisotropic
part defines the directional dependence of free energy sur-
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face due to the spontaneous polarization vector [37,41]. In
Eq. (3), β1 = α12, β2 = α11 − α12, γ1 = α112, γ2 = α111 −
α112, γ3 = α123 − 6α112 are the modified Landau coefficients,
respectively. The detailed derivation of obtaining the modified
Landau potential is shown in Appendix A.

The electric energy density felectric in Eq. (1) is given as

felectric = − 1
2ε0εb

(
E2

1 + E2
2 + E2

3

) − (P1E1 + P2E2 + P3E3),
(4)

where E1, E2, E3 are the components of the total electric field
E(r) that comprises an internal depolarization field Ed(r) re-
sulting from dipole-dipole interactions ( fdipole), an externally
applied field E ext, and a random field Erandom(r) associated
with compositional heterogeneity of the polar solid [45]. The
depolarization field Ed(r) is defined as [44]

Ed
i (rk ) = 1

4πε0εb

(
Pi(rk )

|r|3 − [3Pj (rk )r j]ri

|r|5
)

, (5)

where ε0 is the permittivity of free space and εb denotes the
background dielectric permittivity due to dielectric screening
[46,47]. In the absence of external and random fields, Ed

i (r)
is the solution to electrostatic equilibrium equation defined as
follows:

∇iDi = 0, (6)

where Di = ε0εbEd
i + Pi is the electric displacement vector.

We define electric energy [Eq. (4)] in accordance with “spon-
taneous polarization order parameter (SPOP)” approach,
wherein we separate the spontaneous polarization field P(r)
from the polarization Pext (r) induced by the externally ap-
plied field (including dielectric screening effect) [48]. On
the other hand, “total polarization order parameter (TPOP)”
approach uses total polarization field PT (r) as the order pa-
rameter where the dielectric displacement vector is defined as
Di = ε0Ed

i + PT
i . In the latter, we cannot define a background

dielectric constant (εb) and the contributions to the electric en-
ergy from the external and internal fields are given separately
[48]:

felectric = − 1
2 PT

i Ed
i − PT

i E ext
i . (7)

Note that both approaches are equivalent and should yield the
same electric energy density.

Since spontaneous polarization in a ferroelectric crystal is a
result of displacement of ions in the lattice from the reference
paraelectric state, it engenders spontaneous strain [30]. The
spontaneous strain order parameter field ε0(r) for a stress-free
crystal is defined as follows [36]:

ε0
i j = Qi jkl PkPl , (8)

where Qi jkl denotes the rank-4 electrostrictive coefficient
tensor.

Using the definition of stress-free strain or eigenstrain
[Eq. (8)], elastic energy density felastic is defined as

felastic = 1
2Ci jkl

(
εT

i j − ε0
i j

)(
εT

kl − ε0
kl

)
, (9)

where Ci jkl is the elastic stiffness tensor and εT
i j denotes

the total strain at a point. Based on homogenization theory
for structurally inhomogeneous solids, we express εT

i j (r) as
the sum of spatially invariant homogeneous strain ε̄i j and

position-dependent heterogeneous strain field δεi j (r) that van-
ishes when integrated over the total volume:

εT
i j (r) = ε̄i j + δεi j (r);

∫
V

δεi j (r)d3r = 0. (10)

We use Khachaturyan’s microelasticity theory with a ho-
mogeneous modulus approximation to solve the mechanical
equilibrium equation [49]

∂σi j

∂r j
= Ci jkl

∂
[
εT

kl (r) − QklmnPm(r)Pn(r)
]

∂r j
= 0, (11)

in Fourier space (assuming periodicity in local displacement
and strain fields). In the absence of applied stress, homoge-
neous strain ε̄i j is simply given by the weighted mean of total
eigenstrain field:

ε̄i j =
5∑

p=0

ε
p
i j�p, (12)

where �p = (1/V )
∫

V [ψp(r) − ψ̄p]dV and ψp(r) =
Pi(r)Pj (r) (i, j = 1, 2, 3) and p = 0, . . . , 5. Local
displacement field in Fourier space, ũ(k), is obtained by
solving Eq. (11)

ũk (k) = −I|k|−1n j�ik (n)
5∑

p=0

σ
p

i j�ψ̃p(k). (13)

Here, k denotes the wave vector in the reciprocal space,
n = k/|k|, and I = √−1. �−1

ik (n) = Ci jkl n jnl is the inverse
of Green’s function, ε

p
i j is the position-independent part of the

eigenstrain tensor [Eq. (8)] associated with the field ψp(r),
and �ψp(r) = ψp(r) − ψ̄p, and σ

p
i j = Ci jklε

p
kl . Using the dis-

placement field from Eq. (13), we express the elastic energy
in reciprocal space as follows:

Felastic = 1

2

5∑
p,q=0

∫
d3k

(2π )3
Bpq(n)ψ̃p(k)ψ̃∗

q (k), (14)

where Bpq(n) = Ci jklε
p
i jε

q
kl − niσ

p
i j� jk (n)σ q

kl nl , and ψ̃∗ refers
to the complex conjugate of ψ̃ . A volume of (2π )3/V about
k = 0 is excluded from the integration in Eq. (14).

Assuming the domain wall energies to be isotropic, the
gradient energy density fgradient in Eq. (1) is written as

fgradient = 1
2 G11

(
P2

1,1 + P2
1,2 + P2

1,3 + P2
2,1 + P2

2,2 + P2
2,3

+ P2
3,1 + P2

3,2 + P2
3,3

)
, (15)

where Pi, j denotes ∂Pi/∂x j . G11 is a positive gradient energy
coefficient associated with the gradients in the polarization
field. Although gradient energy coefficients generally form
a fourth-rank tensor whose components can be determined
using first-principles calculations [50,51] or can be fitted nu-
merically and corresponding domain wall energies can be
obtained by phase-field simulations [52], thus far no such
calculation is reported for BZCT. Therefore we assume a
scalar gradient energy coefficient in our model.

To include the effects of external fields in our thermo-
dynamic stability analysis, we introduce external electrome-
chanical fields in our model. For example, for a mechanically
constrained (clamped) system that is not allowed to deform
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along any direction (ε̄i j = 0), we introduce a uniform stress
field σ̄i j whose magnitude increases quadratically with polar-
ization [36]:

σ̄i j = 1

V

∫
V

Ci jklε
0
kl (r)dV = 1

V

∫
V

Ci jkl QklmnPm(r)Pn(r)dV

= qi jmn〈PmPn〉. (16)

Here, 〈·〉 denotes the volume average of the quantity inside
the angular brackets. When the macroscopic average stress
σ̄i j is zero everywhere in the system, we call it stress-free
or unconstrained. To define a mechanically constrained state
where the system is clamped in all directions, we set ε̄i j = 0.
Considering bulk and elastic contributions to the total free en-
ergy density given in Eqs. (A1) and (9) [44], we construct the
thermodynamic potential f cons for mechanically constrained
BZCT, given as

f cons = 1
2α1

(
P2

1 + P2
2 + P2

3

) + 1
4αe

11

(
P4

1 + P4
2 + P4

3

)
+ 1

6α111
(
P6

1 + P6
2 + P6

3

) + 1
2αe

12

(
P2

1 P2
2 + P2

2 P2
3 + P2

3 P2
1

)
+ 1

2α112
(
P4

1

(
P2

2 + P2
3

) + P4
2

(
P2

3 + P2
1

)
+ P4

3

(
P2

1 + P2
2

)) + 1
6α123P2

1 P2
2 P2

3 , (17)

where

αe
11 = α11 + 4

{
1

6

[
q̂2

11

Ĉ11
+ 2

q̂2
22

Ĉ22

]}
, (18a)

αe
12 = α12 + 2

{
1

6

[
2q̂2

11

Ĉ11
− 2

q̂2
22

Ĉ22
+ 3

q2
44

C44

]}
, (18b)

with

Ĉ11 = C11 + 2C12,

Ĉ22 = C11 − C12,

q̂11 = q11 + 2q12,

q̂22 = q11 − q12. (19)

Here, αe
11 and αe

12 are the modified Landau coefficient for
a clamped system. The effective electrostrictive coefficients
qi j in Eq. (19) are defined as q11 = C11Q11 + 2C12Q12, q12 =
C11Q12 + C12(Q11 + Q12), and q44 = 2C44Q44.

In Sec. III, we will use the comparison between coeffi-
cients α11, α12 for the stress-free system and αe

11, αe
12 for the

constrained system to determine electrostrictive anisotropy ef-
fects on diffusionless phase diagrams and to examine changes
in phase stability with the application of constraint. To com-
pare polarization switching characteristics between stress-free
and constrained BZCT, we include an additional term P · E ext

in Eqs. (A5) and (17) [53] to derive analytical expressions re-
lating externally applied electric field E ext to polarization and
measure “theoretical” P-E loops analytically. Minimization
of total energy with respect to polarization provides relations
between external electric field and polarization for stress-free
and constrained systems:

E sf
ext (φ) = ∂ f sf

φ

∂P
,

E cons
ext (φ) = ∂ f cons

φ

∂P
, (20)

where φ = T, O, R. However, one should note that the analyt-
ically measured characteristics ignore spatial variations in the
polarization field and the local interactions.

B. Phase-field model

To incorporate spatial interactions between the fields, we
derive the following Euler-Lagrange equation for the polar-
ization field P(r, t ) that minimizes the total free energy of the
system [Eq. (1)] at a given temperature and composition:

δF
δPi

= 0 ⇒ ∂ fbulk

∂Pi

∣∣∣
Peq

i

− E eq
i + σ

eq
i j

∂εel
i j

∂Pi

∣∣∣
Peq

i

− G11
∂2Pi

∂r2
j

∣∣∣
Peq

i

= 0 (i = 1, 2, 3). (21)

Here, E eq
i and σ

eq
i j are obtained by solving electrostatic and

mechanical equilibrium equations [Eqs. (6) and (11)]. The
variational derivative δF/δPi in Eq. (21) defines the driving
force for domain evolution in the ferroelectric system.

Thus the Allen-Cahn equation governing spatiotemporal
evolution of P(r, t ) is given as

∂Pi(r, t )

∂t
= −L

δF
δPi

(i = 1, 2, 3), (22)

where L is a relaxation coefficient related to domain wall
mobility in an overdamped system.

We solve Eq. (22) coupled with electrostatic and me-
chanical equilibrium equations [Eqs. (6) and (11)] in three-
dimensions using a semi-implicit Fourier spectral method
[54].

We use FFTW library along with OpenMP parallelization
to numerically implement our phase-field model.

III. RESULTS AND DISCUSSION

In this section, we present the results of thermodynamic
stability analysis of ferroelectric domains in BZCT system
using the potential given in Eq. (A5). We also present the
results of three-dimensional phase-field simulations of do-
main evolution in equimolar BZCT and the corresponding
switching behavior as a function of applied electromechan-
ical fields. We scale and nondimensionalize all parameters
used in our study using characteristic values of length (Lc),
energy (Ec), charge (qc), and time (τc). Using the exper-
imental values of spontaneous polarization Ps = 0.2 C/ m2

and the reciprocal of dielectric susceptibility |α1|θ=298K =
2.2781 × 107 Jm C−2 of equimolar BZCT at room tempera-
ture (298 K), we obtain Ec = 4.1 × 10−21 J, Lc = 1.65 nm
[55], and qc = Ps(L2

c ) = 5.445 × 10−19 C. We use the factor
|α1|θ=298KP2

s = 9.11 × 105 J m−3 to normalize all parameters
appearing in the governing equations [Eqs. (6), (11), and
(22)]. The characteristic time τc is determined using the re-
lation |α1|θ=298KLτc = 1, where L denotes the dimensional
value of relaxation coefficient. The dimensional gradient en-
ergy coefficient G110 is given as G110 = L2

c |α1|θ=298K = 6.2 ×
10−11 J m3/ C2 corresponding to a nondimensional value
G′

110 = 1. Phase-field simulations are carried out in a 200� ×
200� × 200� simulation box where � = 0.32 nm is the grid
spacing (corresponding to a nondimensional spacing �′ = 1).
We choose a nondimensional time step �t ′ = 0.01 to ensure
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(a) (b)

(c)

FIG. 1. (a) Variation of Q11, Q12, Q44 with composition x when Qz = 1. (b) Change in Qz = 2Q44
Q11−Q12

is realized through the change in Q44

keeping Q11 and Q12 unchanged: (case 1) Qz = 1, Q44 = Q44, (case 2) Qz = 2, Q44 = 2Q44, and (case 3) Qz = 2.5, Q44 = 2.5Q44. (c) Variation
of elastic moduli C11 and C12 as a function of composition x.

high spatiotemporal accuracy. Since our model uses sponta-
neous polarization as the order parameter field, we specify
a nondimensional background dielectric constant εb = 8 to
describe dielectric screening effects of high frequency polar
phonon modes (e.g., electronic polarization) [56]. Moreover,
we assume the elastic and electrostrictive coefficients (Ci j and
Qi j i, j = 1, . . . , 6) to be invariant with temperature θ as long
as θ does not exceed the Curie temperature θc(x) for a given
composition x. Due to limited experimental data across entire
composition range of BZCT system, we have assumed the
functional forms of composition dependency of these coeffi-
cients to be similar to those used in PZT. Using experimental
values of piezoelectric voltage constants and elastic moduli
for the terminal and equimolar compositions (x = 0, 1, 0.5)
of BZCT as fitting parameters [57], we arrive at the following
relations for Ci j (x) and Qi j (x):

Ci j (x) = xCBZT
i j + (1 − x)CBCT

i jkl ,

Q11(x) = 0.04895x + 0.02605

+ 0.069778/(1 + 200(x − 0.5)2),

Q12(x) = − 0.0056x − 0.01400

+ 0.0279/(1 + 200(x − 0.5)2),

Q44(x) = 0.02728x + 0.02002

+ 0.02095/(1 + 200(x − 0.5)2). (23)

Figure 1 shows the variation of Qi j and Ci j with composition.
Although the elastic moduli Ci j vary linearly with composi-
tion, the electrostrictive coefficients Q11, Q12 and Q44 show
a pronounced maximum at x = 0.5. Following Yang et al.
[42], we express the composition and temperature dependent
Landau free energy coefficients as follows:

α1(θ, x) = α0(θ − θc(x)),

β1(θ, x) = β11(x − xquad ) + β12(θ − θquad ),

γ1(θ, x) = γ11 + γ12(x − xquad ),

β2(θ, x) = β21(x − xquad ) + β22(θ − θquad ),

γ2(θ, x) = γ21(x − xquad ),

γ3(θ, x) = γ31(x − xquad ) + γ32(θ − θquad ), (24)

where α0 = 4.142 × 105, β11 = −1.2 × 108, β12 = 7.56 ×
105, γ11 = 7.764 × 108, γ12 = 4 × 107, β21 = −1.2 × 108,
β22 = −7.56 × 105, γ21 = −2.2 × 108, γ31 = 1.0 × 1011,
γ32 = 2.1 × 108 are the values in SI units, α0 = 1/(ε0C0),
ε0 = 8.854 × 10−12 C2 N−1 m−2 is the permittivity of free
space, C0 is the average Curie constant, θ denotes the
temperature in Kelvin, x denotes the composition of BZT
(in mole fraction), θc(x) = θBZT

C + (θBCT
C − θBZT

C )x is the
composition-dependent Curie temperature of the BZCT
system, where θ BZT

C is the Curie temperature of pure BZT
(x = 0), θBCT

C is the Curie temperature of BCT (x = 1),
θ quad and x quad denote the temperature and the composition
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(b) Case 1 (c) Case 2 (d) Case 3

(a) Two dimensional representation of the

orientation dependence of electrostrictive

coefficient Q∗
33 for BZCT system.

FIG. 2. The orientation dependence of electrostrictive coefficient Q∗
33 for BZCT system for three different cases.

at the quadruple point defined by the coexistence of the
paraelectric cubic phase and ferroelectric T , O and R phases
in BZCT. The Landau coefficients are obtained by fitting
the experimental values of θ quad = 335 K, x quad = 0.35,
θBZT

c = 293 K, θBCT
c = 393 K. and equilibrium spontaneous

polarization Ps,φ φ = T, O, R of the polar phases measured at
room temperature.

The values of all the Landau coefficients are obtained
from the above-mentioned form using the relations showed
in Table III in Appendix A. Both dimensional and nondi-
mensional forms of all coefficients used in our study are
tabulated in Ref. [58]. Here, all parameters are normalized
using |α1|θ=298 KP2

0 J m−3, where P0 = 0.2 C m−2 is the ex-
perimentally determined spontaneous polarization of BCZT
at x = 0.5, θ = 298 K, and the nondimensional temperature
θ ′ = θ/298.

Several experimental studies have found a strong corre-
lation between dielectric and piezoelectric anisotropy and
attributed this to the intrinsic anisotropy in electrostric-
tive coefficients stemming from the change in structure of
BO6 oxygen octahedra in perovskite [29,33,34]. Thus, when
processing conditions (involving change in chemistry and ap-

plication of external electromechanical fields) trigger a change
in the geometry of oxygen octahedra of the ferroelectric per-
ovskite (manifested by change in tilt angle of BO6 octahedra),
there is a subsequent change in the inherent anisotropy asso-
ciated with electrostrictive coefficients [59,60]. To understand
the role of electromechanical anisotropy on the stability of
ferroelectric domains and consequent switching dynamics, we
define an electrostrictive anisotropy parameter Qz = 2Q44

Q11−Q12

and systematically investigate the role of Qz on switching
behavior of BZCT. Studies also report another measure of
electrostrictive anisotropy Qa = Q11−Q12

Q44
[29]. Our definition

of Qz is in the same spirit as the Zener anisotropy parameter
AZ associated with elastic stiffness tensor that distinguishes
between elastically soft and hard directions in orthotropic
materials [31]. Moreover, one should note that electrostrictive
anisotropy and anisotropy in spontaneous strain is related
because the spatially invariant part of spontaneous strain
(eigenstrain ε0) is solely a function of electrostrictive coef-
ficients Q [see Eq. (8)].

To demonstrate the correlations between electrostrictive
anisotropy and domain stability/switching in BZCT, we
choose three cases based on the value of Qz:
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(case 1) Qz = 1 (Qa = 2),
(case 2) Qz = 2 (Qa = 1),
(case 3) Qz = 2.5 (Qa = 0.8).
We define an electrostrictive modulus Q∗

33 as follows:

1

Q∗
33

= Q11 + Q12

(Q11 − Q12)(Q11 + 2Q12)

− 2(Qz − 1)

Qz(Q11 − Q12)

(
l2
1 l2

2 + l2
2 l2

3 + l2
1 l2

3

)
, (25)

to show the orientation dependence of fourth-order elec-
trostrictive tensor in two and three dimensions (Fig. 2) and
lk represent the direction cosines of the moduli with respect to
the three positive coordinate axes [32].

When Qz = 1 (case 1), the representation quadric is spheri-
cal indicating isotropic behavior, whereas when Qz > 1 (cases
2 and 3), the surfaces become anisotropic showing lower
values of Q∗

33 along 〈100〉 directions (Fig. 2). Note that Qz > 1
introduces anisotropy in electrostriction in the paraelectric
state. Thus we need to use Eq. (8) to determine the spon-
taneous strain components of the ferroelectric phases and
define elastic energy according to Eq. (14) for a given Qz.
Since all ferroelectric variants are also ferroelastic, preferred
orientations of variants are determined by the minimization of

elastic interactions between the variants. However, one should
note that the stable domain configuration in a stress-free,
electrically neutral ferroelectric system requires minimiza-
tion of total energy arising from coupled elastic and electric
interactions.

A. Diffusionless phase diagram

Minimization of f modified
bulk in Eq. (A5) determines the po-

larization states of the stable phases in electrically neutral,
stress-free BZCT at any given temperature θ and composition
x. Phase-coexistence conditions are derived as follows. When
O alone is the stable phase, phase stability condition using
Eq (A6) leads to an inequality

β2

γ2P2
eq

> −1. (26)

This implies that |β2| > γ2P2
eq. However, when two phases

coexist (e.g., T and O), the stability condition becomes an
equality given as

1

2
β2P4

eq = − 1

12
γ2P6

eq, (27)

(a) (b)

(c) (d)

FIG. 3. Computed diffusionless phase diagrams of BZCT system as a function of electrostrictive anisotropy parameter Qz and their
comparison with experimental data. Experimental data for comparison are obtained from [25,37,61]. Here, C, T , O, and R denote cubic,
tetragonal, orthorhombic and rhombohedral phases, respectively. The black solid line and the red dot in each diagram correspond to the
equimolar composition of BZCT at room temperature (x = 0.5, T = 298 K). Note that in cases 2 and 3, the predictions of phase stability at
the equimolar composition x = 0.5 at ambient temperature and pressure (T = 298 K, P = 1 atm.) agree with the experimental observations
[26,27]. (a) Case 1. (b) Case 2. (c) Case 3. (d) Zoomed image of the marked portion for case 3.
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TABLE I. Values of β2 for different Qz.

Qz Form of β2

1 −1.2 × 108(x − xquad ) + −7.56 × 105(θ − θquad )
2 −1.4198 × 108(x − xquad ) + −7.56 × 105(θ − θquad )
2.5 −1.02846 × 108(x − xquad ) + −7.56 × 105(θ − θquad )

implying |β2| = γ2P2
eq. Similarly, phase stability conditions

for a three-phase coexistence (i.e., a stable phase mixture of
T , R, and O) is given as

1

2
β2P4

eq = − 1

12
γ2P6

eq = 1

36
γ3P6

eq. (28)

For a given temperature and any composition lying within
the MPR, we may assume either γ2 or γ3 to be a constant.
Assuming a fixed value of γ2 at a given temperature and
composition and requiring γ2 to be positive to ensure a first
order transition, we find the absolute value of β2 to decrease
with a corresponding increase in the number of degenerate
minima of Landau free energy corresponding to coexistence
of polar phases. Since |β2| is a measure of the extent of polar
anisotropy of the free energy, our analysis confirms reduction
in polar anisotropy when more polar phases coexist (i.e., the
free energies of the polar phases become degenerate). More-

over, we note that β1 = α12 remains unchanged and does not
contribute to the polar anisotropy.

We equate the anisotropic contributions to the free energy
of each phase [Eq. (A6)] to calculate the temperature-
composition (θ − x) relations for the “T -O” and “O-R” phase
boundaries [37]. These are given as follows:

θOT = θquad − 1

β22

[
β21 + γ21P2

eq

]
(x − xquad ), (29)

θOR = θquad − 1

β22 − 4
27γ32P2

eq

[
β21 +

(
5

9
γ21 − 4

27
γ31

)
P2

eq

]

(x − xquad ), (30)

where the equilibrium polarization Peq values at the T -O and
O-R phase boundaries are obtained by assuming a weak first
order transition along phase-coexistence lines. Thus PT −O

eq =
Peq,T or Peq,O, and PO−R

eq = Peq,O or Peq,R, where the equilib-
rium values of polarization are given in Eq. (A7).

To determine the interrelation between Qz and the Landau
free energy coefficients αi j , we proceed as follows: first, we
find β2 = α11 − α12 from the phase-coexistence conditions
[Eqs. (26)–(28)] keeping β1 = α12 fixed. Next, for Qz = 1,
we find relations between stress-free α11, α12 and constrained
αe

11, αe
12 from Eq. (18). Demanding the difference in the con-

strained coefficients, αe
11 − αe

12 or βe
2, and the unconstrained

coefficient α12 to be invariant for all Qz, we find the change in

(a) (b)

(c) (d)

FIG. 4. Free energy composition diagrams for different cases of electrostrictive anisotropy: [(a) and (b)] case 1 with a zoomed region
around the equimolar composition indicating lowest energy for the orthorhombic phase at x = 0.5, (c) case 2 showing T + O coexistence,
(d) case 3 showing T + R + O coexistence.
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(a) (b)

(c)

FIG. 5. Computed spontaneous polarization of ferroelectric phases T , R as a function of temperature at x = 0.5 for BZCT solid solution
for the three different cases. (a) Computed spontaneous polarization for all the phases for case 1. (b) Computed spontaneous polarization for
all the phases for case 2. (c) Computed spontaneous polarization for all the phases case 3.

Q44 as a function of α11:

Q44 =
[

1

4C44

{
(α11 − α12) − (

αe
11 − αe

12

) + 2
q̂2

22

Ĉ22

}] 1
2

or

Q44 =
[

1

4C44

{
β2 − βe

2 + 2
q̂2

22

Ĉ22

}] 1
2

. (31)

When Qz is greater than unity, α11 decreases with increasing
Qz.

In Fig. 3, we present the computed temperature-
composition phase diagrams for different values of β2. The
forms of β2 for different Qz are defined in Table I. For case
1 (Qz = 1), the shapes of the computed T -O and O-R MPBs
show good agreement with experimental data obtained from
high resolution x-ray diffraction studies [25], and the MPR
contains only O phase. When Qz becomes anisotropic, ther-
modynamic stability within the MPR changes from single
phase O to a mixture of T and O phases for case 2 [Qz = 2,
Fig. 3(b)] and a mixture of all three polar phases T + R + O in
case 3 [Qz = 2.5, Fig. 3(c)]. Figure 3(d) displays the zoomed
version of the region marked in Fig. 3(c) also shows the coex-
istence of all the three phases (T + R + O) at the equimolar
composition. Thus it is evident from the computed diagrams
that the increase in electrostrictive anisotropy leads to a reduc-
tion in the polar anisotropic contribution to the free energy.

Having established the correspondence between β2, α11,
and Qz, we plot the free energies of T , O, and R phases as
a function of x at room temperature for all cases (Fig. 4).
We are particularly interested in examining phase stability at
x = 0.5 where most of the experimental reports are available
[25–27,37,61]. When Qz = 1, the O phase has lowest free
energy among all the polar phases of BZCT. As Qz increases,
there is a reduction in the free energy of T and R. Thus, when
Qz = 2, we find the energies of T and O to be equal at x = 0.5.
With a further increase in Qz to 2.5, we get equal free energies
for T , O, and R at x = 0.5. Although the overall energy of the
system at x = 0.5 shows minimal variation with the change
in Qz, energies of T and R phases decrease with increasing
Qz such that T -O intersection ( fT = fO) moves towards de-
creasing x while the O-R intersection ( fO = fR) moves in the
opposite direction. Brajesh et al. [26,27] showed a change in
the phase stability of BZCT from three-phase (T + O + R)
to two-phase (T + O) when it is subjected to a stress-relief
anneal at 400 ◦C far above θc. They attributed this change
to a stress-induced phase transformation occurring at 400 ◦C.
Change in the anisotropy of electrostrictive coefficients of the
paraelectric phase correspond to such stress-induced trans-
formations preceding paraelectric → ferroelectric transition.
Since the spatially invariant part of the spontaneous strain
tensor is a function of electrostrictive coefficients for any
given x [Eq. (8)], a change in Qz alters the spontaneous
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strain tensors associated with the ferroelectric phases thereby
affecting phase stability. Figure 5 shows the variation of
scaled spontaneous polarization P∗ = P/Ps of T , O and R
phases of equimolar as a function of reduced temperature
τ = θ/θc [Eq. (A7)]. When Qz = 1, the stable O has the
highest value of spontaneous polarization at room temperature
(θ = 298 K, τ = 0.84). On the other hand, for Qz = 2, T
and O phases have the same P∗ at room temperature which
is greater than the spontaneous polarization of R. While, for
Qz = 2.5, T , R, and O have the same P∗ at all temperatures
up to θ = θc. This corroborates our observation of degeneracy
of free energies of the ferroelectric phases with increasing
Qz at the equimolar morphotropic composition x = 0.5. The
corresponding components of spontaneous strain tensor for
each polar phase can be calculated using Eq. (8). Thus two in-
dependent components of spontaneous strain associated with
T phase are ε0

1 = Q11P2
s,T , ε0

2 = ε0
3 = Q12P2

s,T . The O phase
possesses three independent components: ε0

1 = ε0
2 = 1

2 (Q11 +
Q12)P2

s,O, ε0
3 = Q12P2

s,O, ε0
6 = 1

2 Q44P2
s,O, and the R phase

possesses two independent components: ε0
1 = ε0

2 = ε0
3 =

1
3 (Q11 + Q12)P2

s,R, ε0
4 = ε0

5 = ε0
6 = 1

3 Q44P2
s,R. Here, Ps,T , Ps,O,

and Ps,R, given in Eqs. (A7a), (A7b), and (A7c), represent the
spontaneous polarization of T , O, and R phases, respectively.

B. Morphological evolution of domains

Figure 6 shows the evolution of ferroelectric domains to
a steady state in equimolar BZCT at room temperature for
all three cases of Qz in the absence of external electrome-
chanical fields. Thus, in all cases, the system is assumed to
be stress-free with periodic boundary conditions on polariza-
tion (P), displacement (u), and electric potential (φ) fields.
Note that for bulk ferroelectric systems the contribution to
depolarization energy due to surface bound charge is zero
(i.e., electrically unbounded domain: E → 0 as r → ∞). In
all cases we start with the same random initial configuration
which allows nucleation of any of the ferroelectric phases
below θc.

When Qz = 1, evolution leads to the formation of multiple
variants of O phase [Fig. 7(a)]. The domain walls of these
variants show specific crystallographic orientation. Analysis
of mechanical compatibility using the difference in sponta-
neous strain between neighboring variants point to ferroelastic
nature of the 60◦ and 120◦ domain walls. Even the 180◦
domain walls (O+

3 /O−
3 ) show specific crystallographic orien-

tation. The steady state domain structure consists of a regular
twin-related arrangement of plate shaped O domains sepa-
rated by straight domain walls. Such a strain accommodating
arrangement of plates leads to reduction in elastic energy
of the configuration. Absence of curvature of the domain
walls indicates stress-free nature of the domains and local
electroneutrality at the domain walls. The trijunctions and
quadrijunctions formed by the intersection of 60◦/120◦/180◦
domain walls are regions with increased electrostatic and elas-
tic interactions [Figs. 7(d) and 7(g)].

When Qz = 2 (case 2), evolution at early stages leads to
formation of discrete islands of T (T +

3 /T −
3 ) in O (O−

6 ) ma-
trix [Fig. 6(b)]. These islands eventually get connected and
arrange in the form of thin striped network dividing the con-

(a) Case 1

(b) Case 2

(c) Case 3

(d)

FIG. 6. Evolution of domain structures of equimolar BZCT at
room temperature for three cases of electrostrictive anisotropy:
(a) case 1 (Qz = 1), (b) case 2 (Qz = 2), and (c) case 3 (Qz = 2.5). In
all cases, time snapshots of evolution are shown at nondimensional
times t = 10 000, 50 000, and 150 000 (steady state configuration).
The colors distinguish between variants of T , R, and O. (d) List
of distinct colors corresponding to each variant. Components of
polarization vector corresponding to each variant are given below:
O+

1 : [110], O−
1 : [1̄1̄0], O+

2 : [011], O−
2 : [01̄1̄], O+

3 : [101], O−
3 :

[1̄01̄], O+
4 : [11̄0], O−

4 : [1̄10], O+
5 : [01̄1], O−

5 : [011̄], O+
6 : [1̄01],

O−
6 : [101̄], T +

3 : [001], T −
3 : [001̄], R+

2 : [11̄1̄], R−
4 : [11̄1].

tinuous O domain into discrete parallel plates. Thus the steady
state configuration shows a parallel plate geometry with the
stripes of T dividing the O−

6 domain into discrete plates
[Fig. 7(b)]. Although the straight walls separating the plates of
T + O are associated with low strain and electric energy, there
is a marked increase in electrostatic and elastic interactions
when T +

3 /T −
3 180◦ domain walls intersect with O−

6 domains
leading to an increase in curvature of T/O boundaries around
the junction [Figs. 7(e) and 7(h)].

In case 3, evolution starts with clusters of all the three polar
phases, T , R, and O, distributed homogeneously throughout
the volume [Fig. 6(c)]. Growth of these clusters leads to a
steady state twinned pattern wherein the plates of T , R, O
variants wedge into one another forming nearly equal number
of T -R, R-O, and T -O boundaries [Fig. 7(c)]. The domain
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Simulated microstructures at room temperature showing steady state spatial distribution of polar domains in stress-free equimolar
BZCT as a function of electrostrictive anisotropy: (a) case 1: single phase orthorhombic, (b) case 2: coexistence of T and O domains, and
(c) case 3: coexistence of T , R, and O domains. [(d)–(f)] Electric energy distribution (nondimensional) corresponding to cases 1, 2, and 3,
respectively; [(g)–(i)] corresponding nondimensional elastic energy distribution. Energy distribution [(g)–(i)] O+

1 : [110], O−
1 : [1̄1̄0], O+

2 :
[011], O−

2 : [01̄1̄], O+
3 : [101], O−

3 : [1̄01̄], O+
4 : [11̄0], O−

4 : [1̄10], O+
5 : [01̄1], O−

5 : [011̄], O+
6 : [1̄01], O−

6 : [101̄], T +
3 : [001], T −

3 : [001̄],
R+

2 : [1̄11], R−
4 : [1̄11̄].

pattern has the lowest average value of electric energy among
these cases. However, at the triple junctions formed by the
wedges of T , R, and O, we see an increase in electrostatic and
elastic interactions [Figs. 7(f) and 7(i)]. Moreover, in all the
cases, increase in elastic energy at the domain walls leads to
a reduction in electric energy and vice versa indicating dual
ferroelectric-ferroelastic character of these walls.

The domain walls display a common feature—they show
a regular step-terrace structure where the steps are nearly
perpendicular to domain wall orientations (Fig. 8), although
step sizes vary for different combinations of orientation. Such
a step-terrace structure suggests multistep switching via suc-
cessive ferroelastic steps instead of single-step 180◦ switching
[62].

Figure 9 shows the formation of the step-terrace morphol-
ogy at the O+

4 and O−
6 domain boundaries. The vector plot

in Fig. 9(b) describes the step—terrace structure of the corre-
sponding O+

4 and O−
6 in Fig. 9(a).

We can understand the concept of the step-terrace morphol-
ogy in view of the presence of surface bound charge at the
domain wall. The expression for the surface bound charge can
be written as σP = (P2 − P1) · ŝ. Here ŝ is the unit vector nor-
mal to the domain wall. The domain walls associated with the
nonzero bound charge are termed as charged domain walls.
Since the presence of bound charge creates local electrostatic
fields inside the domains, which is energetically costly, the
head → head as well as tail → tail configurations lead to
charged domain walls with higher electrostatic energy. The
domain walls that do not carry any bound charge (σP = 0) is
termed as the electroneutral domain walls.

For investigation and visualization of the step-terrace mor-
phology we consider a system consisting of two domains

134116-12



ROLE OF ELECTROSTRICTION ON DOMAIN SWITCHING … PHYSICAL REVIEW B 108, 134116 (2023)

(a) (b)

FIG. 8. Domain wall configurations showing the step-terrace
morphology from our phase-field simulations: (a) O-O and (b) T -O
domain wall.

O+
4 [11̄0] (marked as blue) and O−

6 [101̄] (marked as red) rep-
resented by the planner view in Fig. 10(a). As the system
evolves the domains reorient themselves leading to the forma-
tion of the step-terrace structure to maintain the proper head
→ tail configuration [Figs. 10(a)–10(e)]. The zoomed version
of the final domain configuration [Fig. 10(f)] provide a guide
to the eye of the pathway of the step-terrace structure.

Note that the alignment of the domains in the particular
ways can introduce anisotropy, thus indicating the structural
stability is driven by the Qz anisotropy. Change in Qz can
change the easy polarization directions in ferroelectric system
(measured by the ease of switching under an applied field)
leading to variations in switching characteristics. To quantify
such a variation we measure the difference between effective
d31 and d33 as a function of Qz. Therefore, in each case, we
subject the steady state domain structure (obtained at zero
electric field) to an applied field varying between −450 and
450 kV cm−1 with a step size of ±5 kV cm−1 along [001]
(E3) and [100] (E1) directions to compute the electromechan-
ical switching properties given by polarization hysteresis loop
(P̄z − E3), longitudinal strain hysteresis loop (ε33 − E3) and
transverse strain hysteresis loop (ε33 − E1). The computed
ε33 − E3 and ε33 − E1 [Figs. 11(b) and 11(d)] loops for all
cases show a typical butterfly shape that is symmetric about
zero applied field. We use the longitudinal and transverse
strain hysteresis loops to determine the coercive field Ecoer

(defined as the field required for complete reversal of polar-
ization) along [001] and [100] directions. When electric field

(a)

(b)

FIG. 9. (a) O-O domain wall. (b) Formation of a step-terrace
structure at the domain boundary.

is applied along [100] direction, ECase1
coer ≈ ECase2

coer > ECase3
coer . On

the other hand, when electric field is applied along [001] di-
rection, ECase3

coer > ECase1
coer > ECase2

coer . Moreover, for the isotropic
case (case 1, Qz = 1), the difference in longitudinal and trans-
verse E coer values is the lowest. The difference in Ecoer values
is the largest for case 3 (showing three-phase coexistence)
followed by case 2 (showing two-phase coexistence). Thus
anisotropy in switching behavior increases with increasing
electrostrictive anisotropy and decreasing polar anisotropy.

The effective piezoelectric coefficients d33 and d31 for each
case are obtained from the slopes of the linear portions of
the corresponding butterfly loops. The computed values of
effective d33, d31, and their ratio (d33/d31) for all cases are
listed in Table II. The ratio (d33/d31) can be considered to
be a response of electromechanical anisotropy resulting due
to domain reorientation and inter-phase transition in these
systems when subjected to external electro-mechanical load.
From Table II we observe, among all the three cases, the
largest anisotropy between the in-plane and out-of-plane re-
sponse occurs for case 2 although Qz is moderate (Qz =
2). Also note that we assume d33/d31 = 1 is the elec-
tromechanically isotropic case. However, while in case 3
(i.e., Qz = 2.5) where several phases coexist (T , R, O)
the electromechanical anisotropy is the lowest. Also note
that, the domain morphology consisting of alternate layers
of T and O lamellae (case 2), oriented nearly parallel to
the Z axis contributes to the increase in electromechanical
anisotropy. Thus we can ascertain that the distribution as
well as the orientation of the domain morphologies play a
substantial role in the alteration of the electromechanical
anisotropy.

As we have already noted, number of phases increase with
increasing Qz. When the increase in the number of phases
induces an increase in the number of distinct crystallographic
variants, we generally expect enhancement in electromechan-
ical response due to consequent increase in energetically
favorable switching pathways. Therefore the P̄z − E3 and
ε̄33 − E3 loops corresponding to Qz = 2 have the least width
compared to Qz = 1, 2.5 when the field is along [001] direc-
tion because the domain structure in the former contains the
lowest number of distinct crystallographic variants (nvar = 3).
However, electromechanical response also depends on the
orientation of domain walls relative to the direction of applied
switching field. Thus P̄z − E1 and ε̄33 − E1 for Qz = 2 shows
the least width when the field is along [100].

In general, Figs. 11(a) and 11(b) show fatter P̄z − E3, ε̄33 −
E3 loops when electric field is applied along [001] direction.
On the contrary, P̄z − E1 and ε̄33 − E1 loops are narrower for
all cases of Qz when subjected to an electric field along [100]
direction. This also indicates the difficulty in switching along
the [001] direction.

The anisotropic nature of predicted hysteresis loops are
commensurate with the underlying domain pattern and the
domain wall structure for all cases of Qz. Since the domain
boundaries in equimolar BZCT have a strong ferroelastic
nature, as evidenced by their step-terrace structure for all
cases of Qz, polarization reversal in each case happens via
successive steps where the easy polarization rotation axes are
determined by the orientation of step or terrace relative to
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(a) time step: 0 (b) time step: 20

(c) time step: 50 (d) time step: 90

(e) time step: 100

(f) Magnified version of structure at the domain

wall.

FIG. 10. Formation of the step-terrace structure at the domain wall. (a) Initial configuration of two domains O+
4 [11̄0] (marked as blue) and

O−
6 [101̄] (marked as red) with sharp domain wall. [(b)–(e)] As the system evolves the domains reorient forming a step-terrace like pattern at

the domain wall to maintain the proper head → tail configuration.

the direction of applied field (Fig. 8). Moreover, we find the
aspect ratio between terrace (perpendicular to [001]) and step
(parallel to [0 0 1]) to be greater than unity in all cases. This
indicates a larger polarization component associated with the
terrace that is normal to [001] than a step that is parallel to
[100]. Therefore the energy required for polarization reversal
is higher when the switching field is along [001] direction
than it is along [100] direction. For a similar reason, strain
associated with longitudinal strain hysteresis loop (ε̄33 − E3)
is always larger than that associated with the transverse strain
hysteresis loop (ε̄33 − E1).

Alternatively, one can explain the difference between d33

and d31 based on the energy barrier associated with switching.

For example, in case 2, when we apply electric field along
[001] direction, the system transforms to O−

4 from O−
6 . On the

other hand, application of electric field along [100] direction
switches the system to O+

3 . In Fig. 12, we show configuration
energy (fconf) (i.e., the energy required to switch the polar-
ization variants with applied electric field) as a function of
average polarization. The lower energy barrier for O+

3 (blue
line) clearly indicates that the switching from O−

6 to O+
3 with

applied electric field along [100] direction requires lower en-
ergy (easy polarization switching) compared to the other one
(red line).

We also check the effective elastic moduli for all three
cases where, we compare the elastic softening associated with

134116-14



ROLE OF ELECTROSTRICTION ON DOMAIN SWITCHING … PHYSICAL REVIEW B 108, 134116 (2023)

(a) (b)

(c) (d)

FIG. 11. Corresponding hysteresis and the butterfly loops for case 1 (Qz = 1), case 2 (Qz = 2), and case 3 (Qz = 2.5). [(a) and (b)]
Polarization and longitudinal strain hysteresis loops when applied electric field is along [001] direction. [(c) and (d)] Polarization and transverse
strain hysteresis loops when applied electric field is along [100] direction.

phase coexistence. The effective elastic stiffness tensor Ceff
i jkl is

obtained by measuring the stress response when the system is
subjected to applied strain [63]. The effective elastic moduli
corresponding to case 3 (Qz = 2.5) show the lowest values
among all cases indicating an increase in elastic softening
with the increase in the number of crystallographically distinct
variants.

Since our thermodynamic model includes elastic inter-
actions, we can use the model to analyze phase stability
in stress-free as well as mechanically constrained systems.
When BZCT system with isotropic electrostrictive coeffi-
cients (Qz = 1) is clamped in all directions (imposed by
setting all components of homogeneous/macroscopic strain
to be zero in the entire system), our model predicts change in
room-temperature phase stability from orthorhombic (stress-
free) to tetragonal (clamped) when the composition ranges
between 0.49 � x � 0.53, as shown in the free energy-
composition diagrams of stress-free and constrained BZCT

TABLE II. d33, d31, and their ratio for the three cases.

Case 1 Case 2 Case 3

d33(pCN−1) 509 189 549
d31(pCN−1) 798 727 680
d33/d31 0.64 0.26 0.81

[Figs. 13(a) and 13(b)]. The simulated steady state domain
structure of constrained equimolar BZCT at room temperature
contains only tetragonal variants confirming our thermody-
namic stability analysis for the mechanically constrained

FIG. 12. (Case 2) Configuration energy (fconf) as a function of
average polarization. The green unit cell defines the initial O−

6 state
before applying electric field. Application of electric field along
[001] direction switches the system to O−

4 state as shown by the red
unit cell. When the applied electric field is along [100] direction the
system transforms to O+

3 (shown by blue unit cell). The difference
between the energy clearly indicates that the switching of O+

3 from
O−

6 is easier compared to O−
4 .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 13. Free energy - composition diagram of clamped BZCT system at room temperature indicating minimum free energy of the T phase
between 0.49 � x � 0.53. (b) Corresponding free energy-composition diagram of stress-free BZCT system at room temperature. Simulated
steady state domain structures of equimolar BZCT at room temperature for (c) mechanically constrained and (d) stress-free conditions.
Here Qz = 1. [(e) and (f)] Electric energy distribution (nondimensional) corresponding to constrained and stress-free systems. [(g) and (h)]
Elastic energy distribution (nondimensional) corresponding to constrained and stress-free systems. O+

1 : [110], O−
1 : [1̄1̄0], O+

2 : [011], O−
2 :

[01̄1̄], O+
3 : [101], O−

3 : [1̄01̄], O+
4 : [11̄0], O−

4 : [1̄10], O+
5 : [01̄1], O−

5 : [011̄], O+
6 : [1̄01], O−

6 : [101̄], T +
3 : [001], T −

3 : [001̄], T +
1 : [100],

T −
2 : [01̄0].
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(a) (b)

FIG. 14. (a) Polarization hysteresis and (b) strain hysteresis loops for mechanically constrained and stress-free BZCT. Constrained system
shows narrower and thinner loops.

system [Fig. 13(c)]. The domain structure of constrained
BZCT consists of thin stripes of T variants with curved do-
main walls, while the stress-free system possesses thicker
and wider plates of O variants with straight boundaries. Al-
though elastic interactions show a marked increase for the
constrained system, electric interactions associated with both
systems remain nearly the same [Figs. 13(e) and 13(g)]. The
clamped system shows internal stress buildup given by σ̄i j =
qi jkl〈PkPl〉. As a result, domain walls in this system show an
increase in curvature.

The calculated polarization hysteresis loops (P̄z − E3) and
longitudinal strain hysteresis loops (ε33 − E3) for constrained
and stress-free systems are shown in Fig. 14. The loops
corresponding to the constrained system show lower Ecoer

value. The calculated effective d33 of 634 pCN−1 for the
mechanically constrained system shows the closest match
with the experimentally measured value (dexp

33 = 620 pC N−1

[25]). The close match between the constrained value and the
experimental value points to the fact that all measurements
are carried out in mechanically constrained conditions. Indeed
it is difficult to maintain ideal stress-free conditions in any
experimental setup that requires measurement of strain. More-
over, all simulated loops from our phase-field model show
good agreement with with the analytically obtained hysteresis
loops (Fig. 15) indicating thermodynamic consistency of our
model.

Figure 16 shows the evolution of the clamped sys-
tem when Qz = 1. Here, we examine two different cases.
First, a clamped system with initial random configuration
[Fig. 16(a)]. The system evolves and transforms to a complete
tetragonal (T ) phase consisting of T +

3 , T −
3 , T +

1 [Figs. 16(b)–
16(d)] domains which is also shown in Fig. 13(c). On the other
hand, we consider a system with the equilibrium steady state
domain structure (case 1) [Fig. 16(d)]. Unlike the previous
case the system equilibrates to a mixture of (T ) and O domains
as shown in Figs. 16(e) and 16(f). In this context, we can argue
that in the previous case, as the system initiates with random
thermal fluctuations, due to clamping, it spontaneously trans-
forms to the tetragonal morphology. However, for the other
case, the presence of clamping manifests metastable O phase
coexisting along with the T phase.

IV. CONCLUSION

Our study presents a thermodynamic framework to predict
process-structure-property relations in BZCT ceramics. The
framework consists of a thermodynamic model coupled with
phase-field simulations to analyze phase stability, domain
structure evolution, and polarization switching propertiesof
bulk ferroelectric solid solution (BZCT) containing a mor-
photropic phase coexistence region.

Changes in electromechanical processing conditions may
induce structural changes in oxygen octahedra manifested

FIG. 15. Comparison between the analytical hysteresis loops for (a) constrained and (b) stress-free systems.
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(a) (b) (c)

(d) (e) (f)

FIG. 16. Morphological evolution of the clamped system. (a) Initial random configuration. [(b) and (c)] Evolution of the domain
morphologies with the random initial configuration resulting in the complete transformation of T phase. (d) Initial configuration (steady
state domain morphology as obtained in a stress-free system). [(e) and (f)] Evolution of the domain morphologies indicating the coexistence
of T & O phases (In all these cases Qz = 1). O+

1 : [110], O−
1 : [1̄1̄0], O+

2 : [011], O−
2 : [01̄1̄], O+

3 : [101], O−
3 : [1̄01̄], O+

4 : [11̄0], O−
4 : [1̄10],

O+
5 : [01̄1], O−

5 : [011̄], O+
6 : [1̄01], O−

6 : [101̄], T +
3 : [001], T −

3 : [001̄], T +
1 : [100], T −

2 : [01̄0].

by a change in anisotropy in electrostriction in the para-
electric state. Using our model we studied changes in
ferroelectric domain stability as a function of electrostrictive
anisotropy parameter Qz. Our predictions of morphotropic
phase boundaries and tricritical points show excellent agree-
ment with experimental data obtained using high-resolution
x-ray diffraction studies and Rietveld analysis [26,27]. The
predicted diffusionless phase diagrams show a gradual change
in phase stability within the morphotropic phase region
from single-phase orthorhombic (O) to two-phase tetragonal-
orthorhombic (T + O) coexistence to a stable multiphase
mixture of tetragonal, rhombohedral and orthorhombic (T +
R + O) polar phases at room temperature with a correspond-
ing increase in Qz from 1 to 2.5. In all cases, the domains
of all polar phases exhibit twinned platelike morphology with
the domain boundaries oriented along low-energy crystallo-
graphic directions. Moreover, the mobile domain walls show
a step-terrace structure that facilitates polarization reversal via
ferroelastic steps.

Electric fields along [001] and [100] directions were ap-
plied to study polarization switching characteristics in each
case. The ratio of the longitudinal and transverse piezo-
electric coefficients indicates the highest electromechanical
anisotropy (ratio between d33/d31) for case 2 (Qz = 2). Case
3 (Qz = 2.5) posses the lowest value while case 1 (Qz = 1.0)
lies in between. The highest electromechanical anisotropy in

case 2 is attributed to the alternating lamellae of the T and O
domains with the domain wall orientation nearly parallel to
the Z axis.

Further we show that electromechanical anisotropy
(d33/d31) decreases with the decrease in polar anisotropy.
Case 3 (T + R + O coexistence) shows the lowest polar
anisotropy as well as the lowest electromechanical anisotropy.
On the other hand, case 2 (T + O) shows the highest po-
larization as well as electromechanical anisotropy since its
domain configuration consists of the lowest number of polar
variants. Although case 1 shows a single O phase, the number
of variants of the O phase is larger than in case 2.

In addition to anisotropy in electrostriction, mechanical
constraints can also modify phase stability bulk BZCT system.
Thus, on the application of mechanical constraint to case
1, the thermodynamic stability changes from O to T at the
equimolar composition at room temperature. Interestingly, d33

corresponding to the constrained system (634 pCN−1) shows
the closest match with the experimentally reported value [25].
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TABLE III. Relation between the original Landau coefficients
and the modified ones

Unmodified coefficients Modified coefficients

α1 α1

α12 β1

α11 β1 + β2

α112 γ1

α111 γ1 + γ2

α123 γ3 + 6γ1

APPENDIX A: DERIVATION OF THE FREE ENERGY
DENSITIES

Using 2-4-6 Ginzburg-Landau polynomial the bulk free
energy density fbulk for BZCT is expressed as

fbulk = 1
2α1

(
P2

1 + P2
2 + P2

3

) + 1
4α11

(
P4

1 + P4
2 + P4

3

)
+ 1

6α111
(
P6

1 + P6
2 + P6

3

) + 1
2α12

(
P2

1 P2
2 + P2

2 P2
3 + P2

3 P2
1

)
+ 1

2α112
(
P4

1

(
P2

2 + P2
3

) + P4
2

(
P2

3 + P2
1

) + P4
3

(
P2

1 + P2
2

))
+ 1

6α123P2
1 P2

2 P2
3 , (A1)

To derive thermodynamic stability conditions and compute
diffusionless phase diagrams of BZCT system, Eq. (A1) is
expressed in an alternate form based on polar anisotropy the-
ory where we separate isotropic part of the free energy from
the direction-dependent anisotropic part [37,41]. Therefore
we define the spontaneous polarization field P as a product
of the magnitude of spontaneous polarization P = |P| and a
unit vector n = (n1, n2, n3) along the direction of spontaneous
polarization: P = nP. Thus Eq. (A1) becomes

f modified
bulk = 1

2α1
(
n2

1 + n2
2 + n2

3

)
P2 + 1

4α11
(
n4

1 + n4
2 + n4

3

)
P4

+ 1
6α111

(
n6

1 + n6
2 + n6

3

)
P6

+ 1
2α12

(
n2

1n2
2 + n2

2n2
3+n2

3n2
1

)
P4 + 1

2α112
(
n4

1

(
n2

2 + n2
3

)
+ n4

2

(
n2

3 + n3
1

) + n4
3

(
n2

1 + n2
2

))
P6

+ 1
6α123n2

1n2
2n2

3P6, (A2)

where f modified
bulk is the alternate form of the bulk free energy

which separates isotropic and anisotropic contributions. Note
that the isotropic part of the energy describes the transition
from a nonpolar phase to a polar glassy state with no preferen-
tial direction, while the anisotropic part defines the directional
dependence of free energy surface due to the spontaneous
polarization vector [37,41]. The polar anisotropic contribution
to the free energy is given by the cross terms of Eq. (A2).

Since (n2
1 + n2

2 + n2
3)m = 1 for any exponent m, the powers of

the expansion terms in Eq. (A2) for m = 2, 3 can be written as(
n2

1 + n2
2 + n2

3

)2 = (
n4

1 + n4
2 + n4

3

) + 2
(
n2

1n2
2 + n2

2n2
3 + n2

3n2
1

)
,

(A3a)(
n2

1 + n2
2 + n2

3

)3 = (
n6

1 + n6
2 + n6

3

) + 3
(
n4

1

(
n2

2 + n2
3

)
+n4

2

(
n2

3 + n2
1

) + n4
3

(
n2

1 + n2
2

)) + 6n2
1n2

2n2
3.

(A3b)
Substituting the relations in Eq. (A3) in Eq (A2), the mod-

ified free energy becomes

f modified
bulk = 1

2α1P2 + 1
4

(
α12 + (

α11 − α12
)(

n4
1 + n4

2 + n4
3

))
P4

+ 1
6

(
α112 + (α111 − α112)

(
n6

1 + n6
2 + n6

3

))
P6

+ 1
6 (α123 − 6α112)n2

1n2
2n2

3P6. (A4)

Separating the isotropic and anisotropic parts, we rewrite the
modified bulk free energy as

f modified
bulk = f iso

bulk + f aniso
bulk , where

f iso
bulk = 1

2α1P2 + 1
4β1P4 + 1

6γ1P6,

f aniso
bulk = 1

4β2
(
n4

1 + n4
2 + n4

3

)
P4 + 1

6

[
γ2

(
n6

1 + n6
2 + n6

3

)
+ γ3n2

1n2
2n2

3

]
P6, (A5)

where β1 = α12, β2 = α11 − α12, γ1 = α112, γ2 = α111 −
α112, and γ3 = α123 − 6α112 are the modified Landau coef-
ficients. Table III lists the coefficients of unmodified LGD
energy [Eq. (A1)] and the modified version of the energy
[Eq. (A5)].

Assuming the paraelectric cubic state as the reference
state, we use Eq. (A5) to define free energies of the
paraelectric cubic phase C(P = 0) and the ferroelectric
T (n1, n2, n3 = ±1, 0, 0), O(n1, n2, n3 = ±1/

√
2,±1/

√
2, 0)

and R(n1, n2, n3 = ±1/
√

3,±1/
√

3,±1/
√

3) phases of
stress-free BZCT as follows:

f modified
C = 0, (A6a)

f modified
T = 1

2α1P2 + 1
4 (β1 + β2)P4 + 1

6 (γ1 + γ2)P6, (A6b)

f modified
O = 1

2α1P2 + 1
4 (2β1 + β2)P4 + 1

24 (4γ1 + γ2)P6,

(A6c)

f modified
R = 1

2α1P2 + 1
12 (3β1 + β2)P4

+ 1
162 (27γ1 + 3γ2 + γ3)P6. (A6d)

Minimization of Eqs. (A6b)–(A6d) with respect to P yields
equilibrium spontaneous polarization Ps,φ ; φ = T, O, R of the
ferroelectric phases, T , O, and R as a function of temperature
and composition:

P2
s,T = 1

2

−(β1 + β2) ±
√

(β1 + β2)2 − 4α1(γ1 + γ2)

γ1 + γ2
, (A7a)

P2
s,O = −(2β1 + β2) ±

√
(2β1 + β2)2 − 4α1(4γ1 + γ2)

4γ1 + γ2
, (A7b)

P2
s,R = 3

2

−(9β1 + 3β2) ±
√

(9β1 + 3β2)2 − 12α1(27γ1 + 3γ2 + γ3)

27γ1 + 3γ2 + γ3
. (A7c)
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The equilibrium free energies of T , O and R in terms
of temperature and composition are obtained by substituting
the expressions of spontaneous polarization of these phases
[Eq. (A7)] in Eq (A6).

APPENDIX B: ORIENTATION DEPENDENCE OF
FOURTH-ORDER ELECTROSTRICTIVE TENSOR IN

TWO AND THREE DIMENSIONS

The relation between strain tensor and electric polarization
can be written as εi j = si jmnqmnkl PkPl = Qi jkl PkPl , where si jkl

is the elastic compliance tensor, qi jkl is the electrostrictive
constant tensor, and Qi jkl is the experimentally obtained elec-
trostrictive coefficient tensor [31,36].

Following Nye [32], one can use a representation surface to
observe the variation in electrostrictive modulus (1/Q∗

33) with
the direction of applied electric field or electric polarization.
Let us imagine a crystal to be cut with the length parallel
to some arbitrary direction Z ′ with applied field along the
reference [001] direction. Since Z ′ need not be parallel to
[001], the applied field along [001] not only produces lon-
gitudinal and lateral strains but also shear. Thus Q∗

33 along
the direction of the applied field is given as the ratio between
the longitudinal strain and the square of electric polarization
along the direction of applied field. For a general anisotropic

material, the electrostrictive modulus can be computed for
general choices of crystallographic directions. Thus, for a
cubic crystal, assuming the “old” axes to be orthonormal and
aligned with respect to the 〈100〉 directions, for any arbitrary
orthogonal transformation of coordinates from X, Y, Z to
X ′, Y ′, Z ′, the electrostrictive modulus can be derived as

1

Q∗
33

= (Q11 + Q12)

(Q11 − Q12)(Q11 + 2Q12)

− 2Q44 − Q11 + Q12

Q44(Q11 − Q12)

(
l2
1 l2

2 + l2
2 l2

3 + l2
3 l2

1

)
, (B1)

where l1, l2, l3 are the direction cosines.
In this present work, we define the anisotropy in the

electrostriction using a parameter Qz = 2Q44
(Q11−Q12 ) . This defi-

nition is analogous to the Zener anisotropy parameter used
to describe anisotropy in elastic constants in cubic crystals.
Equation (B1) in terms of Qz can be written as

1

Q∗
33

= (Q11 + Q12)

(Q11 − Q12)(Q11 + 2Q12)

− 2Qz − 1

Qz(Q11 − Q12)

(
l2
1 l2

2 + l2
2 l2

3 + l2
3 l2

1

)
. (B2)
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