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Role of heat dissipation in polarization switching of ferroelectrics
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Polarization switching in ferroelectrics by applying external fields is a typical thermodynamic process. Heat
dissipation plays an inevitable role, especially in ultrafast and nonequilibrium switching processes. Its role has
long been neglected in existing theoretical models focusing on conservative actions. In this paper, a dynamic
phase diagram is derived to consider the heat dissipation on equal footing with the work done by external
field. Their competition leads to four switching mechanisms. The dynamic and thermodynamic analyses are
then performed to verify the inevitable mechanisms dominated by heat dissipation. Our finding refreshes the
understanding of polarization dynamics.
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I. INTRODUCTION

External field-driven polarization switching is a key issue
in the fundamental physics and functional device applica-
tions for ferroelectrics [1–6]. As a typical thermodynamic
process for polarization switching, besides work done by
external field, heat dissipation also dominates the polariza-
tion microstructural evolution [7], especially in the strong
nonequilibrium ultrafast process [8]. Several theoretical mod-
els are proposed to describe the polarization switching
mechanism, which can explain most experimental results [9],
such as Merz’s law [10], Kolmogorov-Avrami-Ishibashi [11],
nucleation-limited switching (NLS) [12], and homogeneous
switching [13] models. Unfortunately, most of them focus on
the conservative action of external field, but do not consider
the heat dissipation action on equal footing [14,15]. Hence,
the disparity is usually found between the experimental mea-
surement and the theoretical prediction [16]. In addition, since
the applicable conditions and criteria among different models
are not well-addressed, it brings confusion to the mechanis-
tic understanding of polarization switching under different
conditions [17]. To solve this problem, a comprehensive un-
derstanding of the heat dissipation role is a key step [7,8],
which is the aim of this paper.

II. ANALYTICAL MODEL

Starting with a simple double-well model, a dynamic phase
diagram of polarization switching is derived to address the
electric and thermal actions, and the simulations of stochastic
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phase field model (SPFM) [18] are performed to demonstrate
the physical picture. To simplify the discussion without losing
generality, we consider the polarization switching process in
a perfect BaTiO3 (BTO) crystal with monodomain driven by
a reverse electric field E . BTO is a typical ferroelectric, hav-
ing spontaneous polarization of P = λ ≈ 0.26 C/m2 at T =
300 K. Following the Landau-Ginzburg-Devonshire (LGD)
theory [19], the polarization dynamics in BTO under a reverse
electric field E at a fixed temperature of T = 300 K can be
described by a double-well form free-energy landscape F =
F (P, E ) with the polarization Pz as the reaction coordinate. In
generally, F can be simply expressed as

F = F (P, E ) = �

8ελ2
[(P2 − λ2)2 − λ4] − �EP. (1)

Here, � is the volume occupied by the polar element, and ε

is the effective dielectric constant. The black line in Fig. 1(a)
shows the free-energy profile in the case of E = 0, where the
ferroelectric system of BTO has two symmetrical steady states
as P±

m = ±λ (Pm means the states with local or global free
energy minimum), separated by a saddle-point state of Ps = 0.
Therefore, it requires enough energy to overcome the barrier
of FB = F (Ps) − F (Pm) for the phase transition between two
steady states Pm = ±λ, i.e., the polarization switching. Ap-
plying an electric field E will bias F and change Pm = Pm(E ).
In particular, there is a critical electric field EC = √

3λ/9ε as
shown in Fig. 1(a). If a strong field is applied as E > EC , we
can get FB < 0, and there is only one stable state of P+

m [see the
blue line in Fig. 1(a)]. Therefore, the polarization switching
can directly occur from P0 to P+

m without overcoming any
barrier. This is the so-called homogeneous switching mech-
anism reported in literature [i.e., mechanism I with E > EC in
Fig. 1(f)].
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FIG. 1. Schematics for the deduction of dynamic phase diagram of polarization switching and its criterion �. (a) The biased free energy
profile under the applied positive external field E ; (b) the enlarged figure of the free energy profile in the case of E < EC ; (c) the setting of
applied field; the evolution behaviors of (d) P = P(t ) and (e) F = F (t ) based on Tani’s equation. (f) The dynamic phase diagram of polarization
switching with the electric field E/EC and heat dissipation rate 1/τ as the reaction coordinates.

When E < EC , there are still two steady states named P+
m

and P−
m , and a saddle point state of Ps, giving rise to a finite

barrier FB > 0 for polarization switching. Assuming E = 0
at t < 0, the system stays at one symmetric steady state of
P = P0 = −λ, which needs to cross the saddle-point state of
Ps = 0 and reach another state of P = λ to realize the polar-
ization switching. For a sufficiently large polar element, its
thermal fluctuation cannot help overcome FB [18], i.e., FB �
kBT , so polarization switching cannot occur spontaneously.
Applying a reverse field E at t = 0 will bias F and change the
steady-state position as P−

m �= −λ, so the system gets an initial
energy of FI = F (P0, E ) − F (P−

m , E ) for it relaxing from P0

to P−
m at t > 0 [see Fig. 1(b)], and the transition barrier FB is

also compressed. In this case, the polarization switching is de-
termined by the relaxation evolution of polarization dynamics
under the actions of electric field and heat dissipation. Such
a relaxation process would occur with time elapsed as t > 0,
which can be described by Tani’s relaxation equation [20], i.e.,

μP̈ = −∂F

∂P
− γ Ṗ, as P(t = 0) = P0, (2)

where μ is the effective mass and γ is the friction coefficient.
− ∂F

∂P and −γ Ṗ are, respectively, the conservative and dissipa-
tive forces acting on the polarization. Under these two actions,
P(t ) reveals the decayed oscillation around its stable state of
P−

m starting from P0, as [see Fig. 1(d)]

P(t ) = P−
m + (P0 − P−

m )e−t/2τ cos(ωt ), (3)

where ω is the vibrational frequency of polarization near P−
m ,

as

ω2 = ω2
0 − γ 2

4μ2
, as ω2

0 = 1

μ

∂2F

∂P2

∣∣∣∣∣
P−

m

, (4)

and τ is the characteristic relaxation time of polarization. Its
value is determined by the dissipative coefficient of γ , for
instance, τ = μ/γ in the case of decayed oscillation described
by Eq. (2) (readers can see detailed discussion in Ref. [8]).
Correspondingly, the evolution of free energy F (t ) = F (P(t ))
can be derived as [8,18]

F (t ) = Fm + FI e
−t/τ cos(2ωt ), (5)

which is shown in Fig. 1(e). In this decayed oscillation (re-
laxation) process, the moment for the first attempt to go over
the saddle-point state of Ps reads tc = π/ω. If F (t = tc) > Fs,
the system can overcome the Ps state and directly relax to
the reverse state of P+

m to finish the polarization switching.
Otherwise [if F (t = tc) < Fs], it will continue the relaxation
process, and stay at P = P−

m with thermal fluctuations. There-
fore, we can define a criterion � to describe these two
polarization switching mechanisms, as

� = FI e
−tc/τ − FB = FI e

−π/ωτ − FB, (6)

where FI is the initial energy for the polarization relaxation
and FB is the energy barrier for the polarization switching [see
the physical picture in Fig. 1(b)]. In particular, we have

� > 0 ⇔ F (tc) > Fs

� < 0 ⇔ F (tc) < Fs.
(7)

It should be emphasized that, given the same initial state of
P = P0 and the applied E < EC , the value of � in Eq. (6) will
be determined by the heat dissipation rate characterized by
1/τ to affect the polarization switching. For a proper electric
field applied E < EC that makes FI > FB [e.g., see the energy
profile illustrated in Fig. 1(b)], a slow heat dissipation rate
during the polarization relaxation would result in � > 0, i.e.,
F (tc) > Fs, which means that the system will have enough
energy to go over the switching barrier in the first decayed
oscillated period. In this case, although the applied electric
field is weaker than the thermodynamic coercive field as
E < EC , the system has the chance to achieve the polarization
switching in a very short time, which has the same magnitude
of the characteristic vibration time as tS ∼ tc = π/ω ∼ 1 ns.
This is mechanism II of the phase diagram in Fig. 1(f). Other-
wise, if the heat dissipation rate is sufficient large to result in
� < 0 (i.e., F (tc) < Fs, which means that the system loses too
much energy due to the heat dissipation), the system cannot go
through Ps and will turn back to P−

m with thermal fluctuations.
According to Kramers’ theory [21], it would gain enough
energy to go over the barrier FB under the thermal assistance
with time elapsed. This is the physical essence of the NLS
mechanism. The occurrence of polarization switching is deter-
mined by the competition between the energy barrier FB and
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thermal fluctuation kBT . It has been demonstrated in various
diffusion phenomena that, in the cases of FB < 3kBT , the sys-
tem will undergo the Brownian motion under a finite potential
well, which is called Smoluchowski-diffusion [22], so the
polarization switching can occur in a short time, that ts ranges
from several nanoseconds to microseconds, corresponding to
mechanism III of the phase diagram in Fig. 1(f). In contrast, if
FB > 3kBT due to a weak electric field E applied, the polariza-
tion switching process would be of the quasiequilibrium one,
that tS will reach the order of milliseconds or seconds, corre-
sponding to mechanism IV of the phase diagram in Fig. 1(f).

With the actions of applied electric field and heat dis-
sipation, i.e., the conservative and dissipative forces, we
can get four kinds of polarization switching mechanisms.
Defining E/EC and 1/τ = γ /μ, respectively, representing
the intensities of the electric and thermal forces, a dy-
namic phase diagram can be obtained [see Fig. 1(f)]. Note
that heat dissipation plays the dominant role in the cases
that E � EC , resulting in the (II) relaxation-controlled and
(III) Smoluchowski-diffusion mechanisms, which is not well-
addressed in literature. In this following, we will perform
SPFM simulations of polarization dynamics to demonstrate
the mechanisms shown in the dynamic phase diagram.

In SPFM [18], the BTO bulk is treated as an ensemble of
N polar elements (grids) embedded into a Langevin heat bath
denoted by T = 300 K. Using Pi as the degree of freedom
(Pi = Pn,α represents the α component of the nth grid polar-
ization with n = 1, 2, . . . , N and α = x, y, z), the many-body
Hamiltonian H reads [18]

H = K + U + HE + HHB. (8)

Here, K = ∑
i

1
2μṖ2

i is the kinetic energy. U is the LGD
interaction (see details in the Appendix). HE = −∑

i �EPi

is the electrostatic potential. HHB denotes the actions of heat
bath, including the dissipation −γ Ṗi and fluctuation ξi(t ). The
Langevin equation is thus derived as [18]

μP̈i = −∂F
∂Pi

− γ Ṗi + ξi(t ). (9)

Here, F = U + HE describes the conservative actions [23]
and ξi(t ) is the Gaussian random force as 〈ξi(t )〉 = 0 and
〈ξi(t )ξ j (t ′)〉 = 2γ kBT δi jδ(t − t ′). The system is set as an infi-
nite BTO bulk of N = 643 grids with grid size as � = 64 nm3

to let the LGD energy be compatible with the thermal fluctu-
ations [18].

Fixing τ = 0.50 ns, Fig. 2 plots the SPFM simulation re-
sults under various E covering those four mechanisms in
Fig. 1(f), where the time-dependent normalized reverse area
S(t ) is used to described the polarization switching process
[15]. (I) Ultrafast switching mechanism, where the energy bar-
rier disappeared, i.e., FB < 0, due to the applied strong electric
field as E > EC , and each grid can thus reverse ultrafast with-
out crossing any barrier, e.g., tS ∼ 5 ns under E/EC = 1.10
and 1.02 shown in Fig. 2. Here tS is the switching time, i.e., the
time interval for the system evolving from P = P0 to P = 0.
(II) Relaxation-controlled mechanism. With E � EC , there is
a finite barrier FB > 0, and the system will relax from P0 to
P−

m at first. Although there is heat dissipation, because a large
E applied ensures � > 0, it can still have enough energy as
to cross Ps during the first relaxation cycle and get a rapid

FIG. 2. The simulation results of polarization switching [charac-
terized by the time dependence of the normalized reverse area S(t )
of Eq. (10)] along the blue arrow in Fig. 1(f) based on SPFM with
a fixed τ = 0.50 ns and various E applied, which covers the four
mechanisms.

polarization switching, e.g., tS ∼ 10 ns under E/EC = 0.98
and 0.94 shown in Fig. 2, having the same order of magnitude
with that of (I). (III) Smoluchowski-diffusion mechanism. A
weaker E -field applied makes � < 0, the system thus loses
too much energy during relaxation. It fails to cross Ps and
keeps metastable at P−

m with thermal fluctuation. Since FB <

3kBT , the system carries on the Brownian motion upon a
potential surface, i.e., Smoluchowski diffusion [22] in phase
space, so polarization switching occurs in a short time [21],
e.g., 10 ns < tS < 103 ns under E/EC = 0.88 and 0.8739 plot-
ted in Fig. 2. (IV) Barrier-controlled mechanism. Since E/EC

is so small that FB � kBT , reversals of minor polar-elements
are observed within t = 106 ns shown in Fig. 2. This is a
quasiequilibrium process, having a similar physical picture
with NLS mechanism [12], e.g., S(t ) under E/EC = 0.8738
and 0.86 is found to be well described by Tagantsev’s formula
[15,24], i.e.,

S(t ) = 1

2
+ 1

π
atan

(
ln(t ) − ln(t̄S )

ln(w)

)
. (10)

Here, t̄S and w are the mean switching time and its vari-
ance, respectively. As plotted in the green lines in Fig. 2, we
can get t̄S = 0.40 × 106 ns and w = 1.30 ns for the case of
E/EC = 0.8738, and t̄S = 1.67 × 106 ns and w = 1.15 ns for
the case of E/EC = 0.86, respectively. In addition, a shape
boundary is found between (III) and (IV) mechanisms, that
decreasing E/EC from 0.8739 to 0.8738 makes tS rapidly
increase from 102 to 106 ns. It is probably caused by under-
estimating the polar-element-interaction in LGD theory [19],
leading to the weak dynamical correlations. Hence, each polar
element mainly gains energy from its thermal fluctuation, not
the interaction provided by its neighbors.

Note that the phase diagram of Fig. 1(f) is not a precise
one since the thermal action is overestimated based on Tani’s
equation [20]. We thus modify ω = 3.4 GHz in � to correct
it to meet the SPFM simulation results. In addition, the steep
rising edge of E applied is different from the common ex-
perimental setting. However, the phase diagram has a general
validity for polarization switching, where the roles of electric
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FIG. 3. The dynamic description of polarization switching pro-
cess. (a) The setting and (d) the energy profile of the polarization
switching process studied; (b) the polarization and (c) its temperature
evolution; (e), (f) the stochastic distribution of switching time tS

observed.

and thermal forces are well-addressed. According to � of
Eq. (6), the E field determines FI and FB, and heat dissipation
effect is reflected in the factor e−π/ωτ , directly determining the
dynamical behavior, especially the presence of (II) and (III)
polarization-switching mechanisms. Most theoretical models
focus on the conservative action but do not fully consider
the role of heat dissipation [7,25,26]. The thermodynamic
coercive field Eth is defined as the minimum E field required to
drive the polarization switching [27], e.g., Eth = 0.13 MV/cm
in Fig. 2. Note that Eth is usually found in experiments being
smaller than the LGD prediction EC [9], which is also found
in our simulations as EC = 0.148 MV/cm. The fact of Eth

relying on τ and E cannot completely be interpreted by the
conservative impacts [28]. Otherwise, � is a more physical
quantity, involving both conservative and dissipative roles. In
a word, polarization switching is a thermodynamic process,
where the heat dissipation role cannot be well-described in a
conservative way. To further address this conjecture, we will
analyze the dynamics and thermodynamics of polarization
switching processes and verify the rationality and inevitability
of the resulting (II) and (III) mechanisms.

III. DYNAMICAL ANALYSIS

We can discuss the heat dissipation effects based on the
simulations with fixing E applied and changing τ . As shown
in Fig. 3, the polarization-switching process is simulated un-
der E/EC = 0.88, that FI = 3.14kBT > FB = 1.29kBT [here,
as shown in Fig. 1(b), FI is the initial energy for the polariza-
tion relaxation and FB is the energy barrier for the polarization
switching], with various τ as A: 2.00, B: 1.00, C: 0.50, and
D: 0.25 ns. Referring to Fig. 1(f), polarization switching in
cases A and B are of (II) the relaxation-controlled mechanism

and the ones in cases C and D are of (III) the Smoluchowski-
diffusion mechanism. In cases A and B, � > 0 is owed to
the small heat dissipation rate, and the system can finish the
polarization switching with tS , respectively, as 3.6 and 5.9 ns
in cases A and B. Otherwise, in cases C and D, a large heat
dissipation rate leads to � < 0. Since FB < 3kBT , Smolu-
chowski diffusion of the system makes polarization switching
occur with tS , respectively, as 100 and 300 ns in cases C and D.
As seen from Figs. 3(a)–3(c), there are three subprocesses: (1)
field-action sub process of applying E at t = 0, (2) relaxation
subprocess from P0 to P−

m at 0 < t < tR with tR ∼ 10π/ω, and
(3) reverse subprocess at tR < t < tS for the system approach-
ing P+

m . Since subprocess (1) completes instantaneously, no
polarization response and temperature TP change are revealed
(here, TP(t ) is given by kBTP = 〈μṖ2

i 〉). At t > 0, TP rises
significantly. Its two peaks correspond to subprocesses (2)
and (3), respectively, and the amplitudes of peaks enhance as
increasing the heat dissipation rate (with smaller τ ). Given
the same initial state, the thermal force denoted by τ does not
affect the final state that the system reaches, but the evolution
process and observed tS . Note that the observed tS is stochastic
for each individual simulation. Plotted in Figs. 3(e) and 3(f),
tS of cases A and B show the linear Lorentzian distributions,
but tS of cases C and D exhibit the logarithmic ones, which
tells again that the presence of (II) and (III) mechanisms is
owed to the heat dissipation role [15,24]. In Fig. 3(e), for
the cases of relaxation-controlled polarization switching with
τ = 2.00 ns and 1.00 ns, tS satisfies the linear Lorentzian dis-
tribution [15,24] as

g1(tS ) = C

(tS − t̄S )2 + w2
. (11)

Here, t̄S and w are the mean switching time and its variance,
respectively, and C is a constant. By fitting the SPFM simula-
tions results in accord with Eq. (11), we have t̄S = 3.55 ns and
w = 0.024 ns for the case of τ = 2.00 ns, and t̄S = 5.79 ns
and w = 0.088 ns for the case of τ = 1.00 ns, respectively.
Otherwise, in Fig. 3(f), for the cases of Smoluchowski-
diffusion polarization switching with τ = 0.50 ns and 0.25 ns,
tS satisfies the logarithmic Lorentzian distribution [15,24] as

g2(tS ) = C

[ln(tS ) − ln(t̄S )]2 + [ln(w)]2
. (12)

After the similar fitting procedure, we can get t̄S = 121.5 ns
and w = 1.29 ns for the case of τ = 0.50 ns, and t̄S =
203.6 ns and w = 1.46 ns for the case of τ = 0.25 ns,
respectively.

Although the simulations and resulting polarization-
switching mechanisms are obtained based on a specific BTO
system and SPFM method, the heat dissipation role revealed is
an inevitable thermodynamic result. We will demonstrate the
simulated polarization-switching process satisfies the thermo-
dynamic first law, and show the universality, rationality, and
inevitability of our conjecture.

IV. THERMODYNAMIC ANALYSIS

According to statistical thermodynamics, the evolution of a
many-body system governed by the Hamiltonian H in Eq. (8)
is equivalent to the phase point motion s(t ) = {Pi(t ), Ṗi(t )} in
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a multidimensional phase space [8]. Considering a process
that the system moves from s0 at t0 to s1 at t0 + dt , the
increment dA of an arbitrary quantity A = 〈A[s(t )]〉 reads

dA = 〈A[s(t )]〉s1
s0

= 〈Ȧ dt ′〉t0+dt
t0 = 〈Ȧ dt〉. (13)

We can then define the internal energy increment dU as

dU = 〈K + U〉s1
s0

= 〈Ṗi · (μP̈i + ∂iU )dt〉 (14)

and the electrostatic potential increment d-W as

d-W = −〈HE 〉s1
s0

≡ d-WE − d-WO, (15)

where d-WE = 〈�EṖi dt〉 and d-WO = −〈�PiĖ dt〉 are, respec-
tively, the increments owed to the work done by E and the
change of E itself. Correspondingly, the heat dissipation d-Q
occurring from the system to the heat bath is caused by the
inequality of polarization temperature TP and the one of heat
bath T , i.e., TP �= T . Therefore, we can define d-Q as

d-Q = kB(TP − T )
dt

τ
= γ

μ
kB(TP − T )dt (16)

in the given process mentioned above. Following the deduc-
tion in Ref. [18], we can get

γ

μ
kB(TP − T ) = 〈Ṗi · (γ Ṗi − ξi )dt〉, (17)

which is expressed in form of the negative work done by the
thermal force, i.e., the fluctuation ξi(t ) and dissipation forces
−γ Ṗi revealed in the stochastic dynamic equation of motion
in Eq. (9). Therefore, we can link d-Q with the increment of
〈HHB〉, as

d-Q = 〈HHB〉s1
s0

= 〈ḢHBdt〉 = 〈Ṗi · (γ Ṗi − ξi )dt〉, (18)

which also meets the essence of Ito’s stochastic differential
equation [29]. Combining Eqs. (14), (15), and (18), we can
get

dU − d-W + d-Q = 〈K + U + HE + HHB〉s1
s0

= 〈H〉s1
s0

= 〈Ṗi · (μP̈i + ∂iU − �E + γ Ṗi − ξi )dt〉 − �Ė〈Pi〉dt .
(19)

According to Eq. (9), we have

dU − d-W + d-Q = 〈H〉s1
s0

= −�Ė〈Pi〉dt = d-WO. (20)

Since d-W = dWE − d-WO in Eq. (15), we then get the expres-
sion of the thermodynamic first law as

dU + d-Q = d-WE . (21)

It describes the energy change in the polarization system due
to the heat dissipation and work done by external fields ap-
plied. If defining F = 〈K + U + HE 〉 to describe the energy
of the combined system of polarization dynamics and the
source of E , we can get another first law expression:

dF + d-Q = d-WO. (22)

Based on Eqs. (21) and (22), we will analyze the thermody-
namics of polarization switching process and demonstrate the
first law.

As mentioned above, the system undergoes three subpro-
cesses. In subprocess (1), the system is loaded with E/EC =
0.88 at t = 0 without any polarization response and heat

FIG. 4. The thermodynamic description of the same polarization
switching process as Fig. 3. The time dependence of (a) internal
energy U , (b) heat dissipation Q, (c) work done W , and (d) energy F .

dissipation, so �U1 = Q1 = WE1 = 0, satisfying the first law
as �U1 + Q1 = WE1 [see Figs. 4(a)–4(c)]. However, there is
an electrostatic energy increment before and after loading E
as 〈HE 〉t=0+

t=0− = WO = 52.2kBT . It is caused by the sudden
change in E , equivalent to the nonelectrostatic work moving
the system from infinity (E = 0) to the position of E �= 0.
This energy increment is shown in Eq. (22) as �F1 = WO

[see Fig. 4(d)]. At t > 0, the polarization evolves under the
action of E , accompanying the changes in energy U , work
done W , and heat dissipation Q, all of which reveal different
evolution behaviors between the subprocesses of (2) and (3).
The relaxation subprocess (2) at t < tR is nearly quasiequilib-
rium, so the changes in U , W , and Q are slow. Otherwise, the
reverse subprocess (3) at t > tR is likely nonequilibrium, so
the changes in U , W , and Q are more rapid. In the whole po-
larization switching process from P0 to P+

m at t > 0 [including
subprocesses (2) and (3)], the energy increment reads �U2 =
U (P+

m ) − U (P0) = 1.4kBT , the work done WE2 = 106.9kBT ,
and heat dissipation Q2 = 105.5kBT , so �U2 + Q2 = WE2,
satisfying the first law of Eq. (21). In addition, E is fixed at
t > 0, so WO = 0, leading to �F2 + Q2 = 0, which also satis-
fies the first law of Eq. (22). Moreover, the first law can also
well describe the entire process from t < 0 to t → ∞, that the
system moves from the initial state of P = P0 with E = 0 to
the final state of P = P−

m with E �= 0, i.e., �F + Q = WO. To
sum up, polarization switching is generally a nonequilibrium
thermodynamic process governed by the first law, giving rise
to a universal and inevitable fact that the actions of the electric
and thermal forces dominate the polarization microstructural
evolution on the equal footing.

V. CONCLUSION

We studied the inevitable role of heat dissipation in polar-
ization switching of ferroelectrics. A dynamic phase diagram
was derived to address the action of heat dissipation on
equal footing with the conservative one of external field. The
stochastic phase field simulations of polarization switching
in BaTiO3 were then performed to demonstrate the physical
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picture. The dynamic and thermodynamic analyses were car-
ried out to further address the role of heat dissipation and
verify the rationality and inevitability of the resulting (II) and
(III) switching mechanisms. Our study refreshes the under-
standing of polarization dynamics in ferroelectrics.
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APPENDIX: THE LGD INTERACTION ENERGY OF
POLARIZATION USED IN STOCHASTIC PHASE FIELD

MODEL AND THE SIMULATION DETAILS

In SPFM, the LGD free energy is adopted to describe the
interaction potential between the polar elements, i.e., U in the
many-body Hamiltonian H of Eq. (8), as

U =
∑

i

� f (Pi ) =
∑
n,α

� f (Pn,α ), (A1)

with � = 64 nm3 and f as the volumetric density of interac-
tion potential energy as

f = fLand + fgrad + felec + felas. (A2)

Here, fLand is the Landau bulk free energy for each Pn, which
is written as the Taylor expansion of Pn,α (to simplify the
expression, we drop the subscript n in the following),

fLand = a1

∑
α

P2
α + a11

∑
α

P4
α + a12

∑
α>β

P2
α P2

β

+ a111

∑
α

P6
α + a112

∑
α �=β

P4
α P2

β

+ a123

∏
α

P2
α + a1111

∑
α

P8
α

+ a1112

∑
α �=β

P6
α P2

β + a1122

∑
α>β

P4
α P4

β

+ a1123

∑
α

P2
α

∏
β

P2
β , (A3)

where α, β = x, y, z, and all the a are the expansion param-
eters, whose values are listed in Table I, and also can be
referenced in Ref. [18]. fgrad is the gradient term,

fgrad =
∑
α,β

Gl

2

(
∂Pn,α

∂rβ

)2

, (A4)

where Gl = G1 if α = β and Gl = G2 if α �= β, with G1 and
G2 being the gradient coefficients, whose values are listed in

TABLE I. Parameters used in SPFM simulations for polarization
switching of BaTiO3, from Ref. [18].

Parameter Value

a1 (T − 388) × 4.124 × 105 [JmC−2]
a11 −2.097 × 108 [Jm5C−4]
a12 7.974 × 108 [Jm5C−4]
a111 1.294 × 109 [Jm9C−6]
a112 −1.950 × 109 [Jm9C−6]
a123 −2.500 × 109 [Jm9C−6]
a1111 3.863 × 1010 [Jm13C−8]
a1112 2.529 × 1010 [Jm13C−8]
a1122 1.637 × 1010 [Jm13C−8]
a1123 1.367 × 1010 [Jm13C−8]

G1 4.4539 × 10−11 [Jm3C−2]
G2 2.2270 × 10−11 [Jm3C−2]

εb 4.4271 × 10−11 [J−1m−1C2]

C11 19.8 × 1010 [Jm−3]
C12 9.60 × 1010 [Jm−3]
C44 12.2 × 1010 [Jm−3]
Q11 1.104 × 10−1 [m4C−2]
Q12 −4.520 × 10−2 [m4C−2]
Q44 2.950 × 10−2 [m4C−2]

μ 3.2 × 10−40 [Jm4C−2s2]
γ = μ/τ

Table I. felec is the electrostatic term as

felec = −P · E − 1
2εbE2, (A5)

where E is the total electrostatic field, including the external
electric field Eext and depolarization field Ed , as E = Eext +
Ed ; εb is the background dielectric permittivity. felas is the
electrostrictive term

felas =
∑
αβλν

1

2
Cαβλν

(
eαβ − e0

αβ

)(
eλν − e0

λν

)
, (A6)

where Cαβλν are elastic stiffness coefficients, eαβ are eigen-
strain components of the strain tensor e, and e0

αβ is the eigen-
strain induced by the electromechanical coupling, depending
on the spontaneous polarization as e0

αβ = ∑
λν QαβλνPλPν

with Qαβλν being the electrostrictive coefficients. The values
of Cαβλν and Qαβλν are listed in Table I.

In our SPFM simulations for all the polarization switching
processes performed in the main text, the simulation system
is discretized into 64h × 64h × 64h grids with h = 4.0 [nm],
which is embedded in the heat bath denoted by T = 300 [K].
The phase-space trajectories {Pi(t )} are obtained by solving
the Langevin equation of Eq. (9) derived from the Hamil-
tonian H of Eq. (8), where all the parameters are listed in
Table I. The Langevin equation is solved via an explicit Euler
method with a time step of 1 [fs], and the FFT approach is
adopted to calculate the conservative force. The total polar-
ization P(t ) of the systems considered is thus thermodynamic
observable as P(t ) = 〈Pi(t )〉. The polarization temperature TP

links to the kinetic energy as kBTP(t ) = 〈μṖ2
i (t )〉, with kB as

the Boltzmann constant. Doubling the numbers of meshing
grids and decreasing the time step are examined to result
in a statistical error less than ∼0.1%. The FFT simulations
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are performed by a self-developed C language code, with
the use of the C subroutine library FFTW for computing the

discrete Fourier transform and the standard software library
CLAPACK for numerical linear algebra.
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