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The Z method is a popular atomistic simulation method for determining the melting temperature where a
sequence of microcanonical molecular dynamics runs are carried out to target the lowest system energy where
the solid always melts. Homogeneous melting at the limit of critical superheating Th is accompanied by a drop
in temperature as kinetic energy is converted to potential energy and the equilibrium melting temperature Tm can
be calculated directly from the liquid state. Implementation of the Z method interfaced with modern ab initio
electronic structure packages often use Hellmann-Feynman forces to propagate the ions in the microcanonical
ensemble where the Mermin free energy plus the ionic kinetic energy is conserved. The electronic temperature
Tel is therefore kept fixed along the trajectory which may introduce some spurious ion-electron interactions in
molecular dynamics runs with large changes in temperatures such as often seen in homogeneous melting and
freezing processes in the microcanonical ensemble. We estimate possible systematic errors in the calculated
melting temperature to choice of Tel for two main mantle components: the insulators SiO2 and CaSiO3 at high
pressure. Comparison of the calculated melting temperature from runs where Tel = Th and Tel = Tm, representing
reasonable upper and lower boundaries, respectively, to choice of Tel, shows that the difference in melting
temperature is 200–300 K (3%–5% of the melting temperature) for our two test systems. Our results are
in good agreement with previous large-size coexistence method and thermodynamic integration calculations,
suggesting that CaSiO3 and SiO2 melt at around 6500 K (100 GPa) and 6000 K (160 GPa), respectively. The
melting temperature decreases with increasing Tel due to the increasing entropic stabilization of the liquid and
the systems melt typically about three times faster in molecular dynamics runs with Tel = Th compared to runs
where Tel = Tm. A careful choice of electron temperature in Born-Oppenheimer molecular dynamics simulations
where the ions are propagated using Hellmann-Feynman forces with the Mermin free energy + the ionic kinetic
energy being conserved is therefore essential for the critical evaluation of the Z method and, in particular, at very
high temperatures.

DOI: 10.1103/PhysRevB.108.134110

I. INTRODUCTION

Melting and solidification processes are ubiquitous in con-
densed matter physics and in the evolution of terrestrial bodies
including our own Earth. Triggered by extended defects,
grain boundaries, or open surfaces, equilibrium melting oc-
curs spontaneously at Tm when the free energy of the solid
equals that of the liquid. Under certain conditions, however, a
crystal can melt homogeneously at a much higher temperature
Th, which represents the critical limit of superheating before
melting is unavoidable [1,2]. If a perfect periodic crystal
in a molecular dynamics simulation is heated until T ≈ Th,
spontaneous fluctuations (nucleation precursors) will form
transient defects and liquid nuclei which trigger an irreversible
rapid nucleation growth and melting. Although homogeneous
melting is rare in nature, shock-induced homogeneous melting
has been demonstrated in a number of experiments (see, for
example, [3–8]).

*chris.mohn@kjemi.uio.no

The Z method explores the link between homogeneous and
equilibrium melting using molecular dynamics simulations
and has been widely used to estimate melting temperatures for
different materials [9–13] often at high temperatures and pres-
sure where experiments are hazardous or impractical [14–19].
A number of molecular dynamics simulations are launched
in the microcanonical (NVE) ensemble at different initial
temperatures Tini to target the lowest total energy Eh, where
the solid always melts. When the system melts at Eh (Th), the
temperature decreases to the equilibrium melting temperature
while the latent heat of melting gradually converts into po-
tential energy. If we assume a linear variation of energy with
temperature we can establish a relationship between Th and Tm

from the entropy of melting [1,20]:

Th

Tm
− 1 = �Sm

CV
, (1)

where CV is the heat capacity at constant volume of the solid
and �Sm is the entropy of melting. Equation (1) can be ap-
proximated by (ln 2)/3 assuming an ideal entropy of melting
[ln 2kB (per atom)] taken from a high-temperature limit of the
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Debye model and assuming that the heat capacity at constant
volume is given by 3kB (per atom) when �Vm/V → 0 [21].

Since the equilibrium melting temperature can be calcu-
lated from a homogeneous melting process triggered typically
by small defects, quite small simulation boxes (∼100 atoms)
are in general sufficient to accurately calculate Th and hence
Tm from Eq. (1) [22]. The use of small simulation boxes there-
fore makes the Z method a potentially attractive “low-cost”
method for the accurate calculation of melting tempera-
tures [22–24]. By contrast, popular two-phase approaches to
melting where the equilibrium melting process is mimicked
by constructing a simulation box with a solid and a liquid
phase in mechanical contact, often require large boxes to
accommodate both solid and liquid phases as well as their
interfaces [25,26].

In addition, since Tm can be calculated from Eq. (1),
there is no need for the explicit calculation of free energies
which sometimes hamper the precision of thermodynamic
integration [27,28] and two-phase thermodynamics (2PT)
methods [29], especially when the solid and liquid free-energy
curves have very similar steepness near Tm [25,30].

In spite of these advantages, recent studies have unveiled
some artificial features that may hamper the Z method for
the accurate calculation of melting temperatures, particularly
under extreme conditions [23,25,31,32]. Since the waiting
time required for the solid to melt diverges in the limit where
Tini → Th, a waiting-time analysis is often carried out at dif-
ferent Tini > Th to estimate Tm from an extrapolation to that
of “infinite” waiting time [23]. This analysis, however, may
still require extensive statistics for the precise calculation of
melting temperatures.

Moreover, Born-Oppenheimer ab initio molecular dynam-
ics (BOMD) is typically performed in the NVE ensemble
using Hellman-Feynman dynamics where the Fermi-Dirac
electronic temperature is kept fixed in the MD simulation [33].
Although this implementation of the Z method ensures
conserved dynamics [34,35], large changes in temperature
following melting and sometimes equilibration may introduce
systematic errors in Tm since the electronic temperature is
kept fixed [25]. That is, if a BOMD NVE run with E > Eh

is launched with an Tel chosen near the liquid temperature
(Tel ≈ Tm), then Tel will be much lower than the tempera-
ture in the solid state (before melting). A too low electronic
entropy may favor the stabilization of the solid and prevent
melting. This in turn will affect the estimated homogeneous
melting temperature (Th) and the “waiting time” for a solid
to melt. The calculated equilibrium melting temperature may
therefore be too high. On the other hand, if a BOMD run is
launched with an electronic temperature chosen near the solid
temperature before melting (Tel ≈ Th), a physically reasonable
electronic-ionic interaction is ensured before melting. How-
ever, once the solid melts at constant volume, the temperature
drops by 1 − Tm/Th ≈ (ln 2)/3 and the electronic entropy will
be much higher than the liquid temperature, which usually
favors an entropic stabilization of the liquid. Hence, the melt-
ing temperature may be too low. Therefore, since the choice
of electronic entropy affects Hellmann-Feynman dynamics in
processes undergoing large temperature drops, such as melt-
ing in the microcanonical ensemble, addressing the sensitivity
in Tm to the choice of Tel is crucial in order to bench-

mark the Z method for the accurate calculating of melting
temperatures.

In this work, we thus investigate the role of electronic
entropy on homogeneous melting using Hellmann-Feynman
forces to propagate the ions for two main abundant mineral
components in the Earth’s interior: CaSiO3 and SiO2 at high
temperatures.

Ca-perovskite is the third most abundant mineral in the
lower mantle and a main component of basaltic lithologies
constituting more than 20% of recycled oceanic crust that is
continuously being injected into the Earth’s deep interior. A
strong preferential partitioning of radioactive heat-producing
elements into CaSiO3, such as U and Th, as well as key
geochemical tracers, suggests that CaSiO3 is the main stor-
age mineral for many of these minority elements [36,37].
Tracking the distribution of CaSiO3 in the lowermost man-
tle is therefore essential to understand the evolution of the
solid Earth, which in turn requires the thermodynamic con-
ditions of Ca-perovskite melting. Motivated by this, a number
of computational studies have calculated melting curves for
pure CaSiO3 to lowermost mantle conditions [20,25], but the
agreement is not satisfactory. Here we attempt to contribute
to tighten the constraints of CaSiO3 melting at the lowermost
mantle conditions.

Our second model system is SiO2. The solid-liquid phase
boundary of SiO2 at ultrahigh pressure is critical to our un-
derstanding of not only the Earth’s evolution but also the
formation of many super Earths [38,39]. High-pressure silica
melting may also play an important role in core dynamics, as
it has been suggested that silica may have crystallized from
a Si-saturated protocore during a chemical exchange with a
basal magma ocean [40,41]. In spite of a number of simula-
tions and experimental results reported in the literature, the
SiO2 melting curve remains poorly constrained at very high
pressure. Here we will attempt to contribute to resolving some
of these outstanding discrepancies.

II. THEORY

The thermodynamic ensemble appropriate for the Z
method is the NVE ensemble with the volume V , number of
species N , and the system energy E kept fixed. The maximum
energy along the solid branch of the isochore Eh is the same
as the lowest energy along the liquid branch:

Esol(V, Th) = Eliq(V, Tm). (2)

To locate Esol(V, Th) and hence Eliq(V, Tm), a sequence of
NVE MD runs are carried out with different initial temper-
atures. Since the waiting time for the solid to melt diverges
when T → Th, the calculated melting temperature will always
represent an upper bound to the “true” melting temperature.
To avoid extremely long MD runs in the vicinity of Th, the
melting temperature is calculated from an extrapolation of the
distributions of waiting times using

〈τ 〉−1/2 = A(Tliq − Tm), (3)

where “A” is a parameter, τ is the waiting time for a solid to
melt at a given total energy, and Tliq is the liquid temperature
of the system after melting. Since Tliq = Tm, when E = Eh,
the melting temperature can be found at infinite waiting time,
i.e., at the point of intersection where 〈τ 〉−1/2 = 0.
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We use ab initio Born-Oppenheimer MD to propagate the
ions where the electronic energy is minimized at each step
along the trajectory. Note that the usual Hellmann-Feynman
force does not conserve the total system energy E = U + K
where U is the internal DFT energy and K is the kinetic energy
of the ions. This is because the energy functional is nonvari-
ational with respect to changes in partial orbital occupancies
along the MD trajectory, when the ions are propagated using
the Hellmann-Feynman forces. The force, F, that conserves
the total energy is given as [34]

F = FHF −
∑

i

δU

δ fi

δ fi

δ(εi − EF)
∇(εi − E f ), (4)

where FHF is the exact Hellmann-Feynman force (including
possible contributions from Pulay stress). EF is the Fermi
level whereas εi and fi are the eigenvalues and the electron
occupancy of band i.

To avoid additional contributions to the Hellmann-
Feynman forces due to the variation in the band occupancies
along the ionic trajectory one can enforce a new conserva-
tion law where the quantity “K + �”, rather than “U + K”,
is conserved in the MD run where � is the Mermin free
energy [34,35,42,43]

� = U − TelSel (5)

with

Sel = −kB

∑
i

[ filn fi + (1 − fi )ln(1 − fi )]. (6)

Sel is the electronic entropy and fi is calculated using Fermi-
Dirac statistics:

fi = F

(
εi − EF

σ

)
,

Ni∑
0

fi = N, (7)

where F is the usual (Fermi-Dirac) smearing function, and
σ = kB/T is the smearing broadening.

Ionic dynamics may be sensitive to the choice of electronic
temperature when the ions are propagated using Hellmann-
Feynman forces, in particular when the temperature changes
are large such as during equilibration and melting in the
NVE ensemble. Electronic temperature may therefore affect
the melting processes for semiconductors and insulators even
though the fractional occupancies of the conduction bands
remain small during these temperature changes.

We can estimate the sensitivity in the calculated Tm to
choices of Tel by comparison of the melting temperature calcu-
lated using Tel ≈ Th with that calculated using Tel ≈ Tm. These
choices of Tel provide reasonable upper and lower bounds
to the calculated melting temperature in the microcanonical
ensemble when the Hellmann-Feynman forces are used for
the ionic propagation with K + � being conserved.

If changes in Tel cannot be ignored, the usual conservation
law including the Mermin functional in the form of Eq. (5)
must be replaced, but the forces will then include contribu-
tions arising due to changes in the partial orbital occupancies
along the microcanonical Born-Oppenheimer trajectory. It is
important to note, however, that the time evolution of or-
bital occupancies due to large temperature changes may be
only correctly described by the time-dependent Schrödinger
equation [44].

A possible strategy to calculate Tm using the Z method
is to adjust Tel along the ionic trajectory to match the av-
erage (ionic) temperature in the previous N time steps [25].
Although this “update scheme” does not ensure conserved
dynamics, difference in the average ensemble temperature
before and after the adjustment is in general expected to
be small. In this approach, the time-dependent Schrödinger
equation is thus approximated by a sequence of BOMD NVE
simulations.

III. COMPUTATIONAL DETAILS

All BOMD simulations are performed with the Vienna ab
initio simulation package (VASP) [45–48], using the projector
augmented wave (PAW) method [49,50]. We use the gener-
alized gradient approximation (GGA) where the exchange-
correlation contribution to the energy is parametrized using
the Perdew-Burke-Ernzerhof (PBE) [51] functional for SiO2

and the Armiento and Mattsson 2005 (AM05) functional [52]
for CaSiO3. The electronic configurations were [He]2s22p4

for O, [Ne]3s23p2 for Si, and [He]3s3 p64s2 for Ca. The energy
cutoff for the plane wave was 700 eV for SiO2 and somewhat
lower, 500 eV, for CaSiO3 to compare directly with previous
CaSiO3 DFT studies [20,25].

In all runs, the atoms were initially placed at their ideal
crystallographic sites, i.e., the 1b, 1a, and 3d positions for
Ca, Si, and O atoms, respectively, of the Pm3m space group
(CaSiO3). SiO2 MD runs were started from the ideal cubic
pyrite-type structure (Pa3̄) optimized to target an equilib-
rium pressure ∼160 GPa. This is probably slightly below
the stability field of the pyrite structured SiO2 near the melt-
ing curve [38], but in order to compare directly with results
in Refs. [24,39] we use pyrite rather than seifertite. The
estimated melting point when pyrite is used as the crystal
structure is only slightly lower compared to that found us-
ing seifertite [24,39]. For CaSiO3 we use a cubic 135-atom
simulation box which is the same as that used in previous
computational studies of CaSiO3 melting [20,25] allowing for
a direct comparison with these studies. For SiO2, the simula-
tion box contained 96 atoms.

Melting simulations are carried out in the NVE ensemble
with a time step of 0.5 fs for SiO2 and 1 ps for CaSiO3.
The smaller time step for SiO2 was chosen to minimize the
energy fluctuation. All runs used in the waiting time analysis
were carried out until melting plus an additional 5–20 ps to
calculate the average liquid temperature.

The waiting-time analysis was performed based on be-
tween 8 and 20 different simulations at a given (E ,V ) where,
in each run, the initial velocities were taken from a Maxwell-
Boltzmann distribution. Close to the equilibrium melting
temperature we performed typically around 20 MD runs at a
given (E ,V ) to ensure that sufficient statistics were collected
in order to calculate Tm using Eq. (3). Plots of the convergence
of the estimated melting temperature with number of config-
urations are shown in the Supplemental Material [53]. This
analysis shows that about 8–10 MD runs, for a given initial
temperature, are sufficient to converge the melting tempera-
ture to less than 100 K. All MD calculations launched below
Eh lasted for at least 10 ps and close to Th the MD simulations
typically ran for more than 100 ps.
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Melting

Melting

Temperature

Pressure

σGaussian = 0.03 eV

Tel = 6000 K

Tel = 8000 K

Tel = 18000 K

FIG. 1. Temperature (red) and pressure (blue) evolutions along ab initio MD trajectories for SiO2 with different Tel. The thin lines show
dumps every time step whereas the thick lines are averaged properties over the previous 100 time steps. All MD runs are carried out with the
same initial temperature (Tini = 18 000 K) where the atoms are distributed at their equilibrium lattice positions before we launch the MD run.
A Gaussian smearing broadening scheme with σGaussian = 0.03 eV is used to represent simulations with a negligible contribution to electronic
entropy on the ionic dynamics. The shaded areas show the melting process.

For SiO2, the Tel are 6000, 7000, and 8000 K where 6000 K
is expected, after test calculations, to lie close to Tm whereas
8000 K will lie close to Th. Similarly, for CaSiO3 the waiting-
time analysis was carried out at Tel = 6500 and 9000 K which
are expected to be close to Tm and Th, respectively. To simu-
late melting with negligible contribution from the electronic
entropy we used a Gaussian scheme [33] with a very low
value of the smearing parameter (i.e., σGaussian = 0.03 eV).
The Gaussian smearing method is better designed to avoid
instabilities arising from fluctuations in orbital occupancies
at low values of σ (low temperatures) which often hamper
the Fermi-Dirac method during energy minimizations. The
Gaussian smearing has the functional form 1

2 (1 − erf ε−μ

σ
) and

the link between the two schemes is given by the ratios of the
full width at half-maximum (FWHM) as

FWHMFermi-Dirac

FWHMGaussian
= cosh−1(

√
2)√

ln2
. (8)

IV. RESULTS AND DISCUSSION

A. Influence of electronic entropy on ionic dynamics

In Fig. 1 we illustrate the sensitivity to changes in elec-
tronic temperature on the melting dynamics for silica where
the initial ionic temperatures are the same in all runs. In the
extreme case where the electronic temperature is the same as
the initial temperature in the MD runs (Tel = Tini = 18 000 K),
SiO2 always melts rapidly and instantaneously in less than 0.5
ps. On the contrary, in runs with negligible contribution from
electronic entropy (i.e., with σGaussian = 0.03 eV), melting is
rare and we observed only one incidence of melt nucleation in
all our 20 runs which lasted 10 ps each.

In simulations with “intermediate” Tel, close to either
the homogeneous or the equilibrium melting temperatures
(i.e., with Tel = 8000 K or Tel = 6000 K, respectively), the
system with Tel = 6000 K melted markedly slower compared
to those with Tel = 8000 K and the waiting time was much
longer. We found that the average waiting time was 2.7 ps
when Tel = 8000 K ≈ Th and markedly longer by a factor
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FIG. 2. Two isochores with different electronic temperatures.
The black curve is runs where σGaussian = 0.03 eV and the red curve
is runs where Tel = 8000 ≈ Tm. The initial temperatures are in the
range 8000 to 30 000 K with the ions initially placed at their ideal
lattice positions before we launched the MD simulations which ran
for 20 ps each.

of about 3 when Tel = 6000 ≈ Tm. See also the discussion
about distributions of the waiting time in the Supplemental
Material [53]. Interestingly, when Tel = 6000 K, we observe
that the temperature sometimes drops markedly indicating
possibly the formation of melt nuclei, but the system quickly
reverted to its original (solid) state. This is seen as small
“bumps” in the temperature and pressure evolutions in Fig. 1
at about 2.0–2.5 ps. Solid-liquid “oscillations” are often seen
in runs where the energy is close to the target homogeneous
melting energy using small simulation boxes with large tem-
perature fluctuations [23] and will be discussed more in the
Supplemental Material [53].

The influence of electronic entropy on properties is also
seen in Fig. 2 where two isochores with different electronic
temperatures are drawn. Here, the initial ionic temperature
in the MD runs is systematically increased from 8000 to
30 000 K. The isochore with an high electronic temperature,
i.e., close to Th (i.e., with Tel = 8000 K) deviates strongly from
the one with negligible contributions from electronic entropy
(i.e., σGaussian = 0.03 eV).

B. Choice of electronic temperature in ab initio MD runs

The sensitivity in melting temperature to choice of Tel

illustrated above for SiO2 and discussed in the Supplemental
Material [53] suggests that BOMD runs in the NVE ensemble
– where the ions are propagated using the Hellmann-Feynman
forces with � + K being conserved – may introduce some
errors due to changes in electron-ion interactions following
large drops in temperature ≈(ln 2)/3 × Tm. This is seen in
the Z plots and the waiting-time analysis in Figs. 3 and 4
as well as in Table I for both SiO2 and CaSiO3. When Tel is
kept fixed at some value near Tm, the calculated equilibrium
melting temperature will be markedly higher compared to
that if Tel is close to the homogeneous melting temperature.
The calculated melting temperatures with Tel ≈ Tm at around
100 GPa (CaSiO3) and 150 GPa (SiO2) are about 300 and
200 K higher, respectively, than those calculated with Tel ≈
Th. This corresponds roughly to 10% of the temperature drop
accompanying melting. We expect that these absolute errors
increase with increasing melting temperature and pressure
since the temperature drop accompanying melting increases
with increasing Th.

A key question is therefore as follows: What is the best
choice of electronic temperature in the MD runs to minimize
the errors in the calculated Tm when the ions are propagated
using Hellmann-Feynmann forces with � + K being con-
served? If we choose an electronic temperature very close
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FIG. 3. Solid (blue) and liquid (red) branches in MD-NVE runs for SiO2 (left) and CaSiO3 (right). For SiO2, Tel = 6000, 7000, and
8000 K whereas for CaSiO3, Tel are 6500 and 9000 K. In addition, we plot the result for CaSiO3 with a Gaussian smearing scheme using
σGaussian = 0.03 eV. The homogeneous melting temperatures are calculated from an intersection of a linear extrapolation of the solid branch
runs and a vertical line drawn from the equilibrium melting point [calculated using Eq. (3)]. The resulting homogeneous melting temperatures
may therefore represent an upper bound to the “true” homogeneous melting temperature since the slope of the solid branch typically decreases
near Th [22,25]. Values of Th are reported in Table I.
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TABLE I. Calculated melting temperatures for CaSiO3 and SiO2 using the Z method together with previous values reported in the literature
at similar pressure (i.e., about 103 GPa for CaSiO3 and 160 GPa for SiO2). In the simulation where Tel ∼ 0 we used a Gaussian smearing,
σGaussian = 0.03 eV, for the partial occupancies of the one-electron orbitals. In the simulation from Ref. [25] where Tel is labeled as “adjustb”,
the Fermi-Dirac smearing was updated about every 1 ps along the MD trajectory to match the average temperature in the previous ∼1 ps, as
discussed in Ref. [25]. In “adjusta” we update the electronic entropy only once along the MD trajectory after about 25 ps of propagation in the
liquid state.

System Method Tel (K) P (GPa) Th (K) Tm (K) Ref.

Z Method 9000 103.7 ± 2.6 8873 ± 42 6410 ± 21 This work
Z Method 6500 103.0 ± 2.5 8652 ± 25 6647 ± 49 This work
Z Method ∼ 0 105.2 ± 3.0 9605 ± 11 7258 ± 38 This work

CaSiO3 Z Method adjusta 102.6 ± 2.7 8506 6517 This work
Z Method adjustb 105 ± 3.3 8806 6493 Hernandez et al. [25]
Z Method Not reported 103.0 ± 0.2 7120 5200 Braithwaite and Stixrude [20]

Large-size coexistence ≈103 6582 Hernandez et al. [25]
Thermodynamic integration ≈103 6433 Hernandez et al. [25]
Two-phase thermodynamics ≈103 5420 Hernandez et al. [25]

Z Method 6000 164 ± 4.3 8058 ± 39 6110 ± 60 This work
Z Method 7000 164 ± 4.3 7899 ± 30 6015 ± 35 This work
Z Method 8000 166 ± 4.3 7789 ± 17 5884 ± 21 This work
Z Method adjusta 169 ± 4.3 6044 This work

SiO2 Coexist 153.8 5990 Benlonoshko et al. [57]
Coexist 157.6 5986 Usui et al. [58]

Shock experiment 157.0 5543 Millot et al. [59]
Z Method Not reported 132.3 5852 González-Cataldo et al. [39]

DAC experiment 117 ≈ 6200 Andrault et al. [60]

to Th in MD runs with E = Eh, the electronic temperature is
very close to the (ensemble) average temperature before the
system eventually melts. Runs with Tel ≈ Th therefore enable
the accurate calculation of Th as well as the waiting time and
imply that MD runs where Tel < Th (if, say Tel = Tm) give too
high homogeneous melting temperatures.

Although Tel ≈ Th (with E ≈ Eh) enables the accurate
calculation of Th, the melting temperature may be severely

underestimated. This is because Tel is much larger than the
liquid (ionic) temperature which, in general, favors an en-
tropic stabilization of the liquid over the solid and hence
the calculated melting temperature will be too low. If we
rather chose Tel ≈ Tm, which is the lowest temperature on
the isochore and therefore represents a reasonable lower
bound to choice of Tel, the homogeneous melting tempera-
ture and possibly the equilibrium melting temperature will be
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FIG. 4. The calculated melting temperature using Eq. (3) for different choices of electronic temperatures. For SiO2, Tel = 6000, 7000, and
8000 K whereas for CaSiO3, Tel are 6500 and 9000 K. In addition, calculate the melting temperature using Eq. (3) for CaSiO3 using a Gaussian
smearing scheme with σGaussian = 0.03 eV. The resulting estimated equilibrium melting temperatures are reported in Table I along with the
standard error. The horizontal and vertical error bars reported are the mean errors of the waiting time and temperatures, respectively.
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overestimated. Calculations where Tel is chosen to target ei-
ther Tm or Th, therefore, provide reasonable upper and lower
bounds, respectively, to the true melting temperature.

C. CaSiO3 melting

As shown in Table I, our melting temperatures are in very
good agreement with a previous Z method study [25] and
also in excellent agreement with those from thermodynamic
integration and two-phase calculations [25]. The inclusion
of electronic entropy is essential for the accurate calculation
of melting temperature for CaSiO3, in agreement with that
found for other insulators such as MgO [56]. That is, the
calculated Th and Tm without contribution from the electronic
entropy are about 1000 and 650 K higher, respectively, than
those calculated using Tel = 6500 K. We find that that the
melting temperature is around 6300 K (with Tel = 9000 K)
and 6600 K (with Tel = 6500 K). As discussed above, the
discrepancy between the calculated melting temperature using
Tel = 6500 K with that calculated using Tel = 9000 K is non-
negligible for the accurate calculation of melting temperature.
This places some constraints on the accuracy of the Z method
interfaced with BOMD where � + K is conserved and the
ions are propagated using Hellmann-Feynman forces in the
NVE ensemble.

Choice of electronic entropy could therefore possibly ex-
plain the large discrepancy of more than 1000 K between
our melting point and that of a recent Z method study [20]
which was carried out at the same thermodynamic conditions
as here. We use the same exchange-correlation functional to
DFT as that employed in Ref. [20], but are unable to reproduce
their melting point unless we set Tel = Tini. Reference [20],
however, does not report values of Tel, so no firm conclusions
can be drawn.

D. SiO2 melting

There are not many experimental studies of SiO2 that re-
port melting temperatures to very high pressure. Results from
a recent high-pressure experimental study [59] was fitted to
an equilibrium melting curve to about 500 GPa [Tm(P) =
1968.5 + 307.8 × P0.485] suggesting that SiO2 melts at
around 5540 K at 157 GPa. This is slightly lower than that
calculated from a Z method simulation [39], where the melt-
ing temperature was estimated to be 5850 K at 132 GPa.
By contrast, a recent Diamond Anvil Cell (DAC) experimen-
tal study [60,61] suggests a markedly higher melting curve
compared to those mentioned above and the Clapeyron slope
is also much steeper in the pressure region 120–150 GPa
compared to that reported by, e.g., Millot et al [59]. The melt-
ing curves from two molecular dynamics simulations [57,58]
using two-phase coexisting methods are in overall good agree-
ment with that from the DAC study [60,61], but without the
rapid change in the Clapeyron slope seen in the DAC experi-
ment at around 120 GPa.

Our calculated melting temperatures reported in Table I
are in overall good agreement with previous computational
predictions at similar pressures [57,58]. The calculated melt-
ing temperature reported using Tel = 8000 K, for example,
is 5776 K. This is only slightly lower compared to those of
Refs. [57,58] which are 5990 and 5986 K, respectively. Of

note is that the good agreement with that reported by Usui
and Tschuchia [58] may be fortuitous because a very small
two-phase simulation box containing only 48 atoms for each
phase was used in Ref. [58]. Such a small box has a boundary
that is of similar size as the solid and liquid portions, and many
runs are needed at a given (E ,V ) to precisely determine the
melting points [62]. Our result also suggests that the predicted
equilibrium melting curve reported from a shock experiment
study [59] may be too low since it is assumed that stishovite
is able to crystallize at the timescale of the experiment and
the melting curve is therefore drawn at the bottom of the
liquid branch of the Hugoniot. If, however, stishovite is unable
to crystallize at the timescale of the shock experiment (i.e.,
within a few nanoseconds), the melting temperature reported
in Ref. [59] may be underestimated as suggested in Ref. [63].
This interpretation is consistent with our calculated melting
point.

As discussed above, the calculated melting temperature
using Tel = 8000 K is slightly less than 200 K lower than that
calculated using Tel = 6000 K. This difference in the calcu-
lated melting temperature is of similar size compared to that
found for CaSiO3 at similar conditions and confirms that the
Z method may be hampered by some artificial features for the
accurate calculations of melting temperature with the Mermin
free energy + ionic kinetic energy being conserved along
the Born-Oppenheimer MD-NVE trajectory with Tel kept
fixed.

E. Sensitivity to changes in electronic entropy
on the waiting-time analysis

The waiting time for the solid to melt is correctly described
if we chose Tel ≈ 〈T 〉sol after equilibration (i.e., if, for ex-
ample, Tel = Th when E = Eh). However, since the melting
temperature is in general underestimated with Tel = Th, in-
terpolation to infinite waiting time using Eq. (3) gives a too
low equilibrium melting temperature when 〈τ 〉 is extrapolated
to infinite waiting time. However, if we use a lower Tel [i.e.,
if we chose Tel = 〈T 〉liq] the waiting time for the system
to melt will be too slow. This implies that 〈τ 〉−1/2 should
be shifted to lower temperatures, indicating that the melting
temperature calculated from the intersection 〈τ 〉−1/2 = 0 will
be overestimated. The estimated melting temperatures from a
waiting-time analysis with Tel ≈ Tm and Tel ≈ Th, therefore,
provide reasonable upper and lower bounds, respectively, to
the “true” equilibrium melting temperature. These differences
(∼200–300 K) are much larger than the standard errors from
the waiting-time analysis (reported in Table I) which, in our
case, are always less than 60 K. Convergence plots of the
calculated melting temperatures using Eq. (3) with number
of MD runs show that only a few tens of MD calculation are
needed for the accurate calculation of melting temperatures
(see Supplemental Material [53]).

To further understand the role of electronic entropy on
the Hellmann-Feynman dynamics we can follow a similar
strategy as in Ref. [25] by adjusting the electronic temper-
ature along the MD trajectory to match the average ionic
temperature after transition to the liquid state. We thus pick
one of the MD runs with Tel ≈ Th and a total energy which
is marginally higher than Eh. Using CaSiO3 as an example,
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FIG. 5. Blue and red lines are continuation runs after about 40 ps of simulations (green lines). These continuation runs restarted with the
same atomic positions and forces as the last step of the initial (green) run, but with different electronic temperatures. For CaSiO3, the MD run
was initially launched with Tel = 9000 K (green line) and then restarted with Tel = 6500 K (blue line). For SiO2, we started with Tel = 7000 K
(green line) and then continued with Tel = 6000 K (blue line) and 8000 K (red line).

we expect that the average liquid temperature is close to
the equilibrium melting temperature estimated from Eq. (3).
Indeed, 〈T 〉 after melting is 6408 K at ∼105 GPa, which is
within the error bars of Tm (6410 ± 21 K). The simulation
was then restarted after 25 ps of propagation in the liquid
state with a new electronic temperature chosen to match the
average liquid temperature. In Fig. 5 (top panel) we show the
temperature evolution of this restarted run (blue). The total
energy increased by about 1% accompanied by a temperature
increase of about 100 K to 6517 K (labeled as “adjusta” in
Table I). The 〈T 〉liq from this relaunched MD run (blue line) is
higher and lower, respectively, than the melting temperature
reported in Table I for Tel = 9500 and 6500 K, respectively.
This confirms that Z method calculations with Tel ≈ Th and
Tel ≈ Tm represent reasonable lower and upper respectively to
the true melting temperature.

Figure 5 for SiO2 also demonstrates that changes in elec-
tronic entropy can have a substantial impact on the ionic
dynamics. Here we relaunch a simulation by changing the
electronic temperatures from 7000 K (green line) to Tel =
6000 K (blue line) or Tel = 8000 K (red line). Whereas the
MD run with Tel = 6000 K recrystallized after about 15 ps
of propagation in the liquid state, the simulation with Tel =
8000 K remained stable in the liquid phase until the run was
terminated after more than 35 ps.

V. CONCLUSIONS

In this work, we used the Z method together with ab ini-
tio Born-Oppenheimer molecular dynamics to calculate the
melting temperature for SiO2 and CaSiO3 at outer core and
lower mantle conditions, respectively, with simulation boxes
containing ∼100 atoms only. The calculated melting tem-
perature for CaSiO3 is in excellent agreement with results
from previously reported two-phase coexistence calculations
and thermodynamic integration and is substantially higher
than that calculated in a previous ab initio study using the Z
method [20]. A possible explanation for this discrepancy has
been discussed. The calculated melting temperature for SiO2

is also in overall good agreement with previous computational
work carried out at similar pressure and temperature suggest-
ing that the estimated equilibrium melting curve reported in
Ref. [59] may be too flat.

One of the great advantages with the Z method compared
to other popular methods to melting, such as two-phase simu-
lations and thermodynamic integration, is that the equilibrium
melting temperature can be accurately calculated using small
or modest-sized simulation boxes. This is because homoge-
neous melting is in general triggered by the formation of
defects and small liquid clusters which can be embedded in a
fairly small simulation box [22]. Moreover, since the melting
temperature is obtained from the relationship between Th and
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Tm using Eq. (1), the Z method avoids the calculation of
free energies which can be extremely tedious and expensive.
The Z method can easily be implemented and interfaced with
popular ab initio simulation software such as VASP [45,46] and
is embarrassingly parallelizable.

In spite of many appealing advantages compared to other
methods to melting, the Z method appears to be hampered
by some artificial features which need to be much better
addressed. One of these, investigated here, is the choice
of electronic entropy in Born-Oppenheimer MD simulation
carried out in the microcanonical ensemble when K + � is
a conserved and hence Tel is kept fixed along the Hellmann-
Feynman trajectory. Since melting is accompanied by a large
drop in temperature we need to quantify the errors in-
troduced due to the choice of electronic temperature. We,
therefore, compare the melting temperatures calculated using
Tel ≈ Th and Tel ≈ Tm since these two electronic temperatures
give reasonable lower and upper bounds to the true melt-
ing temperature. For SiO2 and CaSiO3 at high pressure and
temperature, the difference in the calculated Tm with Tel ≈ Th

and Tel ≈ Tm is about 200–300 K. Although these discrepan-
cies are only a few percent of the melting temperature, they
are in general not negligible for the accurate calculation of

melting temperature and are important to take into account for
a critical assessment of the Z method implemented together
with Born-Oppenheimer MD in the NVE ensemble where the
ions are propagated using Hellmann-Feynman forces with a
fixed electronic temperature. If the adiabatic approximation is
valid, the ions can, in theory, be propagated using the force
given by Eq. (5); but if the adiabatic approximation breaks
down, the correct dynamics is governed by conservation laws
derived from, e.g., Ehrenfest dynamics using the all-electron
time-dependent Kohn-Sham or Schrödinger equations.
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