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Structural relaxation of materials with spin-orbit coupling: Analytical forces in spin-current DFT
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Analytical gradients of the total energy are worked out for local density, generalized-gradient, and hybrid
approximations to generalized Kohn-Sham spin-current density functional theory (SCDFT) of materials. It
is shown that gradients can be determined analytically, in a two-component framework, including spin-orbit
coupling (SOC), with high accuracy. We introduce an implementation in the CRYSTAL program of analytical
SOC gradients (with respect to both atomic coordinates and lattice cell parameters, i.e. the stress tensor)
within a DFT and SCDFT framework. We show through selected applications that renormalization of the
electron-electron potential by SOC-induced spin-currents can account for considerable modification of crystal
structures. In the case of Iodine-based molecular crystals, the effect amounts to more than half of the total
modification of the structure by SOC. Such effects necessitate an SCDFT, rather than DFT, formulation, in
which exchange-correlation functionals are endowed with an explicit dependence on spin-current densities.
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I. INTRODUCTION

The Hohenberg-Kohn density functional theory (DFT), be-
ing entirely formulated in terms of functionals F [n] of the
electron density (particle density) n = �†�, is meant for a
(nonrelativistic) fermionic system embedded in some exter-
nal field which may be described by a scalar-multiplicative
potential (i.e., a Coulomb field) [1]. The theory may be ex-
tended to external fields that are not scalar multiplicative, a
consequence being that the formulation, then, involves a larger
set of auxiliary density variables. For instance, extension to a
Zeeman field leads to functionals F [n, m] of both the electron
density and spin-magnetization m = �†σ�, where σ is the
vector of Pauli matrices σx, σy and σz: i.e., the so-called spin-
DFT (SDFT) of von Barth and Hedin [2]. Further extension
to an external magnetic field leads to the current-spin DFT
of Vignale and Rasolt [3,4], involving functionals F [n, m, j]
of also the particle-current density j = 1

2i �
†(∇ − ∇†)�. The

appearance of m and j in the formulation is thus associated to
time-reversal symmetry breaking (TRSB) due to the magnetic
field. In (open-shell) systems that intrinsically break TRS, use
of SDFT has become routine.

The above considerations are, of course, still restricted to
the nonrelativistic regime. Scalar relativistic (SR) effects (by
definition described by scalar-multiplicative potentials) can be
straightforwardly included in the theory. It is notable, how-
ever, that spin-orbit coupling (SOC, described by a potential
that is certainly not scalar, nor multiplicative) may also be
formally introduced in the theory by viewing it as another
external field. Overall, the relativistic generalization of the
procedure leads (in the two-component framework) to the
spin-current DFT (SCDFT), of Vignale and Rasolt, as first
shown by Bencheihk [4,5]. In this context, SOC enters the
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theory through non-Abelian potentials Ax, Ay, and Az, each
of which couple to the fermionic system through spin-current
densities (i.e., currents of the spin-magnetization mx, my, and
mz) Jx, Jy, and Jz [5–8]:

Ja = 1

2i
�†σa(∇ − ∇†)� a = x, y, z. (1)

In the simplest variant of the formulation, that being for
(closed-shell) systems that preserve time-reversal symme-
try, the functional reduces to F [n, Jx, Jy, Jz], and therefore,
corresponding density-functional approximations (DFAs) for
a fermionic system in the presence of SOC must include
the spin-current densities [9,10]. In the most general case
of TRSB systems, the full functional F [n, m, j, Jx, Jy, Jz] is
written also in terms of m and j.

Although first proposed around 35 years ago, SCDFT has
garnered little attention, until recently. Indeed, the ball was
moved forward in 2017, with Pittalis et al. demonstrating
that the spin currents enter explicitly in DFAs only at the
level of the curvature of the exchange-correlation (xc) hole
[6]. This led to our formulation of the adiabatic connection
in the SCDFT, within a generalized Kohn-Sham framework
[11], in which spin currents can be effectively treated via the
exact-exchange operator in hybrid DFAs of the local-density
and generalized gradient approximations (LDA and GGA)
[7,8]. The theory was thereafter applied to the description of:
(i) Weyl fermions, wherein renormalization of the electron-
electron interaction by SOC-induced spin currents was found
to account for around half of the splitting of the Weyl node
pair in TaAs [10]; (ii) a bismuth two-dimensional Z2 topo-
logical insulator, wherein it was demonstrated that only an
SCDFT formulation could account for the appearance of an
experimentally confirmed Dirac fermion in the valence band
structure, at the onset of the topological phase transition [12].

These previous studies clearly demonstrate the fundamen-
tal importance of spin-current densities in the description of
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the electronic structure, when SOC is included. Here, we
extend the same treatment to analytical gradients of the total
energy, allowing to discuss the effect of spin-currents on the
description of the crystal structure. Such extension is imple-
mented in a developmental version of the CRYSTAL program
[13,14]. This article also presents the first implementation of
analytical gradients (with respect to both atomic coordinates
and lattice cell parameters) in the presence of SOC in the
CRYSTAL program. Through application of the approach to the
diiodide molecule, as well as Iodine-based molecular crystals,
we demonstrate that renormalization of the electron-electron
interaction through SOC-induced spin currents can account
for significant modification of crystal structures (around half
or more of the total effect due to SOC).

II. FORMALISM

A. Two-component generalized Kohn-Sham equations

In the case of periodic systems, the spinors |ψi,k〉 =
|ψ↑

i,k〉 ⊗ |↑〉 + |ψ↓
i,k〉 ⊗ |↓〉 are 2c crystalline orbitals (COs),

with components |ψσ
i,k〉, expanded in a set of Bloch functions

(BFs) φμ,k:

ψσ
i,k(r) =

NB∑
μ

Cσ
μ,i(k)φμ,k(r), (2)

where k is a point in the first Brillouin zone (FBZ), NB is
the number of basis functions in a given cell of the infinite-
periodic system, and σ =↑,↓ is a spin index.

In CRYSTAL, the BFs are conveniently represented as a lin-
ear combination of pure real atomic orbitals (LCAO), through
the inverse-Fourier relation:

φμ,k(r) = 1√
�

∑
g

eık·g χμ,g(r − Aμ). (3)

Here � is the volume of the FBZ, g is a direct-lattice vector,
and Aμ is the position in cell g at which the AO χμ,g is
centered. In Eq. (3) we have introduced the shorthand notation
χμ,g(r − Aμ) = χμ(r − Aμ − g). A similar notation will also
be applied to the electron density ρg(r) = ρ(r − g) Variation
of the orbitals ψσ

i,k under the constraint of orthonormality:〈
ψσ

i,k

∣∣ψσ ′
j,k′

〉 = δi, jδk,k′δσ,σ ′ ⇒ C†(k)S(k)C(k) = 1 (4a)

leads to the generalized Kohn-Sham (GKS) equation:

H(k)C(k) = S(k)C(k)E(k), (4b)

where all matrices have size 2NB × 2NB, C(k) is the matrix of
CO coefficients of Eq. (2), S(k) is the BF overlap matrix, E(k)
is the matrix of Lagrange multipliers (i.e., for canonical or-
bitals, corresponding to the diagonal matrix of band-structure
energy levels εi,k), and H(k) is the BF Hamiltonian matrix.
Equation (4b) can be written more explicitly to highlight the
structure in spin space:(

H↑↑(k) H↑↓(k)
H↓↑(k) H↓↓(k)

)(
C↑(k)
C↓(k)

)

=
(

S↑↑(k) 0
0 S↓↓(k)

)(
C↑(k)
C↓(k)

)
E(k). (5)

In Eq. (5) and elsewhere, matrices with double and single
spin indices have size NB × NB and NB × 2NB, respectively.
Hσσ ′

(k), for instance, has elements:

Hσσ ′
μν (k) = �〈φμ,k|Ĥσσ ′ |φν,k〉 (6)

and

Hσσ ′
(k) = hσσ ′

(k) + Jσσ ′
(k) − aKσσ ′

(k) + Vσσ ′
(k), (7)

in which hσσ ′
(k) contains the matrix elements that can be built

from monoelectronic integrals:

hσσ ′
(k) = δσ,σ ′[v(k) + uAR(k)] + uσσ ′

SO (k). (8)

Here, v consists of the electronic kinetic energy and electron-
nuclear interaction terms uAR and uσσ ′

SO are, respectively, the
averaged and spin-orbit relativistic effective potential (AREP
and SOREP) matrices, representing the scalar-relativistic and
spin-orbit parts of the effective core potential (ECP) [15,16];
and Jσσ ′

and Kσσ ′
are the usual Coulomb and exact-exchange

terms (with a being the included fraction of the latter).
Vσσ ′

is the matrix of DFT correlation and exchange poten-
tials (in either collinear or noncollinear treatments) [17,18].
Here, we consider correlation and exchange potentials that
do not depend on spin-current densities explicitly. However,
spin-currents are included implicitly in the KS Hamiltonian
through the exact-exchange operator. The exact manner in
which such an implicit spin-current density dependence can
be turned on and off in the calculation has been reviewed
elsewhere [10,12]. We refer the reader to the Supplemental
Material of Ref. [10] for all mathematical details.

Inserting Eq. (3) into Eq. (6) (or the equivalent equa-
tion with Ĥ being replaced by any other operator), we are able
to relate the BF matrix Hσσ ′

(k), for instance, to the AO one
Hσσ ′

(g) through the inverse-Fourier relation

Hσσ ′
(k) =

∑
g

eık·g Hσσ ′
(g), (9a)

where AO matrix elements of Ĥ or any other operator read

Hσσ ′
(g) = 〈χμ,0|Ĥσσ ′ |χν,g〉. (9b)

In the AO basis, the Coulomb matrix reads [14]

Jσσ ′
μν (g) = δσ,σ ′

∑
τω

∑
g′


[P↑↑
ωτ (g′) + P↓↓

ωτ (g′)]

×
∑

g′′
(μ0νg|τ g′′

ωg′′+g′
)

= δσ,σ ′
∑

g′′

∫
dr χμ,0(r − Aμ)�Coul(r, g′′)

× χν,g(r − Aν ), (10)

with the Coulomb potential

�Coul(r, g′′) =
∫

dr′ ρg′′ (r′)
|r′ − g′′ − r| (11)

being a density functional �Coul = �Coul[ρg′′ ]. The exchange
AO matrix reads

Kσσ ′
μν (g) =

∑
τω

∑
g′

Pσσ ′
τω

(
g′) ∑

g′′
(μ0τ g′′ |ωg′′+g′

νg), (12)
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where Pσσ ′
μν (g) is the AO direct-space density matrix:

Pσσ ′
μν (g) = [

Pσ ′σ
νμ (−g)

]∗ = 1

�

bands∑
i

fi

∫
�

dk eık·g

×Cσ
μ,i(k)

[
Cσ ′

ν,i

(
k
)]∗

θ [εF − εi(k)], (13)

and θ is the Heaviside step function, εF is the Fermi
energy, and 0 < fi < 1 is the fractional occupation of
band i. In terms of these matrices, the total energy is
written

E = 1

2

∑
g

∑
σ,σ ′

∑
μν

{[
Pσσ ′

μν (g)
]∗[

hσσ ′
μν (g) + Hσσ ′

μν (g)
]}

= 1

2

∑
g

∑
σ,σ ′

∑
μν

{[
Pσσ ′

μν (g)
]∗

[
2hσσ ′

μν (g) + V σσ ′
μν (g)

+
∑
τω

∑
σ ′′,σ ′′′

∑
g′

Pσ ′′σ ′′′
τω

(
g′)∑

g′′
B0,g,g′′,g′′+g′

μ,ν,τ,ω

]}
, (14)

where we introduced the shorthand notation

B0,g,g′′,g′′+g′
μ,ν,τ,ω = (μ0νg|τ g′′

ωg′′+g′
) − a(μ0τ g′′ |ωg′′+g′

νg). (15)

B. Treatment of the Coulomb series

For 3D periodic systems, the Coulomb lattice series,
whose electron-electron component was given in Eq. (10),
is conditionally convergent. The series may be rendered
absolutely convergent by Ewald summation techniques,
employing a charge distribution of atom-centered point mul-
tipoles (here c is an atomic index per cell) in the long
range [19,20]:

ρmodel
c,g′′ (r) =

L∑
l=0

l∑
m=−l

ηl
m[ρc,g′′ ]δm

l (r − Ac − g′′), (16)

used to model the exact atomic contribution to the density

ρc,g′′ (r) =
∑

μ∈c,g′′

∑
g

∑
ν


[P↑↑
μν (g) + P↓↓

μν (g)]

×χμ(r − Ac − g′′)χν (r − Aν − g − g′′), (17)

with μ ∈ c, g′′ meaning that the sum is restricted to AOs
centered at atom c in cell g′′. In Eq. (16),

ηl
m[ρc,g′′ ] =

∫
drρc,g′′ (r)X m

l (r − Ac − g′′) (18)

are the multipole moments of ρc,g′′ with unnormalized real
spherical harmonics X m

l , while δm
l are unit point multipoles

centered at Ac in cell g′′, and in our implementation L has a
maximum value of six (a minimum value of four is formally
required to ensure absolute convergence).

The model density is introduced by the following replace-
ment of the Coulomb potential in Eq. (10) [19]:

�Coul[ρc,g′′ ] → �Ew
[
ρmodel

c,g′′
] + �Coul

[
ρc,g′′ − ρmodel

c,g′′
]
, (19)

with �Ew being the corresponding Ewald potential. The model
ρmodel

c,g′′ is applied in the long range, in the sense that the g′′
lattice series for the second term in Eq. (19) is truncated by a
preset tolerance T 2, while the one relevant to the first term is
summed analytically to infinity [19,20].

In the 3D periodic case, the procedure leads to an abso-
lutely convergent lattice series, at the price of an additional
correction depending on the shape of the sample used for the
summation [21]. For spherical 3D samples, the correction to
the Hamiltonian matrix is proportional to the spherical second
moment of the electron density Q [19]:

Hσσ ′
μν (g) → Hσσ ′

μν (g) − δσ,σ ′QSσσ
μν (g), (20)

where

Q =
atoms∑

c

Qc =
atoms∑

c

2π

3V

∫
dr

[
ρc,0(r) − ρmodel

c,0 (r)
]|r|2,

(21)

and V is the volume of the unit cell in direct space.
In the calculation, the correction of the Hamiltonian matrix

elements of Eq. (20) can be avoided by adding QS(k) to both
sides of Eq. (4b), leading to the modified GKS equation [19]:

H(k)C(k) = S(k)C(k)(E(k) + Q), (22)

with shifted energy levels E(k) → E(k) + Q. The shift is
irrelevant for total energy calculations (in which only differ-
ences εi(k) − εF with respect to the Fermi level εF matter).
On the other hand, the correction enters our formulation for
the analytical gradient in 3D periodic systems, as shown be-
low. We note that the same correction is not necessary for the
0D, 1D, or 2D cases, in which the Coulomb lattice series is
already absolutely convergent (provided that a unit cell can be
chosen with vanishing dipole moment).

C. Analytical gradients with respect to atomic displacements

The derivative of the energy E with respect to one of the
atomic centers Aη provides, from Eq. (14),

∂E

∂Aη

= 1

2

∑
g

∑
σ,σ ′

∑
μν

{[
Pσσ ′

μν (g)
]∗

[
2
∂hσσ ′

μν (g)

∂Aη

+ ∂V σσ ′
μν (g)

∂Aη

+
∑
τω

∑
σ ′′,σ ′′′

∑
g′

Pσ ′′σ ′′′
τω

(
g′) ∑

g′′

∂B0,g,g′′,g′′+g′
μ,ν,τ,ω

∂Aη

]

+ ∂
[
Pσσ ′

μν (g)
]∗

∂Aη

Hσσ ′
μν (g)

}
. (23)

The explicit calculation of the derivative of the density matrix
in the last line of Eq. (23) can be avoided by first making use
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of Eqs. (13) and (9a), leading to

∑
g

∑
μν

∂
[
Pσσ ′

μν (g)
]∗

∂Aη

Hσσ ′
μν (g) =

∑
μν

1

�

bands∑
i

fi

∫
�

dk θ [εF − εi(k)]

{
∂
[
Cσ

μ,i(k)
]∗

∂Aη

Hσσ ′
μν (k)Cσ ′

ν,i(k) + c.c.

}

=
∑
μν

1

�

bands∑
i

fi

∫
�

dk θ [εF − εi(k)]

{
∂
[
Cσ

μ,i(k)
]∗

∂Aη

δσ,σ ′ (εi(k) + Q)Sσσ
μν (k)Cσ ′

ν,i(k) + c.c.

}
,

(24)

where we have made use of Eq. (22). Furthermore, a differentiation of Eq. (4a) provides

0 = δσ,σ ′
∑
μν

∂
[
Cσ

μ,i(k)
]∗

∂Aη

Sσσ
μν (k)Cσ ′

ν,i(k) + Cσ
μ,i(k)

∂Sσσ
μν (k)

∂Aη

Cσ ′
ν,i(k) + Cσ

μ,i(k)Sσσ
μν (k)

∂Cσ ′
ν,i(k)

∂Aη

. (25)

Inserting Eqs. (24) and (25) into Eq. (23), we obtain

∂E

∂Aη

= 1

2

∑
g

∑
σ,σ ′

∑
μν

{[
Pσσ ′

μν (g)
]∗

[
2
∂hσσ ′

μν (g)

∂Aη

+ ∂V σσ ′
μν (g)

∂Aη

+
∑
τω

∑
σ ′′,σ ′′′

∑
g′

Pσ ′′σ ′′′
τω

(
g′) ∑

g′′

∂B0,g,g′′,g′′+g′
μ,ν,τ,ω

∂Aη

]

− [
W σσ

μν (g)
]∗ ∂Sσσ

μν (g)

∂Aη

}
, (26)

in which W σσ
μν (g) are elements of the direct-space energy-weighted density matrix:

W σσ ′
μν (g) = 1

�

bands∑
i

fi

∫
�

dk (εi(k) + Q)eık·gCσ
μ,i(k)

[
Cσ ′

ν,i(k)
]∗

θ [εF − εi(k)]. (27)

D. Analytical gradients with respect to lattice vectors

Having determined derivatives with respect to atomic displacements Aη, the treatment may be extended to derivatives with
respect to direct lattice vectors a1, a2, and a3. This may be achieved, by first writing a general position in the lattice basis:

Aη + g =
3∑

i=1

( fη,i + ng,i )ai (28)

in which fη,1, fη,2, fη,3 ∈ R and ng,1, ng,2, ng,3 ∈ Z are, respectively, real and integer quantities. Starting from Eq. (14), and
proceeding as in Sec. II C, yields

∂E

∂ai
=1

2

∑
g

∑
σ,σ ′

∑
μν

{[
Pσσ ′

μν (g)
]∗

[
2
∂hσσ ′

μν (g)

∂ai
+ ∂V σσ ′

μν (g)

∂ai
+

∑
τω

∑
σ ′′,σ ′′′

∑
g′

Pσ ′′σ ′′′
τω (g′)

∑
g′′

∂B0,g,g′′,g′′+g′
μ,ν,τ,ω

∂ai

]

− [
W σσ

μν (g)
]∗ ∂Sσσ

μν (g)

∂ai

}
. (29)

E. Derivatives of SOC integrals

In Eqs. (23) and (29), we require analytical derivatives of the integrals with respect to atomic displacements and lattice vectors.
Their calculation (apart from SOC integrals) has been described elsewhere [22–28]. In the following sections we concentrate on
the calculation of analytical derivatives of SOC integrals.

1. Derivatives of SOC integrals: Atomic displacements

As reported in Ref. [29], the explicit energy contribution in Eq. (14) from the SOC operator of Eq. (8) can be written in the
following computationally convenient way:

ESO = −2

∑

g

∑
μ�ν

{
uαα

SO,μν (g)
[
Pαα

μν (g) − Pββ
μν (g)

]∗ − uαβ
SO,μν (g)

[
Pαβ

μν (g) − Pβα
μν (g)

]∗}
, (30)
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in which the diagonal spin blocks of the SOC matrix elements read (in the given RECP approximation) [29]

uαα
SO,μν (g) =

∑
g′′

atoms∑
c

L∑
l=0

〈χμ,0|ξ̂l,c,g′′ P̂l,c,g′′ L̂z,l,c,g′′ P̂l,c,g′′ |χν,g〉

≡
∑

g′′

atoms∑
c

L∑
l=0

〈χμ,0|ûαα
SO,c,g′′ |χν,g〉 ≡

∑
g′′

atoms∑
c

uαα
SO,μν (g; c, g′′), (31)

where ξ̂l,c,g′′ are radial operators centered at Ac in cell g′′, P̂l,c,g′′ are projectors onto real spherical harmonics, and L̂z,l,c,g′′ is the
(pure-imaginary) z-component electron-nuclear angular-momentum operator. In our implementation, L has a maximum value
of four (g-type projectors). Off-diagonal spin-blocks are written [29]

uαβ
SO,μν (g) =

∑
g′′

atoms∑
c

L∑
l=0

〈χμ,0|ξ̂l,c,g′′ P̂l,c,g′′ L̂−,l,c,g′′ P̂l,c,g′′ |χν,g〉

≡
∑

g′′

atoms∑
c

〈χμ,0|ûαβ

SO,c,g′′ |χν,g〉 ≡
∑

g′′

atoms∑
c

uαβ
SO,μν (g; c, g′′), (32)

where L̂−,l,c,g′′ is the corresponding angular-momentum annihilation operator. Comparing Eq. (30) with Eq. (23), the terms
associated with derivatives of the SOC integrals are then

E ′
SO = −2


∑
g

∑
μ�ν

{
∂uαα

SO,μν (g)

∂Aη

[
Pαα

μν (g) − Pββ
μν (g)

]∗ − ∂uαβ
SO,μν (g)

∂Aη

[
Pαβ

μν (g) − Pβα
μν (g)

]∗
}

. (33)

To calculate the necessary derivative integrals, we employ integration by parts to develop the following translational invariance
sum rule, involving derivatives with respect to the centers of the bra- Aμ, ket- Aν and operator Ac:

∂

∂Aμ

+ ∂

∂Aν

+ ∂

∂Ac
= 0. (34)

Inserting Eq. (34) into Eqs. (31) and (32), we obtain

∂uσσ ′
SO,μν (g; c, g′′)

∂Aη

=
〈
∂χμ,0

∂Aμ

∣∣ûσσ ′
SO,c,g′′

∣∣χν,g

〉
(δη,μ − δη,c) +

〈
χμ,0

∣∣ûσσ ′
SO,c,g′′

∣∣∂χν,g

∂Aν

〉
(δη,ν − δη,c). (35)

2. Derivatives of SOC integrals: Lattice vectors

Insertion of Eq. (28) into Eqs. (31) and (32) permits to
write derivatives of the SOC integrals with respect to lattice
vectors required in Eq. (29):

∂uσσ ′
SO,μν (g; c, g′′)

∂ai
= ∂uσσ ′

SO,μν (g; c, g′′)

∂Aμ

∂Aμ

∂ai

+ ∂uσσ ′
SO,μν (g; c, g′′)

∂ (Aν + g)

∂ (Aν + g)

∂ai

+ ∂uσσ ′
SO,μν (g; c, g′′)

∂ (Ac + g′′)
∂ (Ac + g′′)

∂ai

=
〈
∂χμ,0

∂Aμ

∣∣ûσσ ′
SO,c,g′′

∣∣χν,g

〉(
fμ,i − fc,i − ng′′,i

)

+
〈
χμ,0

∣∣ûσσ ′
SO,c,g′′

∣∣∂χν,g

∂Aν

〉
( fν,i + ng,i

− fc,i − ng′′,i ), (36)

where use has been made of Eq. (34).

III. COMPUTATIONAL DETAILS

All calculations are performed with a developmental
version of the CRYSTAL program [13,14]. The SVWN5
exchange-correlation (xc) functional of the LDA, PBE xc
functional of the GGA, and PBE0 xc functional of the global
hybrid GGA are used [30–33]. Large-core ECPs are used for
Po, and small-core ECPs for I [16]. For the large-core calcula-
tions, valence basis sets for Po of the form (4s4p)/[2s2p] have
been modified from the ones originally presented in Ref. [34],
respectively. For the molecular calculations, the triple-zeta
valence basis set for I of Ref. [35] is used. The basis set for
H is taken from Ref. [36]. For the periodic calculations, we
use small-core ECPs and basis sets modified from Ref. [37].
For application to the I2 and CsI3 crystals, reciprocal space
is sampled in a 10 × 10 × 10 and 4 × 4 × 4 Monkhorst-Pack
net, respectively. A tolerance of 10−8 Hartree on the total en-
ergy is used as a convergence criterion for the self-consistent
field (SCF) procedure. The five TOLINTEG parameters that
control truncation of the Coulomb and exact-exchange in-
finite series are set to 8 8 8 8 20. The xc functional and
potential (in their collinear spin-DFT formulation) are sam-
pled on a direct-space pruned grid over the unit-cell volume
with Lebedev angular and Gauss-Legendre radial quadra-
tures, employing 99 radial and 1454 angular points (keyword
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TABLE I. Comparison between analytical and numerical cell
gradient for the infinite 1D chain of H2Po2 in the presence of SOC,
for EXX and LDA calculations. The analytical cell gradient Ga is
reported along with its SOC contribution GSOC

a . Differences � are
reported between the analytical and numerical gradient as obtained
through different finite difference schemes: a two-point, one-sided
formula (2O); a two-point, two-sided formula (2T); and a four-point,
two-sided formula (4T). All values in Hartree/bohr.

Ga GSOC
a �2O �2T �4T

HF 5.86×10−2 5.26×10−3 2.26×10−4 5.00×10−6 4.95×10−6

LDA 5.83×10−2 7.63×10−3 2.27×10−4 1.30×10−5 1.30×10−5

XXLGRID). Both the atomic fractional coordinates and lattice
parameters are fully optimized with analytical gradients of
the total energy and a quasi-Newton scheme in the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) variant [24,25,27,38]. The
initial guess for the Hessian of the BFGS scheme is taken as
the identity matrix. Full input decks are available in CRYSTAL

format in the ESI [39].

IV. RESULTS AND DISCUSSION

We discuss the numerical accuracy of the analytical forces
relative to numerical ones on a simple model system: a peri-
odic 1D chain of H2Po2 units. We discuss the effect of SOC
on structural parameters of the I2 molecule, I2 orthorhom-
bic molecular crystal, and Caesium triiodide orthorhombic
crystal. The effect of renormalization of the electron-electron
interaction through SOC-induced spin-currents is quantified.

A. Numerical validation on a model system

To validate our approach for computation of analytical
gradients of the total energy in SCDFT, and demonstrate its
high numerical accuracy, we perform calculations on a model
system represented by the infinite 1D chain of H2Po2. This
system is chosen based on the very large contribution of SOC
to the forces. We compare the analytical cell gradient against
numerical computations from finite differences of the total
energy. The employed geometry for the H2Po2 chain, as well
as the values of the finite difference parameters, are provided
in the ESI. We present such comparison in Table I for two
types of GKS calculations: exact exchange approximation
(EXX) and LDA. The computed analytical cell gradient Ga

is 5.861 ×10−2 for EXX and 5.826 ×10−2 Hartree/bohr for
LDA. The total SOC contribution to the cell gradient GSOC

a
amounts to 5.265 ×10−3 and 7.628 ×10−3, respectively. Thus,
the effect of SOC on the cell gradient is of the order of
10–15%.

Different numerical finite difference schemes are used to
compare the analytical forces with a two-point, one-sided
formula (2O); a two-point, two-sided formula (2T); and a
four-point, two-sided formula (4T). Differences between the
analytical force and the numerical one are already on the order
of 10−4 a.u. when the simplest 2O formula is used (i.e., being
around one order of magnitude smaller than the SOC contribu-
tion to the gradient). These differences are further reduced to
10−5 a.u. (in the case of LDA) and even 10−6 a.u. (in the case

TABLE II. Equilibrium bond length of the I2 and I−2 molecules,
as computed with the PBE and PBE0 xc functionals. The scalar
relativistic (SR) value is reported (i.e., obtained before inclusion of
SOC) along with the effect of SOC (�SOC). All values are in Å. The
experimental gas phase bond length of I2 at −80 ◦C, for comparison,
is around 2.674 Å [40,41].

I2 I−2

SR �SOC SR �SOC

DFT DFT SCDFT SDFT SDFT SCDFT

PBE 2.694 0.019 3.315 0.049
PBE0 2.663 0.008 0.015 3.252 0.036 0.018

of EXX) when more robust 2T or 4T numerical schemes are
used, thus demonstrating the high numerical accuracy of our
analytical approach to energy gradients within the SCDFT.
A better agreement is obtained in the case of EXX, wherein
the implementation is fully analytical (aside from integration
over the first Brillouin zone, as well as diagonalization of
the secular GKS equation). In contrast, the LDA computation
contains an additional numerical step: the integration of the
xc energy density and potential over the direct-space unit-cell
volume. In this case, imperfect cancellation of errors in the
numerical quadrature slightly worsens the agreement.

B. Application to the I2 molecule

We discuss the effect of SOC on the bond length of the
diiodide molecule by comparing our SCDFT approach to sim-
pler (S)DFT ones where the effect of the spin-current densities
on the renormalization of the electron-electron interaction is
omitted. We study the molecule both in its neutral ground state
I2 (closed-shell configuration, i.e., time-reversal symmetry
preserving) and in its anionic form I−2 (open-shell configu-
ration, i.e., time-reversal symmetry breaking). We perform
calculations using both the PBE and PBE0 xc functionals, and
small-core (SC) ECPs. Results are reported in Table II. The
experimental gas phase bond length at −80 ◦C, for compari-
son, is around 2.674 Å [40,41]. In terms of absolute value, the
best agreement with the experimental figure is obtained from
the PBE0 calculation, which gives 2.678 Å with our SCDFT
approach. Inspection of the table clearly shows that SOC
systematically induces the lengthening of the bond. The origin
of such SOC-induced bond lengthening in the I2 molecule is
discussed in detail in Ref. [42] in terms of enhanced (reduced)
population of orbitals of σ (π ) character.

We note that the SOC-induced bond lengthening �SOC

we obtain from pure GGA of 0.019 Å (PBE, SC ECPs) is
very consistent with other previously reported GGA values
of 0.022 Å (from all-electron ZORA calculations employing
B88 and PW functionals for exchange and correlation) [43]
and 0.020 Å (from all-electron full potential PBE calcula-
tions) [42]. In particular, the perfect agreement with Ref.
[42], where the exact same GGA functional has been used
(namely, PBE), in combination with an all-electron full po-
tential approach, demonstrates the accuracy of our ECP-based
approach.
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FIG. 1. Crystal structure of (a) the I2 orthorhombic molecular
crystal, and (b) the CsI3 orthorhombic crystal.

Interestingly, going beyond the standard DFT framework
by the inclusion of spin-current densities within the SCDFT
treatment of SOC (as here achieved through hybrid GGA cal-
culations) results in a bond lengthening that is twice as large
as that from a DFT approach where spin-current densities
are neglected. Thus, around half of the effect of SOC on the
ground state geometry of the I2 molecule is accounted for
by modification of the electron-electron interaction through
SOC-induced spin-current densities.

The last three columns of Table II provide data for the I−2
species. As anticipated before, also in this case SOC produces
the lengthening of the bond, but with an important difference
with respect to the case of I2 when it comes to the role played
by the spin-current densities. Now, by neglecting the effect
of the SOC-induced spin-current densities the effect of SOC
on the bond length would be largely overestimated by the
SDFT, with a lengthening by 0.036 Å with PBE0, which is
reduced to 0.018 Å by inclusion of the spin-current densities
within the SCDFT. The effect of SOC on bond lengthening is
thus overestimated by 100% if spin-current densities are not
included in the xc functional.

C. Application to the I2 molecular crystal

We now discuss the application of our approach to the I2 or-
thorhombic molecular crystal. The structure of the crystal (in
terms of its conventional lattice cell) is depicted in Fig. 1(a),
where three views are presented. Low temperature (5 K) ex-
perimental structural data are available [44], which allowed
extrapolation to 0 K. These data are reported in Table III,
along with our optimized theoretical structural parameters.
The hybrid PBE0 xc functional is used here both in a DFT
and SCDFT framework. Absolute values are reported from the

TABLE III. Structural parameters of the I2 orthorhombic molec-
ular crystal computed with the PBE0 xc functional and SC ECPs.
Absolute values are reported from the scalar relativistic (SR) cal-
culation. The effect of SOC, �SOC, is reported for both a DFT and
SCDFT treatment. Experimental values extrapolated to 0 K from
low-temperature (5 K) measurement are taken from Ref. [44].

�SOC

Exp. SR DFT SCDFT

a/Å 7.103 7.303 −0.056 −0.057
b/Å 4.632 4.603 −0.044 −0.035
c/Å 9.790 9.711 0.035 0.034
V/Å3 322.121 326.446 −4.482 −3.715
I-I/Å 2.717 2.728 0.011 0.018

scalar relativistic (SR) calculation. The effect of SOC, �SOC,
is highlighted in the last two columns.

Based on the experiments, the I-I bond length in the crystal,
2.717 Å, is larger than in gas phase, 2.674 Å. Our theoretical
calculations are consistent with this picture. Also in the crys-
tal, SOC induces the lengthening of the bond with an elonga-
tion that is nearly twice as large in SCDFT (0.018 Å) than it is
in DFT (0.011 Å). Compared to the gas phase calculations, we
observe that the SOC-induced bond elongation is increased by
around 17%.

Interestingly, SOC is found to induce a rather anisotropic
deformation of the lattice with the elongation of the c lat-
tice vector by +0.034 Å and the contraction of b and a
by −0.035 and −0.057 Å, respectively. Such anisotropy can
be partially understood by inspection of the effect of SOC
on the redistribution of the electron density around each I2

molecule in the crystal. The right panel of Fig. 1(a) shows
a 3D representation of the effect of SOC on the electron
density ρ(r) of the crystal around a selected molecule (SOC-
induced electron density accumulation regions in yellow,
SOC-induced electron density depletion regions in blue). It
is seen that, in agreement with the analysis reported in Ref.
[42], in terms of enhanced (reduced) population of orbitals
of σ (π ) character, SOC tends to accumulate electrons along
the axis of the molecules and to deplete electron density in
directions orthogonal to the molecular axis. The structure of
the I2 molecular crystal is such that the molecules are mostly
aligned along the c lattice vector, which is then elongated
by SOC. As seen from the middle panel of Fig. 1(a), the
molecules lie in crystallographic planes perpendicular to the
a lattice vector, which thus gets significantly contracted by
SOC. Overall, SOC induces a volume contraction of −3.7 Å3

(−1.1%).

D. Application to the CsI3 crystal

The structure of the CsI3 orthorhombic (space group Pmcn)
crystal is depicted in Fig. 1(b) with four Cs and twelve I
atoms in the unit cell. The crystal exhibits linear I3 molecules
characterized by a small asymmetry in terms of the two I-I
bond lengths, with a shorter one of 2.842 Å and a longer one of
3.038 Å at −160 ◦C [45]. The asymmetry may be effectively
tuned by external stimuli, such as temperature or pressure
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TABLE IV. Structural parameters of the CsI3 orthorhombic crys-
tal (space group Pmcn) computed with the PBE0 xc functional.
Absolute values are reported from the scalar relativistic (SR) cal-
culation. The effect of SOC, �SOC, is reported for both a DFT and
SCDFT treatment. Data are reported in the conventional basis of the
lattice. Low-temperature (113 K) experimental values are taken from
Ref. [45].

�SOC

Exp. SR DFT SCDFT

a/Å 6.751 6.920 −0.020 −0.033
b/Å 9.963 10.171 0.000 −0.008
c/Å 10.997 10.961 0.005 −0.001
V/Å3 739.661 771.544 −2.020 −4.357
Cs-I/Å 3.709 3.796 0.000 −0.003
I(1)-I(2)/Å 2.842 2.860 0.011 0.013
I(2)-I(3)/Å 3.038 2.998 0.015 0.012

[46]. Low temperature (113 K) experimental structural data
are reported in Table IV, along with our optimized theoretical
structural parameters. The hybrid PBE0 xc functional is used
here both in a DFT and SCDFT framework. Absolute values
are reported from the scalar relativistic (SR) calculation. The
effect of SOC, �SOC, is highlighted in the last two columns.

The effect of SOC on the structure of this crystal is ar-
ticulated. Indeed, while SOC still induces the elongation of
I-I bonds, it shortens Cs-I interactions, particularly so within
an SCDFT description including SOC-induced spin-current
densities. This results in an overall volume contraction by
2.020 Å3 from DFT and 4.357 Å3 from SCDFT (correspond-
ing to a volume contraction of about 0.6% with respect to the
SR calculation). SOC is also found to contract the structure
anisotropically, with the largest contraction occurring along

the a lattice parameter. This is consistent with a being a crys-
tallographic direction with no I-I bond components: indeed,
I-I bonds are rather oriented in the bc plane, as shown in
Fig. 1(b).

V. CONCLUSIONS

We have presented analytical gradients of the total energy
for local-density (LDA), generalized-gradient (GGA), and
hybrid-functional approximations to generalized Kohn-Sham
spin-current density functional theory (GKS-SCDFT),
including spin-orbit coupling (SOC). Our strategy has been
implemented in a developmental version of the CRYSTAL

program. The numerical accuracy of the analytical forces
has been validated against forces obtained by different finite
difference schemes. Application on the I2 and CsI3 crystals
has shown that terms in the exchange-correlation functional
arising from SOC-induced spin-current densities, as
accounted for within an SCDFT framework, lead to significant
structural changes. These are reflected on a lattice expansion
or contraction which account (in the case of the CsI3 crystal)
for more than half of the total effect due to SOC. Future
efforts will be devoted to inclusion of explicit contributions in
density functional approximations from modification of the
curvature of the exchange-correlation hole by SOC-induced
current densities, which must be taken into account at the
level of meta-GGA approximations to GKS-SCDFT.
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