
PHYSICAL REVIEW B 108, 134107 (2023)

Representation of materials by kernel mean embedding
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For using machine learning to predict material properties, the feature representation of the materials given
to the model plays a fundamental role. A model describes material properties as a function of any given
material system expressed as a fixed-length numeric vector, often called a descriptor. However, in most cases,
the variables of interest are nontrivial for encoding their compositional or structural features, such as molecules,
crystal systems, chemical compositions, and composite materials, into a fixed-length vector. Conventionally, to
translate such a multicomponent system into a fixed-length vector, the distribution of predefined component
features is summarized into a few summary statistics. The disadvantage of this reduction operation is that
some distributional information, such as multimodality, is lost in the vectorization process. Here, we present
a general class of material descriptors motivated by the machine-learning theory of kernel mean embedding.
Unlike conventional descriptors, kernel mean embedding can retain all information regarding the distribution of
component features in the vectorization process. Furthermore, the kernel mean descriptor uniquely determines
the inverse map to the original material space. We demonstrate the expressive power and versatility of the
kernel mean descriptor in various applications, including the prediction of the formation energy of inorganic
compounds, prediction of the chemical composition to form quasicrystalline materials, and the use of force-field
parameters to characterize polymeric materials.
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I. INTRODUCTION

Predicting material properties using machine learning has
the potential to significantly accelerate the discovery of in-
novative materials. Machine-learning models enable rapid
high-throughput virtual screening across millions or billions
of candidate materials spanning an enormous search space
[1–6]. Generally, a model describes physicochemical, elec-
tronic, thermodynamic, or mechanical properties as a function
of the input materials, which are given in various forms, such
as small or macromolecules, crystal systems, chemical or raw
material compositions, or their mixtures. To put the prob-
lem into a machine-learning framework, such a nonnumeric
variable must be transformed into a fixed-length numeric vec-
tor called a descriptor, which represents the compositional
or structural features of the given material [7–19]. A model
is trained on a given data set to learn a mapping from the
vectorized features to the target properties. In this workflow,
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the feature representation of the input materials is the key to
boosting predictive power.

The objects represented include molecules, compositional
inputs, crystal structures, and composite materials. A class of
descriptors called molecular fingerprints represents a chem-
ical structure by vectorizing the presence or absence, or the
number of each substructure, given hundreds or thousands
of chemical fragments [11–16]. Another descriptor class in-
cludes quantitative descriptors, representing the topological
and geometrical features or physicochemical properties of
molecular systems [20–26]. Compositional descriptors ex-
press the number of chemical elements or raw materials. For
example, a conventional compositional descriptor operates
with a predefined set of element features such as electronega-
tivity and atomic weight [7,27,28]. With a given composition
ratio, the feature values of the constituent elements are col-
lapsed into a quantity that describes a compositional feature;
for example, using the weighted mean and weighted variance
of the element features. A crystal structure is generally char-
acterized by encoding the local structural environment of each
atom in a unit cell into a set of quantities to define a structural
descriptor [8–10,29,30]. Similar to a compositional descriptor,
the local atomistic features in a crystal system are reduced to
summary statistics. In recent years, there has been an increas-
ing trend of representing the structure of materials as graphs
and predicting their properties using graph neural networks
[31–33]. A natural representation of chemical structures is
labeled as an undirected graph. The periodic configuration of
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atoms in a crystal system can also be translated into a crystal
graph, which represents the neighboring relations of atoms in
infinitely arranged unit cells [31]. Generally, the component
features of the atoms and atom groups that define a graph are
vectorized via graph convolution operations learned from a
given training data set.

As described above, common descriptors collapse the com-
ponent features of building blocks in a given material system
into a set of quantities by taking the mean, variance, etc.
Materials are inherently nontrivial to encode into fixed-length
vectors. This is because a material system comprises varying
numbers of building blocks. For example, the number of ele-
ments differs between binary and ternary compounds. In this
case, a descriptor is designed to reduce element features (e.g.,
atomic weights) to a summary statistic by calculating their
weighted means for a given composition ratio [7]. For the
vector representation of polymers based on force-field param-
eters, attribute values are assigned to atoms or atom groups
consisting of bonds and dihedral angles [34]. It is then neces-
sary to reduce the component features, whose numbers vary
across different polymers, to a descriptor vector of the same
dimension. Furthermore, in some cases, a designed descriptor
is required to hold invariance to the exchange of components
or building blocks. For example, there is no ordering relation-
ship between the chemical elements in a compound; therefore,
the descriptors must be invariant to their exchange.

This paper presents a general class of material descriptors
that relies on the machine-learning theory of kernel mean
embedding [35]. The proposed method treats the per-building
block features in a material as samples from a probability
distribution. One of the drawbacks of the existing methods
is that some essential features of the probability distribution,
such as higher-order moments and multimodality, are lost
when collapsing into a finite set of summary statistics. In-
stead, kernel mean embedding with a specific class of kernel
functions, called characteristic kernels, can uniquely preserve
all the information about the probability distribution, which
is mapped to a feature space called the reproducing kernel
Hilbert space (RKHS) [36]. In machine learning, kernel mean
embedding provides a theoretical basis for supervised learn-
ing, in which probability distributions are treated as model
inputs [37]. Following this framework, we establish a gen-
eral methodology for kernel mean descriptors encompassing
various material objects. Furthermore, we propose a method
for inverse translation from descriptors to materials that takes
advantage of the linearity of kernel mean embedding with
respect to the component ratio. We also prove that the kernel
mean descriptor uniquely determines the inverse map to the
original material space. We demonstrate the expressive power
and versatility of kernel mean descriptors in various applica-
tions, such as the energy prediction of inorganic compounds,
prediction of the chemical composition to form quasicrys-
talline materials [27], and representation of compositional and
structural features of polymers using force-field parameters in
an empirical potential energy function.

II. METHODS

A. Preliminaries

A material system X is expressed as a collection of NX

constitutional elements or building blocks, x1, . . . , xNX , with

their contents w1, . . . ,wNX normalized such that they are non-
negative and sum to one. Each component is characterized by
a feature λi = λ(xi ) ∈ R (i = 1, . . . , NX ), which is hereafter
referred to as a component feature. In general, an element in
a descriptor vector φ( f ,λ)(X ) ∈ R for the entire system X can
be expressed as

φ( f ,λ)(X ) = f (w1, . . . ,wNX , λ(x1), . . . , λ(xNX ))

∀λ ∈ �, f ∈ F . (1)

A combination of component descriptors λ ∈ � and summary
functions f ∈ F constitute the descriptor vector.

In many applications, as exemplified later, the number
of components NX varies across different X . In addition,
x1, . . . , xNX should be treated as a set variable or sam-
ple from a probability distribution, as well as {(wi, λi )|i =
1, . . . , NX }. This implies that the exchange in any pair of
x1, . . . , xNX should not alter the encoding. To handle such
variable-length objects and maintain exchange invariance, a
conventional descriptor employs summary statistics for f
to collapse {(wi, λi )|i = 1, . . . , NX } into a scalar quantity
φ( f ,λ)(X ). Commonly used summary statistics include the
weighted mean, weighted variance, max-pooling, and min-
pooling, as follows:

φ(mean,λ)(X ) =
NX∑
i=1

wiλi,

φ(var,λ)(X ) =
NX∑
i=1

wi
(
λi − φ(mean,λ)(X )

)2
,

φ(max,λ)(X ) = max{λ1, . . . , λNX },
φ(min,λ)(X ) = min{λ1, . . . , λNX }.

(2)

Higher-order moments, such as skewness and kurtosis, can
also be used [38].

Generally, descriptor design aims to characterize the prob-
ability distribution. In other words, a histogram consisting of
NX sample points and their probability masses {(wi, λi )|i =
1, . . . , NX } can be interpreted as an approximation of the
probability distribution using an empirical distribution or the
probability mass function itself. From this perspective, there
is a risk of losing important features of the original probability
distribution through the reduction operation to a few summary
statistics. For example, the distribution of component features
can be highly multimodal, and the multimodal nature of the
distribution may be a dominant factor in determining physic-
ochemical properties. However, moment statistics of up to the
third or fourth order cannot preserve the features related to
the multimodality of the distribution, as illustrated in the right
panel in Fig. 1.

B. Kernel mean descriptors

Let PX (λ) ∈ P be a probability distribution function fol-
lowed by NX component features λi = λ(xi ) (i = 1, . . . , NX )
of the constituent elements x1, . . . , xNX in material X . Here,
P denotes the set of probability measures. The objective is
to represent the distribution PX of X as a fixed-length vector.
Kernel means embedding is a technique for mapping any
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FIG. 1. Schematic view of the reduction operation using kernel mean embedding (left) and summary statistics (right). In both panels, the
black bars indicate the probability mass function {(wi, λi )|i = 1, . . . , 5}, which represents a material system X . Left: The blue curve shows the
kernel mean mX (λ). The kernel mean descriptor (mX (g1), . . . , mX (g10))� is obtained by discretizing mX (λ) at the ten grid points (g1, . . . , g10)
on the feature space. Right: The three red dots show the locations of the weighted mean φ(mean,λ)(X ), max-pooling φ(max,λ)(X ), and min-pooling
φ(min,λ)(X ), respectively. The red arrow indicates the weighted variance φ(var,λ)(X ) [the arrow length is set to

√
φ(var,λ)(X )].

given probability distribution PX (λ) onto its embedding mX (·)
in an RKHS Hk , defined by a kernel function k. The kernel
k(λ, λ′) is a bivariate symmetric function that holds specific
properties with positive definite and reproducibility. When
one argument is fixed at λ′, the univariate function k(·, λ′)
becomes an element of Hk . We do not present further details
of the positive definite kernel here (e.g., see Ref. [39]).

The kernel mean embedding mX (·) of PX is defined as
follows:

mX (·) := Eλ∼PX [k(·, λ)] =
∫
Sλ

k(·, λ)dPX (λ). (3)

The integral over the support Sλ of the component feature
expresses the expected value of kernel k with respect to the
probability measure PX (λ). When the kernel is positive defi-
nite, kernel mean mX (·) belongs to Hk .

Here, we introduce a class of positive-definite kernels
called characteristic kernels [40]. The map P → Hk (PX �→
mX (·)), defined by the mean operation with k belonging to this
class, is known to be injective. This implies the following:

mX (·) = mY (·) ⇔ PX (·) = PY (·). (4)

In other words, any probability distributions PX and PY are
the same if their kernel mean embeddings are the same. A
given mX (·) of a characteristic kernel can uniquely determine
the respective probability distribution, implying that the
complete information of any PX ∈ P (i.e., all-moment
statistics) can be retained in the embedding space. The
Gaussian and Laplace radial basis function (RBF) kernels are
well-known characteristic kernels in Euclidean space [41].
Owing to this property and ease of handling, the Gaussian
RBF kernel k(λ, λ′) = 1

Z exp(− (λ−λ′ )2

2σ 2 ) was employed as the
default kernel function in this study, where Z denotes the
normalizing constant.

Generally, a material system is defined by a finite num-
ber of components. Hence, the domain of the probability

distribution PX (λ) is defined in the discrete set. Therefore,
the probability distribution function can be expressed by the
probability mass function as

PX (λ) =
NX∑
i=1

δ(λ − λi )wi, (5)

where δ(λ − λi ) is the Dirac delta function, which takes the
value of one if λ = λi and zero otherwise. In this case, the
kernel mean is given by

mX (λ) =
NX∑
i=1

k(λ, λi )wi. (6)

For example, using the Gaussian RBF kernel function normal-
ized such that the integral over the overall domain is equal to
one [

∫
Sλ

k(λ, λ′)dλ = 1 (∀λ′)], the kernel mean becomes the
density function of the Gaussian mixture

mX (λ) = 1√
2πσ 2

NX∑
i=1

exp

(
− (λ − λi )2

2σ 2

)
wi, (7)

where σ 2 denotes the variance parameter, which is assumed
to be homogeneous concerning NX component distributions.
Notably, although the component features are essentially dis-
crete variables, the domain of the kernel mean function is a
continuous set.

The kernel mean embedding is equivalent to kernel density
estimation [42] for the weighted sample set D = {(wi, λi )|i =
1, . . . , NX }, except for a normalization constant. In other
words, it smoothens the histogram D. The variance σ 2 of
the Gaussian RBF kernel function is a hyperparameter that
controls smoothness. The larger the variance, the smoother
the estimated density function. Conversely, the variance
approaches zero and it converges to the original discrete dis-
tribution in Eq. (5), that is, the histogram D.
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The kernel mean descriptor directly vectorizes the shape of
the probability distribution function followed by the compo-
nent features. In contrast, the descriptors based on summary
statistics in Eq. (2) reduce the distributional features to a
finite set of moment statistics, such as the mean and vari-
ance. This reduction results in the loss of important elements
in the probability distribution. For example, for the sum-
mary statistics descriptor, there are many compositions in
which the weighted means of the element features have the
same value. In such cases, redundancies occur when solving
an inverse problem. In other words, the resulting machine
learning models cannot distinguish between different compo-
sitions that have the same weighted mean. The kernel mean
descriptor can solve such an ill-conditioned problem by re-
taining almost complete information regarding the probability
distribution.

A schematic of the reduction operation using kernel mean
embedding and summary statistics is presented in Fig. 1. The
right panel indicates that the multimodality of the distribution
cannot be captured by the four summary statistics in Eq. (2).
However, as shown in the left panel, the kernel mean descrip-
tor successfully captures the three peaks of the distribution
and the valleys between them.

As previously mentioned, the kernel mean mX (λ) is a
continuous function of λ (a vector of infinite dimensions).
Therefore, except for special cases, such as kernel regression
[43] or support vector machines [44], mX (λ) must be dis-
cretized for use as an input variable in ordinary supervised
learning. In this paper, a descriptor vector for λ is given
by φλ(X ) = (mX (g1), . . . , mX (gd )), which is discretized at d
equally spaced grid points (g1, . . . , gd ) between the prede-
fined maximum and minimum values. The dimension d of
the descriptor and the smoothing parameter σ 2 of the Gaus-
sian RBF kernel form the hyperparameters, which can be
automatically adjusted according to the problem setting or be
optimized during the cross-validation process in supervised
learning. Finally, the descriptors for the various component
features λ ∈ � are concatenated to define the overall descrip-
tor φ(X ) = (φλ(X ))λ∈�. Therefore, if the dimension of the
component descriptor is K [i.e., n(�) = K], then the material
system X is represented as a vector of d × K dimensions using
the kernel mean descriptor.

Unlike the summary statistics descriptor, the dimension of
the kernel mean descriptor can be tailored to the problem set-
ting by arbitrarily changing the number of grid points d , which
is a great advantage in practice. In particular, this feature
helps prevent overfitting problems when the amount of data
is limited. The effect of changing the dimension of the kernel
mean descriptor on prediction performances is investigated in
the Results section.

C. Inverse translation of the kernel mean descriptors

The inverse translation of a descriptor φ(X ) is a task of
identifying a material system X for which φ(X ) takes a spe-
cific value. If material X is a mixture system, the task is
equivalent to estimating the constitutional elements of X and
their component ratios (weights), {(wi, xi )|i = 1, . . . , NX },
from a given φ(X ). For the kernel mean embedding, the
linearity with respect to the weights [Eq. (6)] can be used to

establish a general framework for the inverse translation of the
kernel mean descriptors with quadratic programming.

Suppose {x1, . . . , xN } is a set of all possible constitutional
elements for a material system X and call it a component set.
Let {w1, . . . ,wN } be the weights on the component set. Each
constitutional element xi is characterized by K component
features as λk

i = λk (xi ) ∈ R (k = 1, . . . , K ), and d grid points
(gk

1, . . . , gk
d ) are defined for each feature λk . With the N ×

d matrix Gk whose elements are given as Gk
i j = k(λk

i , gk
j ),

the kernel mean descriptor for the kth feature φλk (X ) is
expressed as

φλk (X ) = Gk�
w, (8)

where w = (w1, . . . ,wN )�, Therefore, the overall descriptor
φ(X ) can be summarized as follows:

φ(X ) =

⎛
⎜⎝φλ1 (X )

...

φλK (X )

⎞
⎟⎠ =

⎛
⎜⎝G1�

...

GK �

⎞
⎟⎠w = Hw. (9)

The dK × N matrix H is given. The task of inverse translation
is to estimate the unknown weights w = w∗ that minimize
the discrepancy ‖φ∗ − Hw‖2 for any given φ∗. The objective
function of this minimization problem is expressed as follows:

min
w

‖φ∗ − Hw‖2

such that 1�w = 1, (10)

w � 0,

where 1 and 0 denote N-dimensional vectors of 1 and 0,
respectively. The linear constraints on w ensure that w is non-
negative, or, more specifically, that it is a probability vector.
Here, the optimization problem of Eq. (10) is rewritten as
follows:

min
w

1
2w�H�Hw − φ∗�Hw

such that 1�w = 1, (11)

w � 0.

Here, if the matrix H�H is full rank (i.e., rank(H�H ) = N),
the objective function is strictly convex, so there is a unique
optimal solution. This means that if HTH is full rank, any ker-
nel mean descriptor φ∗ is guaranteed to be uniquely mapped
to a particular material system X ∗ with the unique solution w∗.
For the matrix HTH to be full rank, the rank of the dK × N
matrix H must be N . Here, note that d , the number of grid
points, is a user-adjustable value; thus, the matrix H�H can be
controlled to be full rank by increasing d until rank(H ) = N
is satisfied. As a solver for Eq. (11), we used the quadprog
library [45] in Python, which is designed for solving a strictly
convex quadratic program with the Goldfarb and Idnani dual
algorithm [46]. This inverse translation algorithm is imple-
mented in the Python code of the kernel mean descriptor,
which is available on GitHub [47].

III. APPLICATIONS

This study applies the kernel mean descriptor to three ex-
amples, which are detailed in the following subsections.
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A. Formation energy prediction of inorganic compounds

Chemical composition is defined as a set of elements
{x1, . . . , xNX } and their contents {w1, . . . ,wNX }. Various ele-
ment features or per-element physicochemical quantities have
been considered component features. Table I lists the 58
element features implemented in XENONPY, an open-source
Python platform for material informatics that we devel-
oped [27,48,49]. The element feature set includes the atomic
number, bond radius, van der Waals (vdW) radius, electroneg-
ativity, thermal conductivity, band gap, polarizability, boiling
point, melting point, and number of valence electrons in each
orbital.

The data set used for this experiment was obtained from the
Materials Project [50]. Among all the inorganic compounds
(146 323) in the Materials Project, we selected all the stable
compounds (energy above hull = 0). The data set consists of
the formation energies per atom of 35 463 inorganic com-
pounds that were obtained from first-principles calculations.
The chemical compositions of the 35 463 compounds consist
of elements with atomic numbers 1–94 (i.e., H–Pu), where
the 58 element features listed in Table I are fully available.
The number of elements for each compound varied from one
to seven.

Using the above 58 element features (K = 58), we vector-
ized the chemical composition using the summary statistics
descriptor and kernel mean descriptor. Subsequently, with
each descriptor, we constructed a machine-learning model that
predicts the formation energy (eV/atom) of stable inorganic
compounds.

For the summary statistics descriptors, we used four
summary statistics: weighted mean, weighted variance, max-
pooling, and min-pooling, as described in Eq. (2). Therefore,
the summary statistics descriptor represents composition X as
a vector of length 232 (= 4 × 58).

To generate the kernel mean descriptor, for each element
feature space λk (k = 1, . . . , 58), the kernel mean mX (λ) was
discretized at the d equally spaced grid points {gk

1, . . . , gk
d} be-

tween a maximum and minimum values of the component set
(i.e., gk

1 and gk
d are set to be the minimum and maximum values

of {λk (x1), . . . , λk (x94)}, respectively). Here, the number of
grids d was set to 10. Therefore, the kernel mean descriptor
represents the composition X using a vector of length 580
(= 10 × 58). In this experiment, the smoothing parameter

σ 2 was set to σ 2 = |gk
2−gk

1|2
2 for each feature space; thus, the

sum of the kernel mean descriptor
∑d

i=1 mX (gk
i ) was constant

(approximately
√

π ) for any given d and λk . In Fig. 2(b), the
kernel mean descriptors and summary statistics descriptors
of the 35 463 compounds, color coded by their formation
energies, are visualized onto the two-dimensional manifold
of principal component analysis (PCA).

B. Prediction of chemical composition to form
quasicrystalline phase

Quasicrystals (QCs) have emerged as a third class of
solid-state materials, distinguished from periodic crystals and
amorphous solids that do not have the translational symmetry
of ordinary crystals but have a high degree of order in their
atomic arrangement. Since the first QC was discovered in
1984 [52], approximately 100 stable QCs have been discov-

ered to date. However, in recent years, the pace of discovery
of QCs has slowed significantly, possibly because of the
lack of clear design guidelines for synthesizing stable QCs.
To accelerate the discovery of unique QCs, in our previous
study, we introduced a supervised learning workflow based
on the XENONPY compositional descriptor by using the four
summary statistics [27]. The input variable of the model was
the chemical composition. The output variable represents its
class label indicating three structural types: QCs, approximant
crystals (ACs), and “others,” including ordinary periodic crys-
tals. The chemical compositions of QCs, ACs, and ordinary
crystals were used as training data. The trained predictive
model described the three-class label as a function of the
vectorized chemical composition. The kernel mean and sum-
mary statistics descriptors were compared on the predictive
performances in this task. The procedure for generating both
descriptors (such as the element features and setting of σ 2 in
the kernel mean descriptor) is the same as that used in the
energy prediction task described above.

C. Kernel mean force field descriptor on polymers

We constructed a kernel mean descriptor based on the
empirical potential of all-atom classical molecular dynamics
(MD) simulations to describe the chemical features of poly-
mers. In the MD run, the motions of molecules are simulated
according to the atomic interactions defined by the force-field
potential. Various microscopic and macroscopic thermody-
namic properties of the material system are calculated from
the simulated trajectories. In principle, material properties are
obtained owing to the nonlinear mapping of the potential
function. Therefore, using the force-field parameters in the
potential is natural as the description of material features.

In this paper, the General AMBER force field version 2
(GAFF2) [53] was employed to encode the chemical structure
of a repeat unit in a linear polymer X . The potential energy
is a function of the interatomic distance r = (ri j )i j between
atoms i and j, where all atom pairs (i, j) consisting of X are
assigned to r. It is expressed as

U (r) =
∑
(i, j)

εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

+
∑
(i, j)

1

4πε0

qiq j

r2
i j

+
∑
i∈NB

Kbond,i (bi − b0,i )
2 +

∑
i∈NA

Kangle,i (θi − θ0,i )
2

+
∑
i∈ND

Kdihedral,i[1 + cos(niϕi − ϕ0,i )]. (12)

The first term, the vdW energy (Lennard-Jones potential), has
two parameters describing the equilibrium distance σi j and
the depth εi j of the potential well. The second term is the
potential energy, which defines the electrostatic interatomic
interactions. The parameters consist of the charge qi of each
atom and dielectric constant ε0 of the medium. These two
potentials were defined for all pairs of atoms in the polymer.
The third to fifth terms are the potential energies defining
bond length stretching, bond angle expansion, and contrac-
tion, and dihedral angle rotation. These are defined for a
set of atoms (NB,NA,ND) comprising the bond, angle, and
dihedral angle. The equilibrium bond length b0,i, force

134107-5



MINORU KUSABA et al. PHYSICAL REVIEW B 108, 134107 (2023)

TABLE I. List of 58 element features used to calculate the compositional descriptors. The data set is accessible with our open-source
software XENONPY [48].

Feature ID Description Unit Reference

atomic_number Atomic number
atomic_radius Atomic radius pm [64,65]
atomic_radius_rahm Atomic radius from Rahm et al. pm [65–67]
atomic_volume Atomic volume cm3 mol−1 [65]
atomic_weight Atomic weight [65,68,69]
boiling_point Boiling temperature K [65]
bulk_modulus Bulk modulus GPa [70]
c6_gb C_6 dispersion coefficient in a.u. (Gould & Bučko) a.u. [65,71–73]
covalent_radius_cordero Covalent radius from Cordero et al. pm [65,74]
covalent_radius_pyykko Single bond covalent radius from Pyykkö and Atsumi. pm [65,75]
covalent_radius_pyykko_double Double bond covalent radius from Pyykkö and Atsumi. pm [65,76]
covalent_radius_pyykko_triple Triple bond covalent radius from Pyykkö et al. pm [65,77]
covalent_radius_slater Covalent radius from Slater pm [64]
density Density at 295 K g cm3 [65]
dipole_polarizability Dipole polarizability a.u. [65,78]
electronegativity Pauling electronegativity [10]
electron_affinity Electron affinity eV [65,79,80]
en_allen Allen’s scale of electronegativity eV [65,81,82]
en_ghosh Ghosh’s scale of electronegativity [65,83]
en_pauling Pauling’s scale of electronegativity [65,79]
first_ion_en First ionization energy eV [79]
fusion_enthalpy Enthalpy of fusion for elements at their melting temperatures kJ mol−1 [79]
gs_bandgap Density functional theory (DFT) band-gap energy at

T = 0 K ground state
eV [84,85]

gs_energy DFT energy per atom (raw VASP value) at T = 0 K ground
state

eV atom−1 [84,85]

gs_est_bcc_latcnt Estimated BCC lattice parameter based on the DFT [84,85]
volume of the Open Quantum Materials database (OQMD)
ground state for each element

gs_est_fcc_latcnt Estimated FCC lattice parameter based on the DFT Å [84,85]
volume of the OQMD ground state for each element

gs_mag_moment DFT magnetic moment at T = 0 K ground state [84,85]
gs_volume_per DFT volume per atom at T = 0 K ground state Å3 atom−1 [84,85]
hhi_p Herfindahl-Hirschman index (HHI) production values [86]
hhi_r HHI reserve values [86]
heat_capacity_mass Specific heat capacity at Standard temperature and pressure

(STP)
J mol−1 K−1 [79]

heat_capacity_molar Molar heat capacity at STP J mol−1 K−1 [79]
icsd_volume Volume per atom of Inorganic Crystal Structure Database

(ICSD) phase at STP
[87–89]

evaporation_heat Evaporation heat kJ mol−1 [65]
heat_of_formation Heat of formation kJ mol−1 [65]
lattice_constant Lattice constant Å [65]
mendeleev_number Mendeleev’s number [65,90,91]
melting_point Melting temperature K [65]
molar_volume Molar volume L mol−1 [70]
num_unfilled Number of unfilled valence orbitals [92,93]
num_valance Number of valence electrons [92,93]
num_d_unfilled Number of unfilled d valence orbitals [92,93]
num_d_valence Number of filled d valence orbitals [92,93]
num_f_unfilled Number of unfilled f valence orbitals [92,93]
num_f_valence Number of filled f valence orbitals [92,93]
num_p_unfilled Number of unfilled p valence orbitals [92,93]
num_p_valence Number of filled p valence orbitals [92,93]
num_s_unfilled Number of unfilled s valence orbitals [92,93]
num_s_valence Number of filled s valence orbitals [92,93]
period Period in periodic table [65]
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TABLE I. (Continued.)

Feature ID Description Unit Reference

specific_heat Specific heat at 293.15 K J g−1 mol−1 [65]
thermal_conductivity Thermal conductivity at 298.15 K W m−1 K−1 [65]
vdw_radius van der Waals radius pm [65,79]
vdw_radius_alvarez van der Waals radius from Alvarez pm [65,94]
vdw_radius_mm3 van der Waals radius from the MM3 force field. The MM3

force field is an advanced molecular mechanics (MM) force
field which introduces the cross terms that involve up to
three internal coordinates.

pm [65,95]

vdw_radius_uff van der Waals radius from the universal force field (UFF) pm [65,96]
sound_velocity Velocity of sound m s−1 [70]
polarizability Static average electric dipole polarizability 10−24cm3 [79]

constants of bond stretching Kbond,i, equilibrium bond angle
θ0,i, and force constants of bond bending Kangle,i are assigned
to each corresponding atom cluster. The last term is the po-
tential for the dihedral angle, where Kdihedral,i, ni, and ϕ0,i are
parameters. The force field descriptor was constructed with
eight parameters with clear physical meanings. In addition,
the atomic mass and bond polarity were added as parameters.
The bond polarity is defined as the absolute value of the
difference in charge between two atoms constituting a bond.
Thus, the ten parameters listed in Table II were used in the
descriptor set. The GAFF2 potential provides a predefined
parameter set that is empirically determined for each element
species or group [53].

Polymer X consists of components {x1, . . . , xNX } and their
relative frequencies {w1, . . . ,wNX }. Based on this, we calcu-
lated the summary statistics and kernel mean embedding for
each of the ten force field parameters. If the number of grid
points is set to d in the kernel mean descriptor, a descriptor
vector of dimensions 10 × d is obtained. It should be noted
here that, by definition, the support of a force field parameter

TABLE II. The ten types of parameters used in the force-field
descriptor. The parameters are classified according to the assignment
type: assignment for atom, bond, bond angle, and dihedral angle.

Assignment
type Parameter Description

Atom Mass Atomic mass
σ Determining the equilibrium distance

of vdW interactions
ε Depth of the potential well of vdW

interactions
Charge Atomic charge of the Gasteiger charge

model

Bond r0 Equilibrium length of chemical bonds
Kbond Force constant of bond stretching
Polar Bond polarization defined by the

absolute value of charge difference
between atoms in a bond

Bond angle θ0 Equilibrium angle of bond angles
Kangle Force constant of bond bending

Dihedral angle Kdihedral Rotation barrier height of dihedral
angles

λ is a discrete set, but the size of the set can be immense. For
example, GAFF2 provides empirically determined values of
the equilibrium bond lengths for 840 different element pairs.
Therefore, designing a descriptor vector for all the data points
that constitute the support considerably increases the dimen-
sions of the vector. The dimensionality reduction using d
discretized points is effective in reducing over-representation.
In this study, the discretized points were ten points corre-
sponding to ten different element species, such as hydrogen
and carbon for mass, and 20 equally spaced grid points for the
other parameters. Thus, the kernel mean force-field descriptor
is given as a 190-dimensional vector.

In machine learning, the task is to build a predictive
model that describes the thermophysical properties of lin-
ear polymers (e.g., thermal conductivity and coefficient of
linear expansion) as functions of the vectorized chemical
structure of any given polymer’s repeating unit. Here, there
is a technical problem to be overcome when dealing with
the repeating units of a polymer in the descriptor calculation
module. The repeating unit of a polymer cannot be deter-
mined uniquely. If a descriptor is calculated directly from the
chemical structure of a given repeating unit, the substructure
around the head–tail junction will not be included. Therefore,
the descriptor was calculated after converting a repeating unit
into a dimer or oligomer. For example, the SMILES nota-
tion for polyethylene is given as *OCCC(=O)* (the asterisks
indicate the head and tail of the repeating unit), but by con-
structing the dimer *OCCC(=O)OCCC(=O)*, the structure
around the junction C(=O)O can be reflected. However, the
relative frequency of a substructure changed depending on
the number of connected repeating units. To address this
issue, we generated a SMILES string of a virtual polymer
by infinitely repeating the given repeating unit structure by
constructing a ten-unit oligomer and connecting its head and
tail. The kernel mean and summary statistics descriptors were
calculated using such virtually created SMILES strings. The
descriptor calculations were performed using the RadonPy
Python library [54].

IV. RESULTS

We demonstrate the predictive and expressive power of the
kernel mean descriptor for the three different tasks described
above.
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FIG. 2. Visualization of the kernel mean descriptors. (a) Heat map of the kernel mean descriptors of the chemical compositions for 35 463
stable inorganic compounds. The compounds were sorted by rows in the ascending order of formation energy (eV/atom). The kernel mean
descriptors (shown on the columns) were generated with the ten equally spaced grid points (d = 10) for six different element features (atomic
weight, electronegativity, number of filled d valence orbitals, number of filled p valence orbitals, van der Waals radius, and polarizability).
(b) Projection of the kernel mean descriptors (left) and the summary statistics descriptors (right) for the 35 463 compounds onto the first and
second principal component axes (PC1 and PC2). The values in parentheses denote the cumulative contribution rates of PC1 and PC2. The
colors vary from red (lower) to blue (higher) according to the magnitude of formation energies. The kernel mean descriptors were generated
with 58 element features (see Table I for details) and ten equally spaced grid points (d = 10), and the summary statistics descriptors were
generated with the 58 element features and the four summary statistics as given by Eq. (2).

A. Energy prediction of inorganic compounds

A total of 35 463 compounds were randomly divided into
21 277 (∼60%) for training, 7093 (∼20%) for validation,
and 7093 (∼20%) for testing during the supervised learn-
ing process. As described in the Applications section, the
580-dimensional kernel mean descriptor and 232-dimensional
summary statistics descriptor were generated to encode the
compositional features. The mapping from a vectorized com-
position to the formation energy per atom was modeled and
inferred using a conventional multilayer perceptron (MLP)
with rectified linear units (ReLUs), fully connected lay-

ers, dropout layers, and batch normalization layers (see
Appendix A for details of the model architecture and train-
ing procedure). By using the validation set, the optimized
hyperparameters were selected from the following candidate
solution sets by performing Bayesian optimization with the
Optuna Python library [55]; the number of layers ∈ {2, 3, 4},
dropout rate ∈ {0, 0.1, 0.2}, and the number of neurons in
each layer ∈ {100, 150, 200, 250, 300}. We then evaluated the
generalization capability of the trained MLP on the test set. To
account for uncertainty, the above procedure was repeated five
times with different independently generated data splittings to
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TABLE III. Performance of the formation energy prediction (eV/atom).

Descriptors MAE RMSE R2

Kernel mean 0.0359 (±0.0025) 0.0590 (±0.0069) 0.9967 (±0.0009)
Summary statistics 0.0413 (±0.0006) 0.0658 (±0.0070) 0.9959 (±0.0009)

calculate the standard deviation of the performance metrics.
The learning algorithm implemented in TensorFlow-macOS
v2.9.0 was employed with the TensorFlow-metal v0.5.1 plug-
in for GPU calculations (Apple M1 Max, GPU 32 cores).

The mean absolute error (MAE), root-mean-square error
(RMSE), and R2 with respect to the test sets are pre-
sented in Table III. The performance metrics were averaged
over the five trials, and the numbers in parentheses rep-
resent the standard deviations. It was confirmed that the
kernel mean descriptor improves all three performance met-
rics relative to the summary statistics descriptor (from 0.0413
to 0.0359 eV/atom for MAE, 0.0658 to 0.0590 eV/atom
for RMSE, and 0.9959 to 0.9967 for R2). Notably, the
MAEs for the kernel mean and summary statistics descriptor
reached 0.0359 eV/atom and 0.0413 eV/atom, respectively;
these are less than the chemical accuracy of 1 kcal/mol
(0.0434 eV/atom).

Figure 2(a) shows a heat-map display to visually under-
stand the kernel mean descriptors of the 35 463 compounds
in relation to the observed formation energies. For ease of
visualization, only the six component features in the kernel
mean descriptor are plotted (n(�) = 6). Here, the compounds
are arranged from top to bottom in the ascending order of
formation energy. By visualizing the data set in this way, it
was confirmed that a clear relationship exists between the
distributional pattern of component features and the formation
energy. As the formation energy increases, the electronegativ-
ity gradually changes from bimodal to unimodal. The larger
the difference in electronegativity of the atoms in the crystal,
the more strongly charged the atoms are. This increases the
attraction of the Coulomb interaction and thus lowers the
formation energy of the crystal. Therefore, the kernel mean
descriptor represents the effect of the Coulomb interaction on
the formation energy by expressing the multimodality of elec-
tronegativity. In addition, as the formation energy increases,
the atomic radius increases (see vdw_radius). This can be
interpreted as an increase in the formation energy because the
Coulomb interaction decreases as the atomic radius increases.

Figure 2(b) shows the kernel mean descriptors (left) and
summary statistic descriptors (right) of the 35 463 compounds
projected onto the first and second principal component axes.
The compounds were color-coded by the magnitude of for-
mation energies on the two-dimensional coordinate axes of
PCA to show the dependency between the compositional pat-
terns and energy levels. The kernel mean descriptors are seen
to be distributed inside the triangular region (left), and the
formation energy is smoothly distributed within that region.
In contrast, the summary statistics descriptors are generally
distributed in the rectangular region (right); however, some
compounds are scattered outside that region. In addition,
the smoothness of the energy distribution has been lost in
some areas, possibly causing a reduction in the prediction
accuracy.

B. Prediction of chemical composition to form quasicrystals

Following our previous work [27], we consider the prob-
lem of predicting QCs. The input variable of the model is a
chemical composition. The output variable represents a class
label indicating QC, AC, and others, including ordinary peri-
odic crystals. As the data set, we used a list of the chemical
compositions for 80 QCs and 78 ACs discovered to date [56].
For the others class, the chemical compositions of 10 000
periodic crystals were randomly extracted from the Materials
Project database [50]. In addition, a list of 90 compositions
was extracted from laboratory notebooks on failed syntheses
of QCs that were added to the data set of the others class.
A random forest classifier [57] was trained on 80% of the
total data that was chosen at random; the number of training
instances for QCs, ACs, and others were 64, 62, and 8072,
respectively, and the remaining data were used for testing. By
performing the fivefold cross validation within the training set,
the hyperparameters were selected by Bayesian optimization
using Optuna [55]; the parameters to be selected were the
number of trees ∈ {5, . . . , 1000}, maximum depth of trees
∈ {2, . . . , 100}, number of features in each tree ∈ {sqrt, log2},
bootstrap sampling in the bagging ∈ {false, true}, and classi-
fication loss ∈ {entropy, Gini}. The predictive performance of
the trained random forest classifier was evaluated on the test
set. To quantify the reliability of the performance evaluation,
we independently repeated the above procedure five times and
calculated their standard deviation. The learning algorithm
implemented in SCIKIT-LEARN [58] v1.1.3 was employed to
train the models.

The recall, precision, F1, and macro F1 on the test sets were
calculated as summarized in Table IV. The classification task
for the others class exhibited a significantly high recall, preci-
sion, and F1 for both the kernel mean and summary statistics
descriptors (>0.995), indicating that the binary classification
between the ordinary crystals (others) and the combined class
of QCs and ACs is highly predictable based only on the
compositional patterns of the already synthesized materials. In
particular, the kernel mean descriptor exhibited better or equal
predictive performance for all per-class performance metrics
(recall, precision, and F1) relative to the summary statistic
descriptor. Additionally, the kernel mean descriptor improved
the macro F1, the mean of the per-class F1 metrics, from 0.762
to 0.790 relative to the summary statistics descriptor.

C. Kernel mean force-field descriptor on polymers

The chemical structure of a polymer repeating unit was
used as the input to predict the thermal conductivity, linear
expansion coefficient, and specific heat capacity at constant
pressure (CP). The data set was generated by performing high-
throughput all-atom MD simulations with five independent
calculations for each of the 1138 linear polymers in amor-
phous states. Here, we used the LAMMPS MD software with
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TABLE IV. Prediction performance of the kernel mean and summary statistics descriptors for the three-class classification task of stable
QCs, ACs, and others. The table reports the per-class recall, precision, F1 metrics, and macro F1 that was calculated by taking the average of
the per-class F1 over the three classes. The performance metrics were averaged over five independent trials, and the numbers in parentheses
represent the standard deviations.

Class Recall Precision F1 Macro F1

QC 0.562 (±0.131) 0.798 (±0.040) 0.653 (±0.106)
Kernel mean AC 0.662 (±0.050) 0.791 (±0.108) 0.718 (±0.063) 0.790 (±0.039)

Others 1.000 (±0.000) 0.996 (±0.001) 0.998 (±0.001)

QC 0.538 (±0.102) 0.765 (±0.071) 0.629 (±0.090)
Summary statistics AC 0.612 (±0.047) 0.727 (±0.122) 0.661 (±0.072) 0.762 (±0.035)

Others 0.999 (±0.001) 0.996 (±0.001) 0.997 (±0.001)

the GAFF2 force field [59]. The computational details of
the MD simulations are described in Ref. [59]. To obtain a
reliable property data set, a set of polymers with at least three
successful runs in repeated MD calculations was extracted
from the entire data set, and the mean property value of each
polymer was used as the observed output to be predicted.
For thermal conductivity, samples with standard deviation
>0.05 W m−1 K−1 were excluded. Consequently, the number
of samples was 996 for thermal conductivity, 1018 for linear
expansion coefficient, and 1018 for CP, respectively.

Out of the instances of the structural-property relation-
ships, 80% of the randomly selected samples were used to
train the Gaussian process (GP) regressor [60], and the re-
maining 20% were used as a test data set. The Matérn 5/2
kernel with automatic relevance determination was used for
the kernel function in the GP. To adjust the kernel hyperparam-
eters, the optimization was performed 50 times with different
initial values to maximize the marginal likelihood.

The parity plots of the predicted and actual properties
are shown in Fig. 3. Table V reports the mean and stan-
dard deviations of MAE, RMSE, and R2 for five independent
experiments with different data splitting. For the prediction
of thermal conductivity and linear expansion coefficient, the
performance of the kernel mean descriptor was slightly better
than that of the summary statistics descriptor. However, no im-
provement in the prediction performance of the kernel mean
descriptor was observed for the prediction of CP because both
descriptors had almost perfect prediction performance (R2 >

0.96). The results suggest that the kernel mean descriptors im-
prove the prediction performance for difficult prediction tasks
in which the summary statistics descriptors are not sufficiently
representative.

Here, we use the kernel mean descriptor to understand
the input-output relationships embedded in the black-boxed

model. To evaluate the relevance of each feature in the kernel
mean descriptor with respect to the thermal conductivity, we
calculated the maximum information coefficient (MIC) [61],
which is a measure of the strength of the linear or non-
linear dependence between two random variables. Figure 4
shows the MIC score between each element of the kernel
mean descriptor and the predicted thermal conductivity of the
GP calculated for the 15 323 polymers recorded in PoLyInfo
database [62]. In the bar plot of the MIC scores, the discretized
regions for each force field parameter are arranged in ascend-
ing order from left to right.

The lower and higher ranges in the charge distribution
were found to be highly relevant to the regulation of thermal
conductivity, indicating that the proportion of atoms with a
largely negative or positive charge is one of the dominant
factors in determining thermal conductivity. In addition, a
higher polar range was associated with a relatively higher
MIC score; in other words, the proportion of highly polar-
ized bonds is related to thermal conductivity. These results
imply that strong electrostatic and dipole interactions are
some of the controlling factors for the thermal conductiv-
ity of amorphous polymers. Moreover, a higher range of ε

had a high MIC score; thus, the proportion of atoms with
strong vdW interactions is also highly relevant to thermal
conductivity, suggesting that a strong vdW interaction is
one of the factors controlling thermal conductivity. In our
recent study, decomposition analyses of thermal conductivity
based on physicochemical approaches concluded that strong
nonbonding interactions improve the thermal conductivity of
amorphous polymers [59]. In addition, a recent computational
study on the contribution of localized vibrational modes to
thermal conductivity in amorphous polymers showed that lo-
calized vibrational modes (locons) are the predominant mode
types, and their contributions comprise more than 80% of

TABLE V. Prediction performance of the kernel mean and summary statistics descriptors with respect to three MD-calculated properties
of linear polymers with amorphous states: thermal conductivity, linear expansion coefficient, and CP.

Physical properties Descriptors MAE RMSE R2

Thermal conductivity Kernel mean 2.15 (±0.18) 3.21 (±0.37) 0.677 (±0.067)
[×10−2 W m−1 K−1] Summary statistics 2.40 (±0.08) 3.29 (±0.14) 0.662 (±0.017)
Linear expansion coefficient Kernel mean 2.14 (±0.20) 2.94 (±0.26) 0.597 (±0.052)
[×10−5 K−1] Summary statistics 2.22 (±0.13) 3.03 (±0.21) 0.572 (±0.040)
CP Kernel mean 72.7 (±7.6) 124.3 (±19.8) 0.966 (±0.011)
[J kg−1 K−1] Summary statistics 65.1 (±6.7) 98.4 (±10.9) 0.979 (±0.004)
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FIG. 3. Prediction results on (a) thermal conductivity, (b) linear expansion coefficient, and (c) CP of linear polymers with amorphous
states for the kernel mean embedding (left) and the summary statistics descriptor (right) of the force field parameters. Each parity plot shows
GP-predicted properties against MD-calculated values. The training and test instances are color coded with blue and red, respectively.
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FIG. 4. MIC scores between ten force field parameters of the kernel mean force field descriptor and the predicted thermal conductivity. In
the bar plot of the MIC scores, the discretized regions for each force-field parameter are arranged in ascending order from left to right.

the thermal conductivity [63]. More than half of the locon
energy is confined to a single polymer chain, and minority
locons are localized onto multiple polymer chains. This sug-
gests that the latter modes play a key role in intermolecular
heat transfer through vdW and electrostatic interactions. The
observed MIC scores of charge, polarity, and ε are consistent
with the results of previous studies on their contributions to
thermal conductivity in amorphous polymers. Therefore, the
MIC results can be interpreted as strong nonbonding interac-
tions that improve intermolecular heat transfer, which is the
heat transfer bottleneck in amorphous polymers.

The higher and lower ranges of Kbond and a higher range
of Kangle were highly related to thermal conductivity. These
force-field parameters are related to the heat transfer in a
single polymer chain. The decomposition analysis in our pre-
vious study indicated that the contribution of covalent bonds
to thermal conductivity leads to the high thermal conduc-
tivity of polymers with rigid backbones, such as aromatic
polyamides and polyimides [59]. In addition, as mentioned
previously, locons localized in a single polymer chain con-
tribute significantly to the thermal conductivity of amorphous
polymers [63]. Therefore, we can interpret that these ranges of
Kbond and Kangle are the controlling factors for heat transfer in
a single polymer chain. It then follows as a natural hypothesis
that because heat transfer in a single polymer chain has a
more considerable contribution to the thermal conductivity of
highly oriented polymers, further clarification of the mecha-
nism by which Kbond and Kangle in the polymer chains affect
heat transfer is important in the chemical design of oriented
polymers with high thermal conductivity.

The same approach was applied to the linear expansion
coefficient and CP to reveal the input-output relationship of the
black-box models. The results are described in Appendix B.

D. Predictive performances for varying descriptor dimensions

To investigate the effect of changes in the dimension of
the kernel mean descriptor on prediction performances, we
performed additional experiments on (a) the energy prediction
of inorganic compounds and (b) the prediction of chemical

composition to form QCs, respectively. In tasks (a) and (b),
prediction performances were evaluated on the kernel mean
descriptors generated with d set to 3, 4, 7, 13, and 16, re-
sulting in descriptor dimensions of 174, 232, 406, 754, and
928, respectively. All experimental conditions are the same as
presented previously, except that the number of grid points d
is changed. The change in prediction performance for varying
the descriptor dimensions in tasks (a) and (b) is summarized in
Fig. 5. The performance metrics were averaged over five inde-
pendent trials, and their standard deviations are shown as error
bars. The prediction performances at the 580-dimensional
kernel mean descriptor (d = 10) and the 232-dimensional
summary statistics descriptor correspond to those reported in
subsections A and B of the Results section.

As shown in Fig. 5(a), the mean MAE for the kernel av-
erage descriptor was best at 0.0357 eV/atom for the highest
dimension of 928, and it was slightly better than that for
a dimension of 580 (0.0359 eV/atom) (see also Fig. 6 for
other performance metrics including RMSE and R2). In clas-
sification task (b), the mean macro F1 achieved the highest
value of 0.790 with a dimension of 580. In task (a), the
prediction performance tended to improve as the descriptor
dimension increased, whereas in task (b) no such trend was
observed. In task (a), where a sufficient amount of data was
available (35 463 samples in total), increasing the descriptor
dimension and improving the ability of the kernel mean de-
scriptor to represent the distributional features would have
been advantageous. The MAE changed significantly depend-
ing on the descriptor dimension, suggesting the importance
of dimensionality selection in practice. Because the kernel
mean descriptor is a discrete representation of the probability
distribution function, the effective dimension does not change
significantly as the number of grid points increases. This
mechanism would suppress the performance degradation with
increasing dimensionality.

The dimension of the summary statistics compositional
descriptor is fixed at 232. This dimensionality corresponds to
the case where d = 4 in the kernel mean descriptor. Figure 5
shows a comparison of the prediction performance of two
descriptors with the same dimension in tasks (a) and (b).
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FIG. 5. Prediction performances for varying the dimension of the kernel mean descriptor on (a) the energy prediction task for inorganic
compounds and (b) the task of predicting the chemical compositions that form QCs. For tasks (a) and (b), the black dots and error bars indicate
the MAEs and the macro F1 averaged over five independent trials and their standard deviations, respectively. The red dots and their error bars
at dimension 232 indicate the prediction performances of the summary statistics descriptor.

FIG. 6. Prediction performance curves for varying the dimension of the kernel mean descriptor on (a) energy prediction of inorganic
compounds. The left and right figures use RMSE and R2 as performance metrics, respectively. For both figures, the black dots and error bars
indicate the performance metric averaged over five independent trials and their standard deviations, respectively, for each dimension of the
kernel mean descriptor. The red dot and error bar at dimension 232 indicates the performance metric averaged over five independent trials and
their standard deviation, respectively, for the summary statistics descriptor.
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In task (a), the mean MAE for the kernel mean descriptor
with d = 4 was 0.0388 eV/atom, which was much lower than
0.0413 eV/atom for the summary statistics descriptor. In task
(b), the mean macro F1 for the kernel mean descriptor with
d = 4 was 0.774, which is higher than 0.762 for the summary
statistics descriptor. This indicates that the kernel mean de-
scriptor is able to compress compositional features into the
same dimensional vector with high efficiency compared to the
summary statistics descriptor.

V. CONCLUSIONS

In materials research, the input material is often a mixed
system consisting of multiple components, which can be
expressed as a probability distribution. Therefore, material
descriptors can be generated as vectorizing probability distri-
butions. In this paper, we developed a general class of material
descriptors based on the machine-learning theory of kernel
mean embedding, which can map probability distributions to
the feature space without losing any distributional features.
We demonstrated the expressive power and versatility of the
kernel mean descriptor in various applications, including the
prediction of the formation energy of inorganic compounds,
prediction of the chemical composition to form quasicrys-
talline materials, and use of force-field parameters to describe
the compositional and structural features of polymer systems.
Furthermore, by taking advantage of the linearity of the ker-
nel mean embedding with respect to the component ratio,
we presented an optimization framework that guarantees the
uniqueness of the inverse transformation from the descriptor
space to the material space.

A machine-learning property predictor defines a mapping
Y = m(X ) from a vector representation of material X to
property Y . An ordinary descriptor defines a reduced represen-
tation of compositional and structural features of material X .
Such descriptors treat several different materials as identical.
Such overcollapsed representations unnecessarily constrain
the expressive power of the resulting model. The kernel mean
descriptor ensures that the mapping between X and φ(X )
is bijective whenever X is given as a mixture system de-
fined by {x1, . . . , xNx } and {w1, . . . ,wNx }. Once the complete
distributional features of the input material are encoded in
φ(X ), a reduced representation should be obtained through
machine learning of m in a data-driven manner. In particu-
lar, this notable feature of the kernel mean descriptor will
bring an advantage when solving inverse problems, such as
in high-throughput screening of unknown materials. Because
overcollapsed descriptors can never discriminate between dif-
ferent materials with the same descriptor value, any model
will recognize that their properties are identical, regardless of
whether they exist inside or outside the training data distri-
bution. This leads to the occurrence of many false positives
and false negatives in the screening process, which can be
avoided owing to the discriminative power of the kernel mean
descriptor.

The kernel mean descriptor is operationally equivalent to
the kernel density estimation. It is important to note the
rationale for treating an inherently discrete distribution as a
continuous distribution. For example, the possible values of
a force field parameter are limited by the combination of

element species forming polymer systems. Thus, its support
is a finite set. Similarly, for chemical composition descriptors,
the domain of element features is limited by the number of
existing element species. However, there is uncertainty in the
given values of the force field parameters in an empirical
potential as well as in the experimental and calculated val-
ues of the element features. To reflect the uncertainty of the
predefined component features, they were represented based
on continuous distributions.

The kernel mean descriptor has a wide range of potential
applications, other than the three specific examples presented
in this paper. In fact, the kernel mean descriptor can be applied
to material systems of any dimension, such as 1D, 2D, and 3D,
as long as there is a means to obtain a set of element-level fea-
tures. In the geometrical representation of a crystalline system
(a typical 3D scenario), the descriptor of the entire system is
calculated by applying the averaging operation to component
features {λ1, . . . , λNx } that represent the coordination environ-
ment of each atom (i ∈ {1, . . . , Nx}). For example, in a crystal
graph convolutional neural network, the component feature is
obtained by repeatedly applying convolution operations to the
feature vectors of each atom and its neighborhoods. Finally,
crystal structures are encoded into fixed-length vectors by tak-
ing the sum of the component features. Here, this aggregation
operation can be replaced by the kernel mean embedding.
Molecular systems can also be treated as distributional objects
whose constituent atoms and bonds differ in different systems.
Furthermore, when searching the database for composition-
ally or structurally similar materials, a similarity measure that
relies on the uniqueness of the kernel mean embedding will
be used to better or perfectly discriminate between identical
and nonidentical materials. Many other materials, including
composite systems, copolymers, polymer blends, polymer so-
lutions, and structural materials, can be represented within the
unified framework of the kernel mean embedding.

The Python code for the kernel mean descriptor is available
on GitHub [47]. The code can be generically used to create
kernel mean descriptors for any mixture system. A program
for the inverse translation of the kernel mean descriptors
was also implemented in the code. The crystal data used in
the formation energy prediction of inorganic compounds are
available in the Materials Project, an open-access database
[50,51]. A list of the QCs and ACs used in the prediction of
the chemical composition to form the quasicrystalline phase
is available in the Supporting Information of our previous
work [27]. The Python code for the kernel mean force field
descriptor was implemented in RADONPY, which is available
on GitHub [54].
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APPENDIX A: MLP ARCHITECTURE AND TRAINING

The architecture of a model employed for the forma-
tion energy prediction of inorganic compounds is shown in
Fig. 7. This is a forward and fully connected neural net-
work model, consisting of densely connected layers (dense),
ReLUs, dropout layers (dropout), and batch normalization
layers (batch norm). The network consists of one or more
repeating structures with a dropout layer and an output layer
with no dropout. All intermediate layers have the same num-
ber of units. As described in the Results section, by using
the validation set, the hyperparameters of the models were
selected by Bayesian optimization using the Optuna Python
library (number of trials was set to 30) [55]. The solution
space consists of the number of layers ∈ {2, 3, 4}, dropout
rate ∈ {0, 0.1, 0.2}, and the number of neurons for each layer
∈ {100, 150, 200, 250, 300}. Each model was trained until the
validation error converged (patience = 75 epochs) or until
the number of epochs reached 1000. The validation error was
evaluated as MAE. In each training process, we employed
the model parameters that gave the lowest validation error
throughout epochs as the final learned parameters. The Adam
optimization technique [97] (β1 = 0.9, β2 = 0.999) was used
to back-propagate gradients. The batch size was fixed to 2048.

The learning algorithm implemented in TensorFlow-macOS
v2.9.0 was employed to train the models with TensorFlow-
metal v0.5.1 plug-in for GPU calculations (Apple M1 Max,
GPU 32 cores).

APPENDIX B: INPUT—OUTPUT RELATIONSHIP OF THE
FORCE FIELD DESCRIPTOR FOR LINEAR EXPANSION

COEFFICIENT AND HEAT CAPACITY

To evaluate the relevance of each feature in the kernel
mean force-field descriptor with respect to the linear expan-
sion coefficient and CP of polymers, we calculated the MIC
score. Figure 8 shows the MIC score between each element
of the kernel mean descriptor and the GP-predicted linear
expansion coefficient and CP for the 15 323 polymers recorded
in PoLyInfo database [62].

For the linear expansion coefficient, higher MIC scores
were observed in the high and low regions of both charge and
polarity and in the low epsilon region [Fig. 8(a)]. Thus, the
proportion of atoms with strong electrostatic and weak vdW
interactions would play a significant role in determining the
linear expansion coefficient. Electrostatic and vdW interac-
tions are known to have highly anharmonic potential shapes;
further, the thermal expansion of a material depends on the
anharmonicity of the interatomic potentials. This suggests that
the anharmonicity of the intermolecular potential is one of
the controlling factors for the linear expansion coefficient.
Significantly high MIC scores were also observed in the
middle range of θ0. This range corresponds to a bond angle
of 105◦–125◦, which is typical for sp3 or sp2 carbons. This
indicates that the content of sp3 and sp2 carbons has a sig-
nificant effect on the linear expansion coefficient. In general,
polymers with more sp2 carbons tend to be more rigid because
they have fewer rotatable bonds. The increase in rigidity de-
creases the micro-Brownian motion of the polymer chains,
which in turn decreases the increase in free volume with
increasing temperature.

As shown in Fig. 8(b), the pattern of the MIC in CP is
almost similar to that of the linear expansion coefficient; the
MIC tended to be higher in the higher and lower ranges of
charge and polar, the lower range of ε, and the middle range of
θ0. The similarity in MIC between CP and the linear expansion
coefficient suggests that the Grüneisen relation describing
that thermal expansion coefficient is proportional to the heat
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FIG. 8. MIC scores between ten force field parameters of the kernel mean force field descriptor and the predicted linear expansion
coefficient and CP [in (a) and (b), respectively]. In the bar plot of the MIC scores, the discretized regions for each force-field parameter
are arranged in ascending order from left to right.

capacity universally holds for amorphous polymers. In fact,
our previous studies have shown that the MD-calculated

linear expansion coefficient and CP are weakly proportional
to each other [59].

[1] R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel, D.
Duvenaud, D. Maclaurin, M. A. Blood-Forsythe, H. S. Chae,
M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon, H.
Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S. I. Hong,
M. Baldo, R. P. Adams, and A. Aspuru-Guzik, Nat. Mater. 15,
1120 (2016).

[2] S. Wu, Y. Kondo, M.-a. Kakimoto, B. Yang, H. Yamada, I.
Kuwajima, G. Lambard, K. Hongo, Y. Xu, J. Shiomi, C. Schick,
J. Morikawa, and R. Yoshida, npj Comput. Mater. 5, 66 (2019).

[3] A. O. Oliynyk, E. Antono, T. D. Sparks, L. Ghadbeigi, M. W.
Gaultois, B. Meredig, and A. Mar, Chem. Mater. 28, 7324
(2016).

[4] R. Matsumoto, Z. Hou, H. Hara, S. Adachi, H. Takeya, T.
Irifune, K. Terakura, and Y. Takano, Appl. Phys. Express 11,
093101 (2018).

[5] A. Seko, A. Togo, H. Hayashi, K. Tsuda, L.
Chaput, and I. Tanaka, Phys. Rev. Lett. 115, 205901
(2015).

[6] J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, Phys.
Rev. X 4, 011019 (2014).

[7] A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, and I.
Tanaka, Phys. Rev. B 95, 144110 (2017).

[8] A. P. Bartók, R. Kondor, and G. Csányi, Phys. Rev. B 87,
184115 (2013).

134107-16

https://doi.org/10.1038/nmat4717
https://doi.org/10.1038/s41524-019-0203-2
https://doi.org/10.1021/acs.chemmater.6b02724
https://doi.org/10.7567/APEX.11.093101
https://doi.org/10.1103/PhysRevLett.115.205901
https://doi.org/10.1103/PhysRevX.4.011019
https://doi.org/10.1103/PhysRevB.95.144110
https://doi.org/10.1103/PhysRevB.87.184115


REPRESENTATION OF MATERIALS BY KERNEL MEAN … PHYSICAL REVIEW B 108, 134107 (2023)

[9] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A.
Tropsha, Nat. Commun. 8, 15679 (2017).

[10] L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, npj
Comput. Mater. 2, 16028 (2016).

[11] D. Rogers and M. Hahn, J. Chem. Inf. Model. 50, 742 (2010).
[12] E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant, in

Annual Reports in Computational Chemistry (Elsevier, 2008),
Vol. 4, pp. 217–241.

[13] J. L. Durant, B. A. Leland, D. R. Henry, and J. G. Nourse,
J. Chem. Inf. Comput. Sci. 42, 1273 (2002).

[14] R. E. Carhart, D. H. Smith, and R. Venkataraghavan, J. Chem.
Inf. Comput. Sci. 25, 64 (1985).

[15] R. Nilakantan, N. Bauman, J. S. Dixon, and R.
Venkataraghavan, J. Chem. Inf. Comput. Sci. 27, 82 (1987).

[16] K. Choudhary, B. DeCost, and F. Tavazza, Phys. Rev. Mater. 2,
083801 (2018).

[17] H. Ikebata, K. Hongo, T. Isomura, R. Maezono, and R. Yoshida,
J. Comput.-Aided Mol. Des. 31, 379 (2017).

[18] S. Wu, G. Lambard, C. Liu, H. Yamada, and R. Yoshida, Mol.
Inf. 39, 1900107 (2020).

[19] Y. Aoki, S. Wu, T. Tsurimoto, Y. Hayashi, S. Minami, O.
Tadamichi, K. Shiratori, and R. Yoshida, Macromolecules 56,
5446 (2023).

[20] H. Moriwaki, Y.-S. Tian, N. Kawashita, and T. Takagi,
J. Cheminf. 10, 4 (2018).

[21] P. Broto, G. Moreau, and C. Vandycke, Eur. J. Med. Chem. 19,
71 (1984).

[22] G. Moreau and P. Broto, Nouv. J. Chim. 4, 359 (1980).
[23] P. A. Moran, Biometrika 37, 17 (1950).
[24] R. C. Geary, The Incorporated Statistician 5, 115 (1954).
[25] F. R. Burden, J. Chem. Inf. Comput. Sci. 29, 225 (1989).
[26] F. R. Burden, Quant. Struct.-Act. Relat. 16, 309 (1997).
[27] C. Liu, E. Fujita, Y. Katsura, Y. Inada, A. Ishikawa, R. Tamura,

K. Kimura, and R. Yoshida, Adv. Mater. 33, 2102507 (2021).
[28] C. Liu, K. Kitahara, A. Ishikawa, T. Hiroto, A. Singh, E. Fujita,

Y. Katsura, Y. Inada, R. Tamura, K. Kimura, and R. Yoshida,
Phys. Rev. Mater. 7, 093805 (2023).

[29] A. R. Oganov and M. Valle, J. Chem. Phys. 130, 104504 (2009).
[30] N. E. Zimmermann and A. Jain, RSC Advances 10, 6063

(2020).
[31] T. Xie and J. C. Grossman, Phys. Rev. Lett. 120, 145301 (2018).
[32] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R.

Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P.
Adams, Advances in Neural Information Processing Systems,
Vol. 28 (Curran Associates, Inc., 2015).

[33] K. T. Schütt, P.-J. Kindermans, H. E. Sauceda,
S. Chmiela, A. Tkatchenko, and K.-R. Müller,
Advances in Neural Information Processing Systems, Vol. 30
(Curran Associates, Inc., 2017).

[34] Y.-J. Hu, G. Zhao, M. Zhang, B. Bin, T. Del Rose, Q. Zhao, Q.
Zu, Y. Chen, X. Sun, M. de Jong et al., npj Comput. Mater. 6,
25 (2020).

[35] K. Muandet, K. Fukumizu, B. Sriperumbudur, and B.
Schölkopf, Found. Trends Mach. Learn. 10, 1 (2017).

[36] A. Smola, A. Gretton, L. Song, and B. Schölkopf, in Interna-
tional Conference on Algorithmic Learning Theory (Springer,
Berlin, Heidelberg, 2007), pp. 13–31.

[37] Z. Szabó, B. K. Sriperumbudur, B. Póczos, and A. Gretton,
Mach. Learn. Res. 17, 5272 (2016).

[38] H. Xu, R. Liu, A. Choudhary, and W. Chen, J. Mech. Des. 137,
051403 (2015).

[39] G. E. Fasshauer, Dolomites Res. Notes Approximation 4, 21
(2011).

[40] B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet,
J. Mach. Learn. Res. 12, 2389 (2011).

[41] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf,
Advances in Neural Information Processing Systems, Vol. 20
(Curran Associates, Inc., 2007).

[42] Y.-C. Chen, Biostat. Epidemiol. 1, 161 (2017).
[43] H. Takeda, S. Farsiu, and P. Milanfar, IEEE Trans. Image

Process. 16, 349 (2007).
[44] W. S. Noble, Nat. Biotechnol. 24, 1565 (2006).
[45] quadprog: Quadratic programming solver (Python), https://

github.com/quadprog/quadprog, accessed March 26, 2023.
[46] D. Goldfarb and A. Idnani, Math. Program. 27, 1 (1983).
[47] Kmdplus, https://github.com/Minoru938/KmdPlus, accessed

March 26, 2023.
[48] Xenonpy platform, https://github.com/yoshida-lab/XenonPy,

accessed March 26, 2023.
[49] H. Yamada, C. Liu, S. Wu, Y. Koyama, S. Ju, J. Shiomi, J.

Morikawa, and R. Yoshida, ACS Cent. Sci. 5, 1717 (2019).
[50] The Materials Project, https://materialsproject.org, accessed

Aug. 7, 2022.
[51] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S.

Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A.
Persson, APL Mater. 1, 011002 (2013).

[52] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev.
Lett. 53, 1951 (1984).

[53] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A.
Case, J. Comput. Chem. 25, 1157 (2004).

[54] Radonpy GitHub site, https://github.com/RadonPy/RadonPy,
accessed March 26, 2023.

[55] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, in
Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining (Association
for Computing Machinery, Anchorage AK USA, 2019), pp.
2623–2631.

[56] S. Walter and S. Deloudi, Crystallography of Quasicrystals:
Concepts, Methods and Structures, Springer Series in Materials
Science, Vol. 126 (Springer, Berlin, 2009), pp. 261–271.

[57] T. K. Ho, in Proceedings of 3rd International Conference on
Document Analysis and Recognition (IEEE, Montreal, QC,
Canada, 1995), Vol. 1, pp. 278–282.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, J. Mach. Learn. Res. 12, 2825
(2011).

[59] Y. Hayashi, J. Shiomi, J. Morikawa, and R. Yoshida, npj
Comput. Mater. 8, 222 (2022).

[60] C. E. Rasmussen, Gaussian Processes in Machine Learning
(Springer, Berlin, Heidelberg, 2003), pp. 63–71.

[61] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G.
McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and
P. C. Sabeti, Science 334, 1518 (2011).

[62] S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, and M. Yamazaki,
in 2011 International Conference on Emerging Intelligent Data
and Web Technologies (IEEE, Tirana, Albania, 2011), Vol. 22.

134107-17

https://doi.org/10.1038/ncomms15679
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci010132r
https://doi.org/10.1021/ci00046a002
https://doi.org/10.1021/ci00054a008
https://doi.org/10.1103/PhysRevMaterials.2.083801
https://doi.org/10.1007/s10822-016-0008-z
https://doi.org/10.1002/minf.201900107
https://doi.org/10.1021/acs.macromol.2c02600
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1093/biomet/37.1-2.17
https://doi.org/10.2307/2986645
https://doi.org/10.1021/ci00063a011
https://doi.org/10.1002/qsar.19970160406
https://doi.org/10.1002/adma.202102507
https://doi.org/10.1103/PhysRevMaterials.7.093805
https://doi.org/10.1063/1.3079326
https://doi.org/10.1039/C9RA07755C
https://doi.org/10.1103/PhysRevLett.120.145301
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://doi.org/10.1038/s41524-020-0291-z
https://doi.org/10.1561/2200000060
https://doi.org/10.1115/1.4029768
https://www.jmlr.org/papers/volume12/sriperumbudur11a/sriperumbudur11a.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/3a0772443a0739141292a5429b952fe6-Paper.pdf
https://doi.org/10.1080/24709360.2017.1396742
https://doi.org/10.1109/TIP.2006.888330
https://doi.org/10.1038/nbt1206-1565
https://github.com/quadprog/quadprog
https://doi.org/10.1007/BF02591962
https://github.com/Minoru938/KmdPlus
https://github.com/yoshida-lab/XenonPy
https://doi.org/10.1021/acscentsci.9b00804
https://materialsproject.org
https://doi.org/10.1063/1.4812323
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1002/jcc.20035
https://github.com/RadonPy/RadonPy
https://doi.org/10.1038/s41524-022-00906-4
https://doi.org/10.1126/science.1205438


MINORU KUSABA et al. PHYSICAL REVIEW B 108, 134107 (2023)

[63] B. Li, F. DeAngelis, G. Chen, and A. Henry, Commun. Phys. 5,
323 (2022).

[64] J. C. Slater, J. Chem. Phys. 41, 3199 (1964).
[65] Mendeleev—a python resource for properties of chemical

elements, ions and isotopes, ver. 0.3.6, https://github.com/
lmmentel/mendeleev, accessed March 26, 2023.

[66] M. Rahm, R. Hoffmann, and N. W. Ashcroft, Chem. Eur. J. 22,
14625 (2016).

[67] M. Rahm, R. Hoffmann, and N. W. Ashcroft, Chem. Eur. J. 23,
4017 (2017).

[68] J. Vogt and S. Alvarez, Inorg. Chem. 53, 9260 (2014).
[69] J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre,

M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk,
and T. Prohaska, Pure Appl. Chem. 88, 265 (2016).

[70] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S.
Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder,
Comput. Mater. Sci. 68, 314 (2013).

[71] K. T. Tang, J. M. Norbeck, and P. R. Certain, J. Chem. Phys. 64,
3063 (1976).

[72] X. Chu and A. Dalgarno, J. Chem. Phys. 121, 4083 (2004).
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