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Statistical correlations of random polarization and electric depolarization fields in ferroelectrics
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A conceptual problem of the electric-field-mediated polarization correlations during a stochastic formation
of polarization domain structure in ferroelectrics is addressed by using an exactly solvable stochastic model
of polarization development in a uniaxial ferroelectric [Phys. Rev. B 107, 144109 (2023)]. A full set of
time-dependent two-point correlation coefficients between all random variables is derived analytically, evaluated
numerically, and presented graphically in three dimensions. They are particularly required for the analysis of
nonlinear phenomena involving spatial dispersion like optical second harmonic generation and scattering.
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I. INTRODUCTION

Electric depolarization fields play an important role in the
formation of domain structures in ferroelectrics. They con-
tribute essentially to the system thermodynamics leading to
the formation of polarization domain structures with a min-
imum energy which often have rather regular patterns well
correlated over large distances [1,2]. There is, however, a
conceptual problem with the understanding of the depolariza-
tion field role in the polarization switching when a system is
subject to a high enough electric field. The Ishibashi stochastic
theory of the polarization reversal, induced by an opposite
electric field applied to a uniformly polarized system, assumes
statistically independent nucleation and growth of domains
of opposite direction and thus neglects a possible interac-
tion of these domains [3]. Indeed, this theory, usually called
the Kolmogorov-Avrami-Ishibashi (KAI) model, accounting
for one-component polarization reversals and thus applicable
only for 180 °-switching processes, adopts a concept devel-
oped by Kolmogorov for the problem of solidification from a
melt [4], where such domains induce no physical fields. The
situation in ferroelectrics, which are often also ferroelastics,
is different since the reversed domains induce long-range
electric and elastic fields and are expected to interact with
each other. Despite this drawback, the concept of statistically
independent nucleation and growth of reversed polarization
domains, ignoring their electric or elastic interactions, was
quite successfully applied to different single crystals and fur-
ther extended in numerous works [5–9]. The application of
this approach to polycrystalline ferroelectrics turned out to be
less successful which was, however, improved by introduc-
ing the nucleation limited switching (NLS) model assuming
a hypothetical statistical distribution of local polarization
switching times [10–16]. Subsequently, the distribution of
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switching times was derived from the statistical distribution
of local electric fields in the inhomogeneous field mechanism
(IFM) model [17,18] which was then successfully applied to
various polycrystalline materials [19–32]. Furthermore, based
on the KAI approach, the polarization reversal provided by
sequential switching events was successfully described in
tetragonal [33], rhombohedral [34], and orthorhombic [35]
ferroelectrics by means of the multistep switching mechanism
(MSM) model. Note that all these models (KAI, NLS, IFM,
and MSM) neglected interactions of the nucleating reversed
domains and their respective correlations.

In contrast to the hypotheses adopted in the above stochas-
tic models, simulations of polarization switching in single-
and polycrystalline materials, accounting for electric and elas-
tic interactions, revealed remarkable polarization correlations
at different spatial scales. Thus, comprehensive phase-field
simulations by Zhou et al. [36] demonstrated a strongly cor-
related self-organization behavior and a coherent temporal
evolution of self-accommodating domains in a single crystal
of BaTiO3 substantially reducing depolarization fields. A sim-
ilar behavior was observed in the lattice model of thermally
activated dipoles [37]. Molecular dynamics simulations of
domain wall motion in the PbTiO3 single crystal also ex-
hibited spatially correlated coherent switching scenarios [38].
On the other hand, simulations of the polarization reversal
in polycrystalline ferroelectric materials of different crys-
talline symmetries by means of the self-consistent mesoscopic
switching (SMS) model [39,40] disclosed only short-range
correlations at the grain size scale that in principle agrees with
comprehensive simulations by Indergand et al. [41].

Experimental studies confirm the presence of correlations
at different spatial scales. Thus, direct observations of the
polarization reversal in a single crystal of BaTiO3 by polarized
light microscope demonstrated a highly coherent switching
process with domain walls moving in such a way as to sup-
press electric depolarization fields and release mechanical
stresses [42,43] that confirms the phase-field simulations [36].
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Similarly, in polycrystalline lead zirconate titanate (PZT) thin
films, piezoresponse force microscopy (PFM) and transmis-
sion electron microscopy revealed correlations in polarization
response ranging from a few grains [44] to agglomerations
of 102 to 103 grains [45,46]. The latter correlations, however,
seem to be related to the elastic interaction via a substrate
[47,48]. Correlations of polarization dynamics in bulk ferro-
electric ceramics, studied by grain-resolved three-dimensional
(3D) x-ray diffraction, appeared to involve ∼10–20 grains,
thus exhibiting a characteristic correlation scale about the
grain size [49–51] that confirms the predictions of the SMS
model simulations [39,40].

Finally, simulations [36–41] are in principle agreement
with experimental observations demonstrating polarization
correlations at different scales in single- and polycrystalline
materials [42–51] but contradict the basic assumptions of
stochastic models [3–35] assuming statistically independent
nucleation and growth of reversed polarization domains. The
effect of emerging stochastic depolarization fields on the po-
larization development at different locations should result,
indeed, from the fundamental relation between polarization
and electric field expressed by the Gauss equation. In fact, the
problem of the stochastic theory is the need to consider both
temporal and spatial correlations in the process of domain
formation which still presents a difficult task. In this paper, we
first try to comprehend the time-dependent spatial correlations
of polarization and electric field during the stochastic domain
development from an initial disordered state. To this end, we
use the exactly solvable model of stochastic domain formation
in uniaxial ferroelectrics which accounts self-consistently for
electric interaction between local polarizations [52]. We de-
rive a complete set of two-point correlation functions between
polarization and electric field components and between the
field components themselves and show that some of these
correlations vanish for general symmetry reasons in certain
directions and planes, but generally, they are rather relevant
for the domain structure development.

II. THE MODEL

Let us consider a uniaxial single-crystalline ferroelec-
tric/nonferroelastic with the polarization along the z axis of
the Cartesian coordinate system, as is shown in Fig. 1, in
a typical experimental geometry of a ferroelectric plate of
thickness h f attached to a bottom electrode and a dielectric
layer of thickness hd at the top side covered with a top
electrode allowing for application of an external field. The
Landau-Ginzburg-Devonshire energy functional of the system
can be presented in the form [53,54]:

�= �0 +
∫

Vf

[
1

2
AP2

z + 1

4
BP4

z + 1

2
G(∇Pz )2−PzEz− ε0εb

2
E2

]

× dV −
∫

Vd

ε0εd

2
E2dV, (1)

with the coefficient A = α0(T − Tc), α0 > 0, T < Tc, which is
the temperature of the second-order paraelectric-ferroelectric
phase transition, and the other temperature-independent coef-
ficients B > 0 and G > 0. Here, E denotes the local electric
field; ε0, εd , and εb are the permittivity of vacuum, of the

FIG. 1. Problem layout: A ferroelectric slab of thickness hf ,
placed on a bottom electrode and separated from a top electrode by a
dielectric layer of thickness hd , is infinite in the (x, y) plane parallel
to the ferroelectric surface. Polarization direction is along the vertical
z axis of the Cartesian (x, y, z) frame.

dielectric layer, and the background permittivity of the fer-
roelectric, respectively; while Vf and Vd denote the volumes
of the ferroelectric plate and the dielectric layer, respectively.

It is convenient for the following calculations to intro-
duce dimensionless physical variables normalized to their
natural characteristic magnitudes in the phase transition prob-
lem. Thus, we denote a dimensionless polarization π = Pz/Ps

normalized to the spontaneous equilibrium polarization
Ps = √|A|/B, and a dimensionless electric field ε = E/E0

with the value of E0 = Ps|A|. All spatial coordinates are
normalized to a characteristic length λ = √

G/|A| being the
characteristic domain wall thickness.

We consider the evolution of the system from an initial
state obtained by quenching from the high-temperature para-
electric phase to the ferroelectric one at temperature T < Tc.
Since the initial state is a random one, all physical variables
become random too and will be considered in this model as
Gauss random fields, as suggested previously [55,56]. An-
other source of randomness is the stochastic thermal noise
which may have a crucial impact on polarization switching
kinetics, as was shown by Indergand et al. [41] by simulation
of the polarization reversal from a uniformly polarized initial
state in single- and polycrystalline samples. When considering
the quenched initial conditions, it is known from experiments
on single crystals that the initial disorder may be substantial
depending on the initial temperature in the parent paraelec-
tric phase, the quenching temperature, and the cooling rate
[57–60]. As was shown in the preceding work of the authors
[52], the initial disorder may dominate over the thermal noise
in the temporal domain development in a wide temperature
range away from the phase transition temperature, if the mag-
nitude and the spatial scale of the initial disorder are large
enough; the case considered in this paper neglects thermal
fluctuations.

The polarization can then be represented as π (r, τ ) =
π̄ (τ ) + ξ (r, τ ) with the dimensionless mean polarization

134101-2



STATISTICAL CORRELATIONS OF RANDOM … PHYSICAL REVIEW B 108, 134101 (2023)

magnitude π̄ (τ ) = 〈Pz〉/Ps, depending on the dimensionless
time τ, and the stochastic polarization ξ (r, τ ), such that
〈ξ (r, τ )〉 = 0. Here, the sign 〈. . .〉 denotes statistical averag-
ing over all possible system realizations. Then a dimension-
less local electric field in the chosen sample geometry reads

ε(r, τ ) = εa − αzπ̄ (τ )ẑ − ∇φ(r, τ ), (2)

where εa is a uniform electric field in the ferroelectric induced
by a voltage applied to the electrodes [52]. The second term in
Eq. (2) represents the mean depolarization field in the ferro-
electric due to the average polarization π̄ with the depolariza-
tion coefficient αz = hd

(εd h f +εbhd )ε0|A| , and the last term is the
contribution of the stochastic electric depolarization field due
to the stochastic electric potential φ(r, τ ), such that 〈∇φ〉 = 0.

By variation of the energy functional in Eq. (1) with respect
to the polarization and the electric potential, respectively, a
system of evolution equations can be derived [52]:

∂π

∂τ
= �π + π − π3 + εz, (3a)

�φ = η
∂π

∂z
, (3b)

where the first one is the Landau-Khalatnikov kinetic equa-
tion, and the second one is the Poisson equation with a
dimensionless parameter η = 1/(ε0εb|A|).

III. GENERAL RELATIONS FOR
CORRELATION FUNCTIONS

Now we introduce correlation functions characterizing
the system, the governing equations for which can
be derived from Eqs. (3a) and (3b). These functions
include two-point autocorrelation functions for the
polarization K (s, τ ) = 〈ξ (r1, τ )ξ (r2, τ )〉 and the electric
potential g(s, τ ) = 〈φ(r1, τ )φ(r2, τ )〉, with s = r1 − r2,
as well as cross-correlation functions between the
polarization and electric field components �xz(s, τ ) =
〈εx(r1, τ )ξ (r2, τ )〉, �yz(s, τ ) = 〈εy(r1, τ )ξ (r2, τ )〉,
�zz(s, τ ) = 〈εz(r1, τ )ξ (r2, τ )〉, and between the electric
field components themselves Rαβ (s, τ ) = 〈 ∂φ(r1,τ )

∂r1α

∂φ(r2,τ )
∂r2β

〉.
The knowledge of correlation functions for stochastic

systems is required to evaluate any macroscopic physical
quantities involving products of random variables. For exam-
ple, for evaluation of the total energy in Eq. (1), the knowledge
of the correlation functions K, Rxx, Ryy, Rzz, and �zz is nec-
essary.

The correlation functions are interrelated with each other,
which can be shown by multiplying Eqs. (3a) and (3b) with
different variables and consequent statistical averaging [52].
The details of the derivation are presented in Appendix. Thus,
the functions g(s, τ ), �xz(s, τ ) and �yz(s, τ ) are related to
�zz(s, τ ) as

�g(s, τ ) = η�zz(s, τ ),
∂

∂sz
�xz(s, τ ) = ∂

∂sx
�zz(s, τ ),

∂

∂sz
�yz(s, τ ) = ∂

∂sy
�zz(s, τ ), (4)

while �zz(s, τ ) is, in turn, related to K (s, τ ):

��zz(s, τ ) = −η
∂2

∂s2
z

K (s, τ ). (5)

Finally, the function Rαβ (s, τ ) can be expressed through
g(s, τ ):

Rαβ (s, τ ) = −∂2g(s, τ )

∂sα∂sβ

. (6)

Using Fourier transforms defined as

K (s, τ ) = 1

(2π )3

∫
d3q exp(iqs)K̃ (q, τ ), (7a)

K̃ (q, τ ) =
∫

d3s exp(−iqs)K (s, τ ), (7b)

the relations in Eqs. (4)–(6) can be converted into explicit
algebraic expressions via K̃ (q, τ ):

�̃zz(q, τ ) = −η
q2

z

q2
K̃ (q, τ ), �̃xz(q, τ ) = −η

qxqz

q2
K̃ (q, τ ),

�̃yz(q, τ ) = −η
qyqz

q2
K̃ (q, τ ), (8)

g̃(q, τ ) = η2 q2
z

q4
K̃ (q, τ ), R̃αβ (q, τ ) = η2 q2

z qαqβ

q4
K̃ (q, τ ).

(9)

Thus, the problem of correlations is reduced to the finding of
the function K̃ (q, τ ) alone.

The latter correlation function results from the solution of
the system of integrodifferential equations for K̃ (q, τ ) and
π̄ (τ ) derived previously [52]:

dπ̄

dτ
= π̄ [1 − αz − 3K (0, τ )] − π̄3 + εa, (10a)

dK̃

dτ
= 2

[
1 − 3π̄2 − 3K (0, τ ) −

(
q2 + η

q2
z

q2

)]
K̃ . (10b)

By solving Eq. (10b), the function K̃ (q, τ ) can be ex-
pressed through its initial value defined by correlations in the
initial state after quenching [52]:

K̃ (q, τ ) = K̃ (q, 0)μ(τ ) exp

[
−2

(
q2 + η

q2
z

q2

)
τ

]
. (11)

Assuming hypothetically a Gaussian shape of the initial
correlations K (s, 0), we get

K̃ (q, 0) = (2π )3/2K0r3
c exp

(
− r2

c q2

2

)
, (12)

with the Gauss parameter rc and the initial fluctuation magni-
tude K0 [52]. This choice also defines the auxiliary function
μ(τ ) in Eq. (11):

μ(τ ) = 2√
π

D(τ )

D(0)

(
1 + 4τ

r2
c

)3/2 √
2ητ

erf (
√

2ητ )
, (13)

where D(τ ) = K (0, τ ) is the time-dependent variance or dis-
persion of spatial polarization fluctuations.

In terms of the Fourier transform, the characteristic corre-
lation length L(τ ) can be conveniently defined as [55]

L−2(τ ) = ∫ d3q q2K̃ (q, τ )

∫ d3qK̃ (q, τ )
. (14)
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This definition differs from that commonly used in experi-
ment, which typically defines this length as the distance at
which the correlation function is halved compared with its
value at the origin [5,61]. However, since the system possesses
the only dominating characteristic scale, the definitions in
terms of the spatial correlation function and its Fourier trans-
form may only be different by a factor of the order of unity,
which can be well adjusted by the choice of the fitting param-
eter rc. This was demonstrated by the successful comparison
of L(τ ) with experimental data in Ref. [52]. For the adopted
Gaussian shape of the initial correlation function, Eq. (12),
L(τ ) can be explicitly evaluated by substituting Eq. (11) into
Eq. (14), resulting in [52]:

L(τ ) =
√

r2
c + 4τ

3
. (15)

Since all the correlation functions in Eqs. (8) and (9) are
proportional to K̃ (q, τ ) and thus to D(τ ), the latter appears

to strongly affect the time evolution of all correlations in
the system, particularly suppressing them asymptotically if
the final state of the system is a single-domain one. The
function D(τ ) cannot be found analytically but results from
the numerical solution of the system of nonlinear differential
equations, as was demonstrated previously [52]. Fortunately,
the problem of correlations can be decoupled from the said
numerical analysis by introducing the correlation coefficients
normalized to D(τ ) for all pairs of random variables. This
allows analytical calculation of all correlation coefficients
which will be performed in the following.

IV. CORRELATION COEFFICIENTS

The correlation coefficient for the polarization correlations
C(s, τ ) = K (s, τ )/D(τ ) was derived in Ref. [52]. The other
correlation coefficients result from the respective correlation
functions normalized to the products of the standard devia-
tions of the involved variables as follows:

ψxz(s, τ ) = �xz(s, τ )√
Rxx (0, τ )

√
D(τ )

, ψyz(s, τ ) = �yz(s, τ )√
Ryy (0, τ )

√
D(τ )

, ψzz(s, τ ) = �zz(s, τ )√
Rzz (0, τ )

√
D(τ )

, (16)

rxx(s, τ ) = Rxx(s, τ )

Rxx (0, τ )
, ryy(s, τ ) = Ryy(s, τ )

Ryy (0, τ )
, rzz(s, τ ) = Rzz(s, τ )

Rzz (0, τ )
, (17)

rxy(s, τ ) = Rxy(s, τ )√
Rxx (0, τ )

√
Ryy (0, τ )

, rxz(s, τ ) = Rxz(s, τ )√
Rxx (0, τ )

√
Rzz (0, τ )

, ryz(s, τ ) = Ryz(s, τ )√
Ryy (0, τ )

√
Rzz (0, τ )

.

(18)

Accordingly, we start with the evaluation of the variances Rαα(0,τ ) required for normalization of the coefficients in Eqs. (16)–
(18). By substituting Eqs. (9) and (11) into the Fourier transform in Eq. (7a), one finds for α = β = x

Rxx(s, τ ) = η2μ(τ )

(2π )3

∫ ∞

0
dqq2exp(−2τq2)K̃ (q, 0)

∫ π

0
dθsin3θcos2θexp(−2ητcos2θ + iqsz cos θ )

×
∫ 2π

0
dφcos2φexp[iq sin θ (sx cos φ + sy sin φ)]. (19)

Here and below, the qz axis of the spherical coordinate system in q space is chosen along the direction of vector s. For s = 0, it
is reduced to the variance:

Rxx(0, τ ) = η2μ(τ )

(2π )3

∫ ∞

0
dqq2exp(−2τq2)K̃ (q, 0)

∫ π

0
dθsin3θcos2θexp(−2ητcos2θ )

∫ 2π

0
dφcos2φ. (20)

By substituting Eqs. (12) and (13) into Eq. (20), one obtains

Rxx(0, τ ) = ηD(τ )

8τ

[
1 − 3

4ητ

(
1 − 2√

π

√
2ητ exp(−2ητ )

erf (
√

2ητ )

)]
. (21)
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This function seems to be singular at τ → 0, but in fact, it is regular and has a limit of Rxx(0, 0) = 1
15η2D(0), where D(0) = K0.

Quite similar for α = β = y,

Ryy(s, τ ) = η2μ(τ )

(2π )3

∫ ∞

0
dqq2exp(−2τq2)K̃ (q, 0)

∫ π

0
dθsin3θcos2θexp(−2ητcos2θ + iqsz cos θ )

×
∫ 2π

0
dφsin2φexp[iq sin θ (sx cos φ + sy sin φ)]. (22)

For s = 0, it is reduced to the variance:

Ryy(0, τ ) = η2μ(τ )

(2π )3

∫ ∞

0
dqq2exp(−2τq2)K̃ (q, 0)

∫ π

0
dθsin3θcos2θexp(−2ητcos2θ )

∫ 2π

0
dφsin2φ. (23)

By substituting Eqs. (12) and (13) into Eq. (23), one obtains Ryy(0, τ ) = Rxx(0, τ ), which is justified for symmetry reasons.
For the case α = β = z,

Rzz(s, τ ) = η2μ(τ )

(2π )3

∫ ∞

0
dqq2exp(−2τq2)K̃ (q, 0)

∫ π

0
dθ sin θcos4θexp(−2ητcos2θ + iqsz cos θ )

×
∫ 2π

0
dφexp[iq sin θ (sx cos φ + sy sin φ)]. (24)

For s = 0, it is reduced to the variance:

Rzz(0, τ ) = η2μ(τ )

(2π )2

∫ ∞

0
dqq2exp(−2τq2)K̃ (q, 0)

∫ π

0
dθ sin θcos4θexp(−2ητcos2θ ). (25)

By substituting Eqs. (12) and (13) into Eq. (25) and integration, one obtains

Rzz(0, τ ) = 3D(τ )

(4τ )2

[
1 − 2√

π

√
2ητ exp(−2ητ )

erf (
√

2ητ )

(
1 + 4ητ

3

)]
. (26)

This function at first glance seems to be singular when τ → 0, but in fact, it is regular with the limit of Rzz(0, 0) = 1
5η2D(0).

A. Cylindrically symmetrical correlation coefficients

Thanks to the cylindrical symmetry of the system, the
orientational dependence of correlation coefficients C(s, τ ) =
K (s, τ )/D(τ ), rzz(s, τ ), and ψzz(s, τ ) may by represented in
any cross-sectional plane containing the symmetry axis z, for
example, in the plane s = [s sin(ϑ ), 0, s cos(ϑ )], where ϑ is
the polar angle with respect to the polarization direction z. Ac-
cordingly, the correlation coefficient C(s, τ ) takes the form:

C(s, τ ) = 3
√

6

π

√
2ητ

erf (
√

2ητ )

∫ ∞

0
dk k2exp

(
−3k2

2

)

×
∫ 1

−1
du exp(−2ητu2) cos

(
kus cos ϑ

L(τ )

)

× J0

(
k
√

1 − u2s sin ϑ

L(τ )

)
, (27)

using the correlation length L(τ ), Eq. (15).
The evolution of C(s, τ ) in time can be captured when

considering a series of polar plots depending on the polar
angle ϑ at the surface s = const. for different time moments.
We present in Fig. 2 the development of C(s, τ ) at s = 3,
assuming here and below parameters rc = 1, η = 1, for a
range of times τ . At the early stage (a), when the correlation
length L(τ ) is smaller than the radius of the test sphere s = 3,

the polarization correlations are weak and slightly anisotropic
in favor of the polarization direction (ϑ = 0) because ran-

domly chosen points at the distance s belong to different
small domains far away from each other. At the intermedi-
ate stage (b)–(d), when L(τ ) gradually approaches the radius
of the test sphere, correlations are getting noticeable and
distinctly anisotropic because many randomly chosen points
appear within the same domain. Eventually, when the radius
L(τ ) reaches the value about s (e) or completely comprises
the test sphere (f), correlations become strong but much less
anisotropic because statistically the most of randomly chosen
pairs of points are within the same domain where polarization
behaves coherently.

Also interesting is to observe variation of C(s, τ ) with the
distance s at a fixed time. Figure 3 demonstrates polar plots at
time τ = 1 for different s. While inside the region of the size
L(τ ) correlations are strong and virtually isotropic (a), they
become weaker but strongly anisotropic at distances s 
 L(τ )
(b) and (c), which seems to be in favor of prevailed formation
of longitudinal domains along the axis z.

Considering the analytical expressions for longitudi-
nal C||(sz, τ ) and transverse C⊥(s⊥, τ ) correlations with
s⊥ = (sx, sy) [52], depending essentially on the combined
variable s2/[12L2(τ )], the correlation coefficient can be well
approximated as

C(s, τ ) = C⊥(s, τ )sin2ϑ + C||(s, τ )cos2ϑ (28)

for the distances s2/[12L2(τ )] < 1, which is shown by dashed
lines in Fig. 3.
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FIG. 2. Dependence of the correlation coefficient C(s, τ ) at the distance s = 3 in the cross-section (sx, 0, sz ) on the polar angle ϑ with
respect to the polar axis z for the moments (a) τ = 0.01, (b) 0.1, (c) 0.5, (d) 1, (e) 5, and (f) 10.

Similarly, correlations of the z component of the electric
field are also cylindrically symmetrical and may be repre-
sented in the plane s = [s sin(ϑ ), 0, s cos(ϑ )]:

rzz(s, τ ) = Bzz(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

)

×
∫ 1

−1
duu4 exp(−2ητu2) cos

[
kus cos ϑ

L(τ )

]

× J0

[
k
√

1 − u2

L(τ )
s sin ϑ

]
, (29)

with the auxiliary function:

Bzz(b) = 4
√

6

π

b5

erf (b)

[
1 − 2√

π

b exp(−b2)

erf (b)

(
1 + 2

3
b2

)]−1

.

(30)

The development of rzz(s, τ ) as a function of ϑ at the
sphere s = 3 exhibits a nonmonotonic behavior in time τ

(Fig. 4). From the initial anisotropic state (a) with preferred
correlations in the polarization direction, it first develops to
quite anisotropic transverse correlations (b) and (c) and then
evolves back to rather isotropic strong correlations slightly

FIG. 3. Dependence of the correlation coefficient C(s, τ ) at the time τ = 1 on the polar angle ϑ with respect to the polar axis z for the
distances (a) s = 1, (b) 5, and (c) 10. Solid lines present calculations with the exact formula in Eq. (27), dashed lines show approximations
with Eq. (28).
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FIG. 4. Dependence of the correlation coefficient rzz(s, τ ) at the distance s = 3 in the cross section (sx, 0, sz ) on the polar angle ϑ with
respect to the polar axis z for the moments (a) τ = 0.01, (b) 0.5, (c) 1, (d) 2, (e) 5, and (f) 10.

preferred in the polarization direction. This can also be in-
terpreted in terms of the relation between s and the correlation
length L(τ ).

The correlation coefficients for the z components of the
polarization, Fig. 2, and of the electric field, Fig. 4, ex-
hibit remarkably different trends explained by the distinct
physical properties of these fields. Firstly, the polariza-
tion in uniaxial ferroelectrics, such as triglycine sulfate
(TGS), has the only component and thus cannot rotate in
space, while the electric field has all three components and
can freely rotate. This makes possible a complicated in-
terplay between the field correlation coefficients rzz(s, τ ),
rxx(s, τ ), ryy(s, τ ), rxz(s, τ ), ryz(s, τ ), and rxy(s, τ ). Secondly,
a physical difference between the polarization and the electric
field consists of the fact that the former can be either short- or
long-range correlated (as soon as a periodic domain structure
is formed), while the latter is always long-range correlated
if not screened. At the early stages (a)–(d) in Fig. 2, small
domains of the size L(τ ) are hardly correlated at the distance
s 
 L(τ ). Weak correlations along the polarization direction
are of the local nature. In contrast, already at the very early
stage, Fig. 4(a), field correlations are substantial due to long-
range electrostatic fields. Particularly, the z components of the
electric field demonstrate long-range transverse correlations
in Figs. 4(a)–4(c) because the εz field component results from
contributions of many domains including the faraway ones
beyond the distance L(τ ). When L(τ ) substantially exceeds
s with increasing time, as in Figs. 2(e) and 2(f) and Figs. 4(e)
and 4(f), the pairs of random points at the distance s are

mostly immersed in one domain where both the polarization
and electric field behave coherently, so that the correlations
become strong and increasingly isotropic.

The variation of rzz(s, τ ) with the distance s at a fixed
time τ = 0.1 exhibits a nontrivial and nonmonotonic behav-
ior (Fig. 5). Starting from bilateral-symmetrical anisotropic
correlations at short distances (a), it gradually transforms to
almost fourfold angle dependence (b) and (c) and then gradu-
ally transforms to the asymptotic sixfold dependence at large
s > L(τ ) (d)–(f), though at very low amplitudes.

Due to the polarization-electric field coupling in the energy
functional in Eq. (1), the cross-correlation coefficient between
z components of polarization and field ψzz(s, τ ) plays a spe-
cial role directly contributing to the evolution Eqs. (10a) and
(10b). It reads

ψzz(s, τ ) = Сzz(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

)∫ 1

−1
du u2

× exp(−2ητu2) cos

[
kusz

L(τ )

]
J0

[
ks⊥

√
1 − u2

L(τ )

]
,

(31)

with the auxiliary function:

Czz(b) = −6
√

2

π

b3

erf (b)

[
1− 2√

π

b exp(−b2)

erf (b)

(
1 + 2

3
b2

)]−1/2

.

(32)
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FIG. 5. Dependence of the correlation coefficient rzz(s, τ ) at the moment τ = 0.1 on the polar angle ϑ with respect to the polar axis z for
the distances (a) s = 1, (b) 2, (c) 3, (d) 5, (e) 10, and (f) 20.

FIG. 6. Dependence of the correlation coefficient ψzz(s, τ ) at the distance s = 3 on the polar angle ϑ with respect to the polar axis z for
the moments (a) τ = 0.01, (b) 0.1, (c) 0.5, (d) 1, (e) 5, and (f) 30.
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FIG. 7. Dependence of the correlation coefficient ψzz(s, τ ) at the moment τ = 1 on the polar angle ϑ with respect to the polar axis z for
the distances (a) s = 1, (b) 3, (c) 4, (d) 5, (e) 6, and (f) 10.

From Eq. (31), the longitudinal correlation coefficient for
the case with s = (0, 0,sz ) can be calculated in a closed form,
which can be used for testing numerical results:

ψ ||
zz(sz, τ ) = π

6
√

6
Сzz(

√
2ητ )

[
erf

√
2ητ + v

(2ητ + v)3/2

(
1− 3v

2ητ + v

)

− 2√
π

exp(−2ητ −v)

2ητ + v

(
1−2v− 3v

2ητ + v

)]
,

(33)

where a combined variable v = s2
z /6L2(τ ) was introduced for

convenience.
The function ψzz(s, τ ) also possesses cylindri-

cal symmetry, allowing a presentation in the plane
s = [s sin(ϑ ), 0, s cos(ϑ )]. Its evolution with time at the
sphere s = 3 (Fig. 6) reminds us of the function rzz(s, τ ) in
Fig. 4 for the same physical reasons. At the early stage (a) and
(b), ψzz(s, τ ) demonstrates very anisotropic correlations of

bilateral symmetry pronounced in the polarization direction.
This may indicate an initial tendency of the field-driven
domain development in this direction. This trend is changed
in the intermediate stage (c) and (d) to increasing transverse
correlations which may indicate the field-driven transverse
ordering of domains.

With the increasing correlation length L(τ ) at the later
stage (e) and (f), correlations become increasingly isotropic
and strong, however, again slightly preferred in the polariza-
tion direction.

The variation of ψzz(s, τ ) with the distance s at a fixed
time τ again exhibits nontrivial and nonmonotonic behav-
ior (Fig. 7). Starting with substantial and virtually isotropic
correlations at a short distance s < L(τ ) (a), the function
transforms to rather transverse correlations at intermediate
distances s � L(τ ) (b) and (c), then evolves to almost four-
fold correlations at s > L(τ ) (d) to develop later to rather
anisotropic though weak correlations preferably in polariza-
tion direction (e) and (f) at s 
 L(τ ).

B. Correlation coefficients breaking cylindrical symmetry

The correlation coefficient for the x component of the electric field in Eq. (17) is as follows:

rxx(s, τ ) = Bxx(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

) ∫ 1

−1
duu2(1 − u2)exp(−2ητu2) cos

[
kusz

L(τ )

]

×
∫ 2π

0
dφcos2φcos

[
k
√

1 − u2

L(τ )
(sx cos φ + sy sin φ)

]
, (34)
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FIG. 8. Orientational dependence of the correlation coefficient
rxx (s, τ ) at the moment τ = 1 in spherical coordinates on the surface
of the sphere s = 3.

with the auxiliary function:

Bxx(b) = 6
√

6

π2

b3

erf (b)

{
1 − 3

2b2

[
1 − 2√

π

b exp(−b2)

erf (b)

]}−1

.

(35)

FIG. 9. Orientational dependence of the correlation coefficient
rxy(s, τ ) at the moment τ = 1 in spherical coordinates on the surface
of the sphere s = 3.

Its orientational dependence may be represented on a
sphere of constant distance s, as is shown, for example, in
Fig. 8 for s = 3 at the moment τ = 1. It has a complicated
3D shape and develops in time from very anisotropic medium
correlations toward stronger but more isotropic correlations
somewhat in favor of polarization direction. The dependence
on the distance s exhibits nonmonotonic trends. Correlations
are slightly anisotropic in favor of polarization direction at
short distances, then develop rather in favor of transverse
correlations, and finally, at large distances, remain weak and
very anisotropic, again in favor of polarization direction.

Like rxx, for the y component of the electric field in Eq. (17):

ryy(s, τ ) = Byy(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

)∫ 1

−1
duu2(1 − u2)exp(−2ητu2) cos

[
kusz

L(τ )

]

×
∫ 2π

0
dφsin2φcos

[
k
√

1 − u2

L(τ )
(sx cos φ + sy sin φ)

]
, (36)

where the function Byy(b) = Bxx(b) for symmetry reasons. The orientational dependence of this function is like that of rxx but
spatially rotated by the azimuthal angle π/2; therefore, it is not presented graphically.

The cross-correlations of the electric field components are described by the coefficients in Eq. (18). Particularly, rxy(s, τ ) =
Rxy(s, τ )/Rxx (0, τ ) because Ryy(0, τ ) = Rxx(0, τ ). Thus, for a general direction of the vector s = (sx,sy,sz ),

rxy(s, τ ) = Bxy(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

) ∫ 1

−1
duu2(1 − u2)exp(−2ητu2) cos

[
kusz

L(τ )

]

×
∫ 2π

0
dφ cos φ sin φcos

[
k
√

1 − u2

L(τ )
(sx cos φ + sy sin φ)

]
, (37)

where Bxy(b) = Bxx(b). We note that, here, the correlations vanish at the planes sx = 0 and sy = 0 due to integration over the
azimuthal angle φ in Eq. (37) irrespective of the form of the initial correlation function K̃ (q, 0) if it is isotropic in q space.
Particularly, rxy(s, τ ) = 0 at the line s = (0, 0,sz ).

The orientational dependence of rxy may be represented on a sphere of constant distance s, as is shown in Fig. 9 for s = 3
and τ = 1.With increasing time τ 
 1, the shape of the figure remains, but the amplitude of correlations gets reduced. At short
times τ < 1, the amplitude of correlations gets stronger and acquires multiple small anisotropic features.
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The cross-correlation coefficient of the electric field components rxz(s, τ ) is given by

rxz(s, τ ) = Bxz(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

) ∫ 1

−1
duu3

√
1 − u2 exp(−2ητu2) sin

[
kusz

L(τ )

]

×
∫ 2π

0
dφ cos φsin

[
k
√

1 − u2

L(τ )
(sx cos φ + sy sin φ)

]
, (38)

with the auxiliary function:

Bxz(b) = − 12 b4

π2
√

2

[
1 − 3

2b2

(
1 − 2√

π

b exp(−b2)

erf (b)

)]−1/2[
1 − 2√

π

b exp(−b2)

erf (b)

(
1 + 2

3
b2

)]−1/2

. (39)

Similarly, the cross-correlation coefficient of the electric field components ryz(s, τ ) reads

ryz(s, τ ) = Byz(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

)∫ 1

−1
duu3

√
1 − u2 exp(−2ητu2) sin

[
kusz

L(τ )

]

×
∫ 2π

0
dφ sin φsin

[
k
√

1 − u2

L(τ )
(sx cos φ + sy sin φ)

]
, (40)

where Byz(b) = Bxz(b) for symmetry reasons. The coefficients rxz(s, τ ) = ryz(s, τ ) = 0 at the line s = (0, 0,sz ) parallel to the
polarization direction due to integration over φ in Eqs. (38) and (40), and they both also vanish at the plane s = (s⊥, 0)
perpendicular to the polarization, which is obvious from Eqs. (38) and (40). Furthermore, rxz vanishes at the plane sx = 0 and
ryz at the plane sy = 0 when integrating over φ in Eqs. (38) and (40), respectively. Since rxz changes sign, the orientational
dependence of the magnitude | rxz(s, τ )| is presented in Fig. 10, for example, on a sphere of constant distance s = 3. It remains
topologically similar at all times and is decreasing asymptotically. The orientational dependence of ryz(s, τ ) is similar but
spatially rotated by the azimuthal angle π/2; therefore, it is not presented graphically.

Now we consider the cross-correlations between polarization and transverse field components. Particularly, the coefficient
ψxz reads

ψxz(s, τ ) =Cxz(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

)∫ 1

−1
du u

√
1 − u2 exp(−2ητu2) sin

[
kusz

L(τ )

]

×
∫ 2π

0
dφ cos φsin

[
k
√

1 − u2

L(τ )
(sx cos φ + sy sin φ)

]
, (41)

with the auxiliary function:

Cxz(b) = − 3
√

6 b

π2erf (b)

{
1 − 3

2b2

[
1 − 2√

π

b exp(−b2)

erf (b)

]}−1/2

. (42)

Similarly,

ψyz(s, τ ) = Cyz(
√

2ητ )
∫ ∞

0
dk k2exp

(
−3k2

2

) ∫ 1

−1
du u

√
1 − u2 exp(−2ητu2) sin

[
kusz

L(τ )

]

×
∫ 2π

0
dφ sin φsin

[
k
√

1 − u2

L(τ )
(sx cos φ + sy sin φ)

]
, (43)

where Cyz(b) = Cxz(b). Both correlation coefficients ψxz(s, τ )
and ψyz(s, τ ) vanish at the line s = (0, 0,sz ) and in the
plane s = (s⊥, 0) as well as the coefficients rxz(s, τ ) and
ryz(s, τ ) before. Coefficient ψxz also vanishes at the plane
sx = 0 and ψyz at the plane sy = 0 when integrating over φ

in Eqs. (41) and (43), respectively. Since ψxz changes sign,
the orientational dependence of the magnitude | ψxz(s, τ )|

is presented in Fig. 11, for example, at s = 3. The orienta-
tional dependence of ψyz(s, τ ) is similar but spatially rotated
by the azimuthal angle π/2; therefore, it is not presented
graphically.

Apparently, the shapes of rxz(s, τ ) and ψxz(s, τ ) in
Figs. 10 and 11 are pretty similar to each other, which is not
surprising since Eqs. (38) and (41) differ only in the power of
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FIG. 10. Orientational dependence of the correlation coefficient
|rxz(s, τ )| at the moment τ = 1 in spherical coordinates on the sur-
face of the sphere s = 3.

the variable u in addition to different time-dependent factors.
Thus, they distinguish only quantitatively but not qualitatively.

V. DISCUSSION

Account of fluctuations and correlations of random vari-
ables is necessary for description of thermodynamics of
macroscopic random systems and their response to external
fields. Thus, the knowledge of the dispersions (variances) of
the polarization and electric field components as well as of
the polarization correlations and the covariance 〈PzEz〉 is re-
quired to evaluate the energy of the stochastic domain system
represented by Eq. (1).

Contribution of the polarization-field correlations repre-
sented in evolution Eqs. (10a) and (10b) by the cross-

correlation function �̃zz(q, τ ) ∼ q2
z

q2 K̃ (q, τ ) appears to be

FIG. 11. Orientational dependence of the correlation coefficient
|ψxz(s, τ )| at the moment τ = 1 in spherical coordinates on the
surface of the sphere s = 3.

deciding for the formation of the multidomain polarization
state and has a great impact on the field-driven evolution
of the domain system and the magnitude of the coercive
field [52]. The time-dependent development of the correlation
coefficient ψzz(s, τ ) presented in Fig. 6 gives insight into
the evolution of the domain structure pronouncing the for-
mation of longitudinal individual domains at the early stage
and of the transversely ordered domain structure at the later
stage.

Spatial correlations become significant wherever nonlinear
effects are involved and observations cover a large number
of domains. Thus, the analysis of nonlinear piezoelectric
response observed by PFM in ferroelectric films revealed
medium- to large-scale correlations whose physical origin was
not unambiguously identified [46,47]. Another example of
nonlinear response is given by omnipresent electrostriction
which is typically averaged over macroscopic areas and vol-
umes requiring an account of fluctuations of random variables
in disordered systems. The electrostriction effect quadratic in
the electric field components may be affected by the electric
field correlations represented by the correlation coefficients
rxx in Eq. (34), ryy in Eq. (36), rzz in Eq. (29), rxy in Eq. (37),
rxz in Eq. (38), and ryz in Eq. (40). One more case for
the implementation of the field correlations is given by the
quadratic electro-optic (Kerr) effect in noncentrosymmetric
crystals, such as ferroelectrics [62,63].

As was shown by Dolino [64], the knowledge of the
correlation function of polarization K (s, τ ) is required for
evaluation of the intensity of the second-harmonic scatter-
ing (SHS) in nonlinear ferroelectric crystals. This kind of
response is quadratic in polarization and nonlocal since it
involves polarization values at different locations. The angular
pattern of scattered light is dependent upon domain shapes and
structures so that the variation of the second-harmonic inten-
sity allows us to judge the changes in the domain structure.
SHS and second harmonic generation (SHG) were success-
fully used to study the properties of crystals undergoing
structural phase transitions [60,65].

Coming back to the fundamental question on the role
of polarization-field correlations during the domain structure
formation or the field-driven switching, we would like to re-
mind readers of the earlier simulations, predicting very small
or vanishing polarization-field cross-correlations in polycrys-
talline ferroelectrics [39,40]. Comparing these results with the
results of this paper based on the exactly solvable stochastic
model for a uniaxial single-crystalline ferroelectric [52], we
note that some cross-correlations in a single crystal indeed
vanish at certain directions and planes. For example, the coef-
ficients rxz(s, τ ) and ψxz(s, τ ) vanish at the planes sx = 0 and
sz = 0, while the coefficient rxy(s, τ ) vanishes at the planes
sx = 0 and sy = 0. Coefficients rxz(s, τ ), ryz(s, τ ), ψxz(s, τ ),
and ψyz(s, τ ) are negligible everywhere but a few narrow
orientational regions seen in Figs. 10 and 11 where they are
also small, and this is not accidental.

In fact, there are fundamental physical reasons for the
disappearance of cross-correlations. They are expressed by
the Obukhov theorem stating the absence of correlations be-
tween isotropic potential and solenoidal random fields [66].
Electric field in our problem is potential one. Polarization
field would be solenoidal if ∇ · P were 0, i.e., if polarization
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would only build domain structures compensating all bound
charges. This tendency was apparently observed in multi-
axial polycrystalline ferroelectrics which were simulated in
the SMS model [39,40], leading thus to the disappearance of
cross-correlations. The tendency to form only charge-free do-
main walls under dynamic switching conditions was observed
in phase-field [36] and molecular dynamics simulations [38]
as well as in experiments [42,43]. However, the condition
∇ · P = 0 cannot be fully realized in a uniaxial ferroelectric
like TGS. Nevertheless, the tendency to build charge-free
polarization configurations like a quasiperiodic stripe struc-
tures prevails also in TGS. Thus, the cross-correlations
exhibit, in principle, the tendency to vanish, which cannot
be fully realized, so that such correlations remain in some
directions. This statement applies to the cross-correlations
ψxz in Eq. (41) and ψyz in Eq. (43), exhibiting nonvanishing
amplitudes in some narrow spatial angle regions, Fig. 11. The
cross-correlation coefficient of the different field components,
like rxz in Eq. (38), appears to have a structure quite simi-
lar to that of ψxz and thus possesses very similar properties
represented by Fig. 10. Therefore, the disappearance (at least
partial) of a range of cross-correlations has fundamental phys-
ical causes related to the potential and, respectively, solenoidal
nature of the involved physical fields. However, differently
from the multiaxial polycrystalline ferroelectrics [39,40], the
ψzz correlations between z components of polarization and
field undoubtedly play an important role in the formation of
the domain structure in uniaxial single crystals and are not
small.

We note that the correlation coefficients in Eqs. (16)–(18)
describe correlation functions normalized to the variance of
polarization D(τ ). If the system evolves toward a single-
domain state, which occurs under applied fields higher than
the coercive one [52], the polarization dispersion D(τ ) → 0
asymptotically, and all absolute values of fluctuations and
correlations vanish simultaneously. Nevertheless, in this case,
correlations play an important role over the whole stage of the
domain structure building too.

VI. CONCLUSIONS

To fully understand the role of correlations in the process
of domain formation and electric-field-driven switching, both
the temporal and spatial correlations between the emerging
polarization and depolarization fields must be accounted for.
This challenging task could not yet be carried out in full
within the stochastic approach. The temporal correlations
were partly considered by the MSM model [33–35] where
the spatial correlations were still not considered. In this pa-
per, we investigated the spatial correlations between emerging
polarization domains and depolarization fields developing in
time but still could not account for the mutual influence
of polarization domains appearing at different times and
different locations, which remains a task for the future. Nev-
ertheless, the analytical results for the correlation coefficients
between all involved stochastic variables, obtained based on
the exactly solvable stochastic model of polarization devel-
opment [52], allowed insight into the temporal development
of anisotropic spatial characteristics of the emerging domain
structure.

Unfortunately, the possibilities to compare our analytical
results with experiment or simulations are currently limited.
The predicted temporal development of the correlation length
and the polarization correlation coefficient in TGS were suc-
cessfully compared with experiments in Ref. [52]. However,
for the comparison of our results on the 3D correlation coeffi-
cients, the statistically analyzed 3D data are required. Though
3D simulations of ferroelectrics by means of the phase-field
approach, molecular dynamics, and Monte Carlo method have
been known for some time, we are not aware of the statis-
tical analysis of the temporal simulation data. Particularly,
the temporal 3D simulations of the domain formation in
TGS are not available. In one experimental work, Wehmeier
et al. [60] presented time-dependent 3D data on the domain
structure formation in TGS obtained by SHG microscopy but
unfortunately without statistical data processing. Therefore,
our calculations of the correlation coefficients are primarily
predictive. Hopefully, they will encourage researchers to carry
out statistical processing of the available 3D data from exper-
iments and simulations.
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APPENDIX: RELATIONS BETWEEN
THE CORRELATION FUNCTIONS

Let us consider the Gauss equation equivalent to the Pois-
son Eq. (3b) taken at the point r2:

∂εx(r2, τ )

∂X2
+ ∂εy(r2, τ )

∂Y2
+ ∂εz(r2, τ )

∂Z2
= −η

∂ξ (r2, τ )

∂Z2
,

(A1)
and multiply it with εx(r1, τ ). After subsequent statistical
averaging, this leads to the equation:

∂

∂X2
〈εx(r1, τ )εx(r2, τ )〉 + ∂

∂Y2
〈εx(r1, τ )εy(r2, τ )〉

+ ∂

∂Z2
〈εx(r1, τ )εz(r2, τ )〉 = −η

∂

∂Z2
〈εx(r1, τ )ξ (r2, τ )〉.

(A2)

By substituting the field expression in Eq. (2) into the latter
equation, its first term is transformed to

∂

∂X2

〈
∂

∂X1
φ(r1, τ )

∂

∂X2
φ(r2, τ )

〉
= ∂

∂X1

∂2

∂X 2
2

g(s, τ ), (A3)

with s = r1 − r2. Similarly, the second term is transformed to

∂

∂Y2

〈
∂

∂X1
φ(r1, τ )

∂

∂Y2
φ(r2, τ )

〉
= ∂

∂X1

∂2

∂Y 2
2

g(s, τ ), (A4)

and the third term to

∂

∂Z2

〈
∂

∂X1
φ(r1, τ )

∂

∂Z2
φ(r2, τ )

〉
= ∂

∂X1

∂2

∂Z2
2

g(s, τ ). (A5)

The right-hand side of Eq. (A2) represents a derivative of
�xz(s, τ ). By substituting the relations in Eqs. (A3)–(A5) into
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Eq. (A2), one obtains

∂

∂sx
�g(s, τ ) = η

∂

∂sz
�xz(s, τ ), (A6)

with the Laplace operator �.
Similarly, by multiplying Eq. (A1) with εy(r1, τ ), with

subsequent statistical averaging, one obtains the equation:

∂

∂sy
�g(s, τ ) = η

∂

∂sz
�yz(s, τ ), (A7)

and by multiplying Eq. (A1) with εz(r1, τ ), with subsequent
statistical averaging, one obtains the equation:

∂

∂sz
�g(s, τ ) = η

∂

∂sz
�zz(s, τ ). (A8)

Considering vanishing of correlations at infinity, the latter
relation means that

�g(s, τ ) = η�zz(s, τ ). (A9)

Now by substituting Eq. (A9) into Eq. (A6), one obtains

∂

∂sx
�zz(s, τ ) = ∂

∂sz
�xz(s, τ ), (A10)

and by substituting Eq. (A9) into Eq. (A7), one obtains

∂

∂sy
�zz(s, τ ) = ∂

∂sz
�yz(s, τ ). (A11)

Equations (A9)–(A11) together provide the relations in
Eq. (4).
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