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Formation of dark excitons in monolayer transition metal dichalcogenides by a vortex beam:
Optical selection rules

Omadillo Abdurazakov ,* Chunqiang Li , and Yun-Pil Shim †

Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA

(Received 26 December 2022; revised 8 September 2023; accepted 12 September 2023; published 27 September 2023)

Monolayer transition metal dichalcogenides host tightly bound excitons, which dominate their optoelectronic
response even at room temperatures. Light beams are often used to study these materials with the polarization—
often termed the spin angular momentum of the light—providing the mechanism for exciting excitonic states.
Light beams, however, can also carry an orbital angular momentum by creating helical structures of their phase
front. In this work, we consider a Laguerre-Gaussian beam possessing an orbital angular momentum in addition
to the spin angular momentum to create excitons in monolayer transition metal dichalcogenides. We derive
optical selection rules that govern the allowed transitions to various exciton series using symmetry arguments.
Our symmetry considerations show that we can create dark excitons using these high-order optical beams
opening up new avenues for creating long-lived dark excitons with the potential of exploiting them in quantum
information processing and storage.
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I. INTRODUCTION

When a photon of a certain frequency illuminates a semi-
conducting crystal, in response an exciton can be formed.
During the process, an electron excited to the conduction
band binds with its hole left in the valence band through the
Coulomb interaction. Because ordinary light does not cou-
ple to the electron spin, it is conserved in the process. For
the direct-band-gap semiconductors, this kind of excitation
is called a bright exciton, and they are short-lived because
an electron can quickly recombine with the hole emitting
a photon. It is also possible for an electron to flip its spin
via some nontrivial processes during the exciton formation.
In contrast to the bright excitons, this kind of excitation is
long-lived because the excited electron cannot radiatively re-
combine without flipping its spin. Therefore, it is called a
dark exciton and makes a promising candidate for a solid-state
qubit due to its long recombination lifetime and coherence
[1,2] and has lately become an active field of research in its
own right [3,4].

The family of quasi-two-dimensional (quasi-2D) semicon-
ducting crystals called monolayer transition metal dichalco-
genides (ML TMDs) can host excitons of strikingly large
binding energies compared to those of traditional semicon-
ducting crystals such as GaAs [5]. This is partly due to
the weak dielectric screening and geometric confinement in
quasi-2D structures. Although it is an indirect-band-gap semi-
conductor in bulk, when exfoliated down to a monolayer [6], a
TMD crystal transitions into a direct-band-gap semiconductor
[7,8]. Therefore, the optical response of these materials to
light is dominated by bright exciton formation and conse-
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quent photoluminescence signal at sub-band-gap frequencies.
Due to the presence of heavy transition metal atoms in ML
TMDs, there is a strong (moderate) spin-orbit interaction in
the valence (conduction) band. Combined with the lack of
spatial inversion symmetry inside the monolayer crystal, the
conduction and valence bands at the ±K momentum points
(or valleys) are split into two bands each that can individually
host only one type of electron spin species. These bands at the
two valleys are related through the time-reversal symmetry.
Consequently, the electron spin and valley degrees of freedom
are locked, and each valley can be selectively addressed with
circularly polarized light [9–12].

Because of its valley physics and tightly bound excitons
that are manifest even at room temperatures, a ML TMD crys-
tal is an ideal platform for hosting stable and long-lived dark
excitons. However, creating and controlling dark excitons in
these materials is challenging as ordinary light beams do not
couple to the electron spin. Nevertheless, these dark excitons
can be induced to decay via radiative means by applying very
strong in-plane magnetic fields [13] or coupling to the surface
plasmon polaritons [14]. Although these methods offer some
pathways to access the spin-forbidden dark excitons and to
control their lifetimes, they are limited to extremely high mag-
netic fields and extremely low temperatures. Therefore, purely
optical means to access and control the dark exciton states
would lead to a new practical platform for many quantum
applications including quantum information technology.

The polarization of light, which is used to control indi-
vidual valleys in ML TMDs, corresponds to the spin angular
momentum (SAM) of light and can be transferred to matter
as a mechanical torque [15]. Light has another fundamental
degree of freedom called orbital angular momentum (OAM).
The laser beams possessing OAM can be created with holo-
graphic phase-plates, and they were already realized decades
ago [16]. They are often called vortex beams and have been
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shown to induce optical transitions that are not allowed other-
wise [17] and to strongly modify optical selection rules [18].
They have been used to transfer orbital angular momentum to
macroscopic particles [19], individual atoms [20], as well as
electrons [21], and to create Rydberg excitons in atoms [22].

In this work, we theoretically investigate the possible op-
tical transitions with a vortex beam in ML TMD systems.
Specifically, we consider a Laguerre-Gaussian laser beam, a
type of vortex beam, to create spin-forbidden dark excitons as
well as bright excitons in ML TMD crystals. We derive optical
selection rules for such transitions based on the symmetry of
the ML TMD crystal structure, the spatial structure of the
beams, and the exciton envelope functions. We show that, in
the quadrupole coupling regime, B-type dark excitons with
various envelope functions can be created selectively in each
valley. As vortex beams with high OAM can be readily created
in optics labs nowadays [23], this all-optical means to create
dark excitons in ML TMDs should be feasible.

The outline of the paper is as follows. First, we describe
our method to identify the allowed optical transition to create
excitons in these materials in Sec. II, where we consider the
symmetry of the electronic bands, the spatial profile of vortex
beams, and exciton envelope functions in terms of the irre-
ducible representations of the pertinent point group to which
the monolayer crystal belongs. In Sec. III, we derive and
discuss optical selection rules for the bright and dark excitons.
And in Sec. IV, we conclude and discuss the implication of
our results to future studies.

II. METHODS

In this work, we are interested in understanding the exciton
formation in a monolayer TMD crystal under the excitation of
a vortex beam. By using symmetry arguments regarding the
crystal band structure and light beam, we identify the allowed
and forbidden optical transitions from the ground state of the
crystal to various exciton states when the light beam possesses
both spin and orbital angular momenta. Such an analysis
grants us the optical selection rules that govern the formation
of bright and dark excitons in the ±K valleys of a monolayer
TMD crystal. As the band-gap energy in this class of materials
lies predominantly in the optical spectrum, we only consider
the direct optical transition between the spin-split valence and
conduction bands at the ±K points. The symmetry of the
electron wave vector around these points can be derived by
constructing a tight-binding band and studying its behavior
under the pertinent symmetry operations that belong to the
relevant symmetry group [24].

In the single electron band picture, an exciton with the 1s
envelope function is formed through the binding of an electron
excited into the conduction-band minimum and the hole left
on the valence-band maximum [25]. The exciton symmetry is
defined as the direct product of the irreducible representations
of the exciton envelope function, the conduction band, and the
valence band, namely �X = �env ⊗ �c ⊗ �∗

v . For the optical
transition from the crystal ground state to an exciton state to
occur, �X must contain the irreducible representation of the
driving field operator �beam = �order ⊗ �OAM ⊗ �SAM. Here,
�order is the order of optical transitions. We outline the details
of the light field symmetry in the Appendix.

To find the symmetry of the electronic bands at the ±K
points, we can construct a tight-binding band and assign an
irreducible representation to each band. The symmetry of
the exciton envelope function is found from solutions of the
2D hydrogen model, and the symmetry of the driving field
operator is found by representing the polarization and the
spatial structure of the Laguerre-Gaussian beam in terms of
the basis functions of the relevant symmetry operations of the
monolayer crystal.

In the bulk form, TMDs are indirect-gap semiconductors
formed by weakly interacting layers through van der Waals
forces. A monolayer of TMD, however, is a direct-gap semi-
conductor with a hexagonal crystal structure. The side and top
view of a ML TMD crystal are depicted in Figs. 1(a) and 1(b),
respectively. The crystal unit cell contains one chalcogen atom
and one transition metal atom. The crystal structure is invari-
ant under certain transformation operations. They include a
threefold rotation around the principal axis perpendicular to
the monolayer (C3), a reflection around the mirror plane (σ )
perpendicular to the principal axis, three twofold rotations
around the axes lying on the mirror plane (C2), and the im-
proper rotation around the principal axis followed by a mirror
reflection (S3). This set of transformation operations, which
leaves a monolayer TMD crystal invariant, belongs to the D3h

point group.
In the reciprocal space, the first Brillouin zone of the ML

TMD crystal, which is also of a hexagonal structure, has a few
high-symmetry momentum points, such as �, K , and −K , as
shown in Fig. 1(e). Although the electron wave function at
the � point inherits the point group of the monolayer crystal
(D3h), the symmetry at ±K points is lowered to that of C3h due
to the band-gap opening. Therefore, we use the irreducible
representations of the C3h point group in our symmetry anal-
ysis of the optical transitions. Nevertheless, one could equally
use the irreducible representations of the point group of the
ML TMD (D3h) itself and use compatibility relationships be-
tween the two groups to derive the allowed optical transitions
at individual valleys [26,27].

A tight-biding wave function at these particular momentum
points can be constructed from the dominant d atomic orbitals
of the transition metal atoms. According to the first-principles
calculations [28], the dz2 atomic orbitals dominate the conduc-
tion band, whereas the dx2−y2 and dxy atomic orbitals dominate
the valence band at ±K points. One can construct a tight-
binding band by symmetrizing these orbitals with respect to
the threefold rotation operator C+

3 relevant to the monolayer
crystal symmetry. Here, the plus sign indicates that the three-
fold rotation operator acts in the counterclockwise direction
around the principal axis. Considering the spin-orbit split-
ting of the valence and conduction bands at these particular
momentum points, we can study the behavior of the con-
structed bands under the symmetry operation of the relevant
double-point group using Table VIII and assign correspond-
ing irreducible representation (irrep). The schematic diagrams
for the bands and their irreps at ±K points are shown in
Fig. 1(f).

The Laguerre-Gaussian beams are high-order solutions to
the paraxial wave equation in cylindrical coordinates. These
high-order Gaussian modes exhibit more complex spatial and
phase structures compared to the regular Gaussian beams.
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FIG. 1. Monolayer transition metal dichalcogenide (ML TMD) crystal and band structure and a vortex beam. (a) The side view and (b) top
view of ML TMD crystal spanned with a unit cell (demarcated by a blue-dashed line) consisting of one transition metal and one chalcogen atom
with the lattice constant of (a). (c) The principal axis with threefold rotation symmetry, a mirror plane perpendicular to this axis, and (d) three
twofold rotation axes lying on the mirror plane are shown. (e) The first Brillouin zone of ML TMD and a few high-symmetry momentum
points in it are shown. (f) An effective two-band model with the spin-orbit coupling splitting around K and −K momentum points and the
corresponding irreducible representations of the double-group relevant at the −K/K points. The conduction-band splitting is exaggerated for
clarity. The possible types of exciton transitions are symbolically shown by the arrows. Here, the solid (dashed) lines designate an A (B) -type
exciton. The bright (dark) excitons are shown by thick yellow (thin black) lines. Note that the arrows are shifted laterally for clarity, but the
transitions occur predominantly at the valley center. (g) The helical wavefront and phases of optical vortex beams are plotted for a few values
of the orbital angular momentum of light. (h) Schematic of the vortex beam created exciton in a ML TMD. The vortex beam propagates along
the z-axis, the direction that is perpendicular to the monolayer sample.

More importantly, due to the helical structure of their phase
front, they carry orbital angular momentum along the propa-
gation direction in addition to their spin angular momentum
or polarization.

The spatial profile of the beam propagating along the z-
axis in the cylindrical coordinates is given by A(ρ, φ, z) =
εAl

p(ρ, φ, z)eikz [29], where

Al
p(ρ, φ, z) =Cpl

w0

w(z)

(√
2ρ

w(z)

)|l|
L|l|

p

(
2ρ2

w2(z)

)

× e−ρ2/w2(z)ei�eilφ (1)

and the phase factor contains the following terms:

� = kρ2/2R(z) + (2p + |l| + 1) arctan (z/zR), (2)

where Cpl = √
2p!/π (|l| + p)! is the normalization constant,

R(z) = z + z2
R/z is the beam front curvature, and w(z) =

w0

√
1 + z2/z2

R is the spot size, which increases as a function
of the distance z from the beam waist w0. The beam acquires
a nontrivial spatial structure through the associated Laguerre
function L|l|

p (ρ, z). The intensity profile of the beam is of a
ringlike structure. Its radial index p, which can be zero or any
positive integer, indicates the number of rings when the beam
is projected on a screen. Its azimuthal index l , which can be

any integer number, indicates the amount of orbital angular
momentum the beam carries. If this index is zero, a Gaussian
beam with a plane-wave phase is recovered. For p = 0 the
beam intensity has a single ring structure whose radius scales
as ∝ √|l| at the beam waist. Here, zR = πw2

0/λ is the Raleigh
range, within which the beam spot size stays nearly constant.
The first term in the phase factor gives a spherical curvature
to the wave, whereas the latter term is called a Gouy phase,
which develops as the beam propagates and mostly varies
inside the Raleigh range, and λ is the wavelength of the light
beam. The most significant phase term contains lφ + kz. As
depicted in Fig. 1(g), the points of the constant phase make
a helical surface along the z-axis. For |l| > 1 there will be
as many helices intertwined together. The center of the beam
where the phase is undefined and the light intensity goes to
zero is called a vortex. The lower panels in Fig. 1(g) showcase
how the phase changes as a function of the azimuthal angle φ

for corresponding values of l .
The light polarization vector ε of the vortex beam depicted

in Fig. 1(h) lies parallel to the two-dimensional sample and
perpendicular to the beam propagation direction. Here, the
beam can be either left-handed circularly polarized (σ−) or
right-handed circularly polarized (σ+). Circular polarization
of light corresponds to the spin angular momentum of light
(SAM) that is directed along the longitudinal direction. A
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light beam of σ+ (σ−) polarization carries a SAM of +1h̄
(−1h̄). It is also possible to employ a beam polarized along
the propagation axis, and it is termed a π -polarized beam. It
carries a SAM in the azimuthal direction only, and is often
referred to as the transverse SAM of light [30]. One way
to create a π -polarized beam is to tightly focus the vortex
beam so that it is no longer in the paraxial regime and has
a longitudinal component. This nonparaxial vortex beam can
possess polarization that is along the beam axis that comes
from the finite longitudinal field component, albeit with much
weaker amplitude. This component scales as the first order
in the parameter 1/(kw0), which is ∼104 times smaller than
the transverse field component for a typical vortex beam
spot w0 within the optical diffraction limit [31,32]. Another
method is to direct a linearly polarized Gaussian beam along
the two-dimensional sample plane where its polarization is
perpendicular to the sample [26]. This way, one could modify
the beam-sample setup by changing the angle between them
so that there is a field component perpendicular to the sample
with a finite amount of π -polarization. Therefore, in this work,
we also consider the possibility of having a π -polarized beam
for the sake of completeness in deriving the optical selection
rules.

Because of the quasi-2D structure of ML TMDs, the elec-
tric field lines between electrons and holes are screened well
in the plane of the crystal and poorly screened outside. This
renders the dielectric constant of the material dependent on the
relative distance of the exciton envelope function. Therefore,
to solve the exciton problem in ML TMD quantitatively, one
needs to resort to an elaborate numerical framework such
as the Bethe-Salpeter equations [33]. However, we adopt a
framework that treats the exciton problem as a 2D hydro-
gen model with an effective dielectric screening because we
are primarily interested in the symmetry properties of the
exciton envelope function rather than its exact quantitative
form. It was shown that one can embed the inhomoge-
neous screening effects into an effective dielectric constant
that is averaged over the radius of an exciton and obtain
a 2D analog of the hydrogenlike solutions for exciton en-
velope functions with quite accurate binding energies [34].
Then, the exciton envelope solutions will be of the form
	nm(r) = 1√

2π
Rn|m|(r) exp(imφ) in real space [35,36]. The ra-

dial function R depends on the principal quantum number n =
{1, 2, 3, . . .} and the absolute value of the magnetic quantum
number m = {0,±1,±2, . . . ,±(n − 1)} with the correspond-
ing notation of {1s, 2p±, 3d±, . . . , (n − 1)t±} exciton series.
It also depends on the relative coordinate of the electron and
hole, the exciton radius which contains the effective dielectric
constant. However, we note that in the case of a ML TMD
crystal, contrary to the 2D hydrogen model, the energy levels
with the same n are not degenerate but differ depending on the
value of n due to the nonlocal screening in 2D. As the value
of n increases, the difference becomes smaller [37].

III. RESULTS

The experimental absorption measurements [8] and first-
principles calculations [38] show that TMDs clearly exhibit A
(B) excitons that are formed due to the direct optical transi-
tions between the conduction band and spin-orbit split higher

TABLE I. Bright A and B excitons in the dipole coupling regime:
Optical selection rules for bright excitons created by laser beams
carrying orbital angular momentum (OAM) and spin angular mo-
mentum (SAM).

l (OAM) −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

−K A � σ− σ+ � σ− σ+ � σ− σ+ � σ−

B � σ− σ+ � σ− σ+ � σ− σ+ � σ−

K A σ+ � σ− σ+ � σ− σ+ � σ− σ+ �
B σ+ � σ− σ+ � σ− σ+ � σ− σ+ �

(lower) valence band. Here, we present the optical selection
rules for bright A (B) and dark A (B) excitons created by
vortex beams in a tabular form below. In addition to the usual
dipole coupling, we also consider quadrupole coupling. In
this work, we categorize the multipole expansions according
to the order of the electric couplings. The dipole coupling
regime means the electric dipole coupling, and the quadrupole
coupling regime includes both the electric quadrupole and
the magnetic dipole coupling terms. The quadrupole transi-
tions become important when the electric field has a spatial
gradient. Due to their complex spatial structure, high-order
laser beams such as the Laguerre-Gaussian beams, especially
those with high values of OAM, have a strong special field
gradient. Although the oscillator strength for the quadrupole
transition is much weaker than that of the dipole transition
for ordinary light beams, the vortex beams can have sizable
quadrupole effects that are even comparable to those of the
dipole coupling at very high values of OAM because of
their transverse field gradient around the center of the vortex
[39,40]. Therefore, this second-order transition can no longer
be ignored and needs a special consideration, especially for
the vortex beams with large OAM. With the availability of
the tools to create vortex beams with extremely high OAM
[23], significant quadrupole exciton transition rates are plau-
sible. To evaluate the optical transition amplitudes and dark
exciton recombination lifetimes quantitatively, one needs to
resort to elaborate numerical calculations such as solving the
Bethe-Salpeter equations combined with the ab initio band-
structure calculations, which will be topics of future studies.
As the vortex beams carry nonzero OAM, we also derive
optical selection rules for the exciton envelope functions with
higher magnetic quantum numbers complementary to the 1s
excitons.

A. Bright excitons

In the single-electron picture, the bright excitons are
formed when an electron and a hole of the same spins pair
via the Coulomb attraction. The optical selection rules for 1s
bright excitons in the dipole coupling regime are presented
in Table I. The OAM of the vortex beam is in the range of
|l| � 5. When the beam has no OAM (l = 0), the vortex beam
reduces to the fundamental Gaussian beam with a circular
polarization, and the well-known valley polarization optical
selection rules are recovered [9]; the σ−-polarized light can
only create an exciton at K valley and the σ+-polarized light
can only create an exciton at −K valley. The two valleys and
polarization directions are related through the time-reversal
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TABLE II. Bright A and B excitons in the quadrupole coupling
regime: Optical selection rules for bright excitons created by laser
beams carrying orbital angular momentum (OAM) and spin angular
momentum (SAM).

l (OAM) −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

−K A π � � π � � π � � π �
B π � � π � � π � � π �

K A � π � � π � � π � � π

B � π � � π � � π � � π

symmetry. In this case, the same selection rules apply to both
A and B excitons. When the OAM of light l is nonzero, the
selection rules are modified as seen in Table I. The allowed
and disallowed transitions with σ+ (σ−) polarization alternate
for a given valley and have a periodicity of three units of the
OAM of light, which is inherited from the threefold rotation
symmetry of the monolayer crystal. These results for bright
excitons agree well with the recent study [41] in which the
authors derived similar optical selection rules for the bright 1s
excitons. However, we are mainly focused on dark excitons
formation in these 2D crystals. We also show the selection
rules for bright excitons in the quadrupole coupling regime
in Table II. We can see that we can only create excitons with
particular values of l using the beams that are π -polarized,
i.e., directed along the light propagation axis. However, in
the paraxial wave regime, the Laguerre-Gauss beam is only
polarized in the transverse direction. Therefore, no optical
transitions are allowed in this regime for circularly polarized
light. Nonetheless, one can employ tightly focused vortex
beams that can have a polarization along the beam propaga-
tion axis [32].

B. Dark excitons

The spin-forbidden dark excitons or simply dark excitons
in this work are formed when an electron and a hole with
opposite spins pair via the Coulomb attraction. A light beam
cannot create these states because the electric field of light
does not couple to the electron spin. However, the electronic
bands are made not purely of one type of spin species, but
a mixture of both spin-up and spin-down species. This spin
mixing is due to the spin-orbit coupling and the interaction
with remote bands [26]. The conduction and valence bands,
therefore, contain a dominant spin component and a smaller
component for the opposite spin. The transition between these
bands is decided by the symmetry properties of the bands and
the light.

The optical selection rules for 1s dark excitons using vortex
beams with |l| � 5 are presented in Table III. Here, the optical
selection rules are entirely modified compared to the bright
exciton cases. We can see that no circularly polarized light
can excite dark excitons. Only when the beam is polarized in
the direction perpendicular to the monolayer plane can one
create dark excitons. For l = 0, only a dark A exciton can
be created with the π -polarized beam that is directed parallel
to the sample, which was demonstrated in photolumines-
cence experiments on tungsten-based TMDs [26]. However,
the optical transition corresponding to the dark B exciton is

TABLE III. Dark A and B excitons in the dipole coupling regime:
Optical selection rules for dark excitons created by laser beams
carrying orbital angular momentum (OAM) and spin angular mo-
mentum (SAM).

l (OAM) −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

−K A � � π � � π � � π � �
B � π � � π � � π � � π

K A � � π � � π � � π � �
B π � � π � � π � � π �

categorically forbidden for any polarization direction at l = 0.
For |l| > 0, dark B excitons can be excited with π -polarized
light at particular values of l .

As mentioned earlier, the quadrupole transitions can be
appreciable when a vortex beam is tightly focused and has a
high value of OAM resulting in a strong spatial field gradient
[39]. Observing that the selection rules have a fixed period-
icity with respect to the values of OAM, one can easily find
the allowed optical transitions at very high values of the beam
OAM where the quadrupole transitions may become consid-
erable. In Table IV, we present the selection rules resulting
from the quadrupole transitions for the A- and B-type dark
excitons. Both types of dark excitons can be readily created
with circularly polarized light at particular values of OAM. At
l = 0 or when the laser beam has a simple Gaussian profile,
the A-type dark exciton transitions are strictly forbidden. This
is the case for all values of OAM with l (mod 3) = 0. With
other finite OAM [l (mod 3) �= 0], A-type dark excitons can
be created with circularly polarized light, but the selection rule
is the same for both +K and −K valleys. On the other hand,
the B-type dark exciton transitions are valley-dependent. For
example, it is allowed with a σ+ (σ−) -polarized beam at the
K (−K ) valley at l = 0. Therefore, we can selectively create
dark B excitons at a particular valley with circularly polarized
light. This shows that the selection rules are manifestly altered
in the presence of a nonzero OAM of light, and they differ
starkly for the A and B dark excitons due to the symmetry
considerations stemming from not only the band but also the
spatial profile of the vortex beam, which is determined by the
value of its OAM.

C. Exciton envelope functions

The experimental and theoretical studies have shown that
the excitonic properties of 2D TMDs differ starkly from

TABLE IV. Dark A and B excitons in the quadrupole coupling
regime: Optical selection rules for dark excitons created by laser
beams carrying orbital angular momentum (OAM) and spin angular
momentum (SAM).

l (OAM) −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

−K A σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+

B σ+ � σ− σ+ � σ− σ+ � σ− σ+ �
K A σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+

B � σ− σ+ � σ− σ+ � σ− σ+ � σ−
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TABLE V. Bright A and B excitons in the dipole coupling
regime: Optical selection rules for the bright A and B excitons
created by laser beams carrying orbital angular momentum (OAM)
and spin angular momentum (SAM) for 1s and 2p± exciton envelope
functions.

l (OAM) −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

1s −K � σ− σ+ � σ− σ+ � σ− σ+ � σ−

K σ+ � σ− σ+ � σ− σ+ � σ− σ+ �
2p+ −K σ+ � σ− σ+ � σ− σ+ � σ− σ+ �

K σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+

2p− −K σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+

K � σ− σ+ � σ− σ+ � σ− σ+ � σ−

those in the bulk. This is mainly due to nonlocal Coulomb
screening in and out of the plane of the monolayer TMD.
For example, the optical reflectance measurements in a typ-
ical ML TMD, WSe2, show that the exciton series in these
materials clearly deviate from the 2D hydrogen series [42].
The two-photon excitation spectroscopy combined with the
many-body perturbation theory within the GW self-energy
approximation and the Bethe-Salpeter equations also attest
to the same [43]. However, these calculations also showed
that there is a one-to-one correspondence between the exciton
wave-function symmetry in ML TMDs and the 2D hydrogen
model. By treating the exciton problem in ML TMDs as a
2D hydrogen model for the sake of exciton wave-function
symmetry, we explore the higher-lying exciton states such as
2p+ and 2p−. The symmetries of 3d± exciton states can be
reduced to those of 2p∓.

In Table V, we tabulated the optical selection rules for
the bright A and B excitons of the 1s and 2p± series in
the dipole coupling regime. When the vortex beam has zero
OAM (l = 0), it reduces to an ordinary Gaussian laser beam
without a helical structure. Typically, in describing the general
features of excitons formed with ordinary light beams, one
can reasonably assume the electronic bands to be parabolic
and axially symmetric. In this description, the transition rates
are proportional to the square of the envelope function at the
origin, which describes the relative motion of the electron-
hole pair. For the first-class (or zeroth-order) transitions, only
the s-like excitons have nonzero value at the origin. Therefore,
typically, one does not observe p-like exciton signals in one-
photon spectroscopy [25]. However, in the case of monolayer
TMDs, the breaking of the axial symmetry in the ML crystal
in terms of the discrete threefold rotation causes the bands
(especially the valence bands) to develop trigonal warping
[28,44], and the band dispersion can no longer be described
using parabolic bands with an axial symmetry. Fundamentally,
this symmetry breaking and its consequences are included
in the band symmetry and its point group. Therefore, 2p
excitonic states are allowed by symmetry because there is a
mixing between 2s and 2p levels due to the trigonal warping
[45]. The strength of the 2p excitons is expected to be two
orders of magnitude weaker than that of 1s excitons [46]. In
the same table, we can also observe that both A- and B-type
bright excitons follow the same selection rules. The selection
rules for the 2p± excitons differ from those of the 1s excitons;

TABLE VI. Dark A excitons in the quadrupole coupling regime:
Optical selection rules for the dark A excitons created by laser
beams carrying orbital angular momentum (OAM) and spin angular
momentum (SAM) for 1s and 2p± exciton envelope functions.

l (OAM) −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

1s −K σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+

K σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+

2p+ −K � σ− σ+ � σ− σ+ � σ− σ+ � σ−

K � σ− σ+ � σ− σ+ � σ− σ+ � σ−

2p− −K σ+ � σ− σ+ � σ− σ+ � σ− σ+ �
K σ+ � σ− σ+ � σ− σ+ � σ− σ+ �

nevertheless, the order of the light polarization with respect to
the OAM stays the same—the pattern has the periodicity of
three units of OAM.

Because dark exciton states cannot be realized with cir-
cularly polarized light in the dipole coupling regime (see
Table III), we only display the selection rules for dark excitons
in the quadrupole regime in Tables VI and VII for the 1s and
2p± series. It is possible to create dark excitons with vortex
beams in the quadrupole coupling regime for various exciton
states. Using an appropriate vortex beam, we can selectively
excite 1s or 2p± dark A (B) excitons. In Figs. 2 and 3, we
pictorially show the allowed A and B dark exciton transitions
from the crystal ground state to the 1s, 2p+, and 2p− exciton
states for the vortex beam for a particular value of the light
OAM (l = 1). According to the diagrams, the selection rules
are the same in both valleys for the dark A excitons and differ
for the dark B excitons.

IV. CONCLUSION

Using symmetry arguments, we have derived optical se-
lection rules for the spin-forbidden dark excitons and bright
excitons in a monolayer TMD crystal excited by a vortex
beam. In the dipole coupling regime, creating A and B bright
excitons follows the same selection rules in individual valleys.
In addition to 1s excitons, we can also selectively create 2p±
excitons. In this work, we showed the necessary conditions for
creating various dark excitons in terms of the optical selection
rules. Specifically, the vortex beams can be used to create A
and B dark excitons in the quadrupole coupling regime, and
we provided the tables for optical selection rules for such
transitions. This demonstrates the usefulness of the vortex

TABLE VII. Dark B excitons in the quadrupole coupling regime:
Optical selection rules for the dark B-excitons created by laser beams
carrying orbital angular momentum (OAM) and spin angular mo-
mentum (SAM) for 1s and 2p± exciton envelope functions.

l (OAM) −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5

1s −K σ+ � σ− σ+ � σ− σ+ � σ− σ+ �
K � σ− σ+ � σ− σ+ � σ− σ+ � σ−

2p+ −K σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+

K σ+ � σ− σ+ � σ− σ+ � σ− σ+ �
2p− −K � σ− σ+ � σ− σ+ � σ− σ+ � σ−

K σ− σ+ � σ− σ+ � σ− σ+ � σ− σ+
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FIG. 2. Dark A excitons in the quadrupole coupling regime: The
diagram describes the allowed transitions from the crystal ground
state to the 1s and 2p± exciton states for the dark B excitons when the
vortex beam has l = 1 orbital angular momentum. The symmetries
of all higher-lying exciton states can be reduced to the symmetries of
these three states.

beams with a nonzero orbital angular momentum in gener-
ating otherwise forbidden dark excitons, which are long-lived
and have long coherence times.

The selection rules presented in this work, however, have
limitations. In addition to the relative motion of excitons con-
sidered in this work, vortex beams have also been recently
observed to affect the center-of-mass motion of excitons in
monolayer TMDs where the spectral energy peak [47], the
valley dynamics [48], as well as the spin dynamics [49] of
excitons were controlled by the OAM of a vortex beam.
The unifying theme of these reports was the importance
of the center-of-mass momentum of excitons in mediat-
ing the electron-hole exchange interaction, which brought
about the observed phenomena. To generalize the selec-
tion rules for the finite center-of-mass momentum excitons,
which can facilitate various scattering processes, including the
electron-hole exchange interaction, one needs to adopt a more
general theoretical framework, for example with an effective
Hamiltonian based upon the solution of the Bethe-Salpeter
equation [50,51].

Optically created quantum states such as these dark ex-
citon states can be a useful tool in many quantum device
applications. For example, this could be an efficient method
of transduction between semiconductor spin qubits with great
tunability for information processing and photonic qubits with
a long coherence time to use for communications.

FIG. 3. Dark B excitons in the quadrupole coupling regime: The
diagram describes the allowed transitions from the crystal ground
state to the 1s and 2p± exciton states for the dark B excitons when the
vortex beam has l = 1 orbital angular momentum. The symmetries
of all higher-lying exciton states can be reduced to the symmetries of
these three states.
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APPENDIX: SYMMETRY ANALYSIS

1. Band symmetry

We label the electronic bands of our effective two-band
(spin-split) model with their respective irreducible represen-
tations in the double-point group C3h relevant at the ±K
momentum points. To assign a specific irrep to the valence
(conduction) band, we construct a tight-binding wave func-
tion by symmetry-adapted atomic orbitals with respect to
the threefold rotation symmetry of the crystal. Applying the
threefold rotation operator C3 on this wave function gives an
eigenvalue that can be used to read off their respective irreps
from the character Table VIII.

According to the DFT band-structure calculations [28], the
valence (conduction) bands at the ±K momentum points in
the Brillouin zone of the ML TMD crystal are predominantly
made of the dx2−y2 and dxy (dz2 ) atomic orbitals of the tran-
sition metal atoms. Using these atomic orbitals as the basis
functions [9] that are symmetrized with respect to the three-
fold rotation operator C+

3 relevant to the monolayer crystal
symmetry, we can construct a tight-binding wave function
[53]. For the valence (conduction) bands denoted by α index
at the K momentum point of the reduced Brillouin zone, the
wave function that satisfies the Bloch theorem is then given
by

ψK
α (r) = 1√

N

∑
n

eiK·(Rn+ζ)φα (r − Rn − ζ). (A1)

Here, the summation is run over the lattice vectors Rn, and
ζ = ( 1

2 , 1
2
√

3
)a is the position of the transition metal atom rel-

ative to the hexagon center h inside the unit cell [see Fig. 1(b)].
The momentum point K = 2π

a ( 2
3 , 0) or the K valley is taken

relative to the Brillouin zone center � = (0, 0) [see Fig. 1(e)].
The valence band constructed from the atomic orbitals at
this valley is φv (r) ∝ 1√

2
(dx2−y2 + idxy) and the same for the

conduction band is φc(r) ∝ dz2 .
Thus, the eigenvalue of the operator C+

3 has two com-
ponents: one comes from the rotation of the atomic orbital
around its own center by 2π/3 degrees counterclockwise, and
the other comes from the change of the Bloch phase after the
threefold rotation. We note that the rotation operator affects
the phase change differently depending on the rotation center.
We took the hexagon center h to be the rotation center. One
could also equally take the transition metal atom to be the
rotation center. However, such a choice would alter the band
irreps, but the selection rules would not change. By apply-
ing the C+

3 on the valence band at the K valley C+
3 ψK

v (r) =
ηcψ

K
v (r), we obtain its eigenvalue ηc = μvνv , which has two

components coming from the change in the Bloch phase μv

and the rotation of the atomic orbital νv . In our case, we obtain
μv = e−i 2π

3 . The atomic orbital for the valence band can be
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TABLE VIII. Character table for the C3h double-group [52]. Here, ω = exp(i2π/3) and ω∗ = exp(−i2π/3).

C3h E C+
3 C−

3 σh S+
3 S−

3 Ē C̄+
3 C̄−

3 σ̄h S̄+
3 S̄−

3 Bases

�1 1 1 1 1 1 1 1 1 1 1 1 1 R
�2 1 ω ω∗ 1 ω ω∗ 1 ω ω∗ 1 ω ω∗ x+iy
�3 1 ω∗ ω 1 ω∗ ω 1 ω∗ ω 1 ω∗ ω x-iy
�4 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 z
�5 1 ω ω∗ −1 −ω −ω∗ 1 ω ω∗ −1 −ω −ω∗ (x+iy)z
�6 1 ω∗ ω −1 −ω∗ −ω 1 ω∗ ω −1 −ω∗ −ω (x-iy)z
�7 1 −ω −ω∗ i −iω iω∗ −1 ω ω∗ −i iω −iω∗ χ (1/2,+1/2)
�8 1 −ω∗ −ω −i iω∗ −iω −1 ω∗ ω i −iω∗ iω χ (1/2,−1/2)
�9 1 −ω −ω∗ −i iω −iω∗ −1 ω ω∗ i −iω iω∗

�10 1 −ω∗ −ω i −iω∗ iω −1 ω∗ ω −i iω∗ −iω
�11 1 −1 −1 i −i i −1 1 1 −i i −i
�12 1 −1 −1 −i i −i −1 1 1 i −i i

shown to be proportional to a spherical harmonic function as
φv (r) ∝ Y 2

2 (r) and νv = e+i 2π
3 . So the application of the C+

3

operator on Y 2
2 (r) yields νv = e−i 2π

3 2 ≡ e+i 2π
3 . Consequently,

the total eigenvalue ηv = 1. From the character Table VIII we
see that this eigenvalue of the C+

3 corresponds to the �1 irrep
for the valence band at the K valley without considering the
spin-orbit interaction.

Similarly, we can follow the same procedure for the con-
duction band. The eigenvalue component coming from the
Bloch phase change is the same in this case as well, μc =
e−i 2π

3 . The atomic orbital for the conduction band is also
proportional to a spherical harmonic function φc(r) ∝ Y 0

2 (r).
Therefore, the eigenvalue νc = e−i 2π

3 0 ≡ 1. Consequently, the
total eigenvalue ηc = e−i 2π

3 . From the character Table VIII
we see that this eigenvalue, on the other hand, corresponds
to the �3 irrep for the valence band at the K valley without
considering the spin-orbit interaction.

Taking the spin-orbit splitting of the valence band into ac-
count [54] gives the following irreps for the spin-split valence
bands: �1 ⊗ �7 = �7 and �1 ⊗ �8 = �8 (see Table IX). In
this case, the spin-split band with a positive spin-orbit inter-
action energy lies higher in the band diagram [see Fig. 1(f)].
Similarly, we can also label the spin-split conduction bands
with their respective irreps: �3 ⊗ �7 = �11, �3 ⊗ �8 = �9.
The order of the spin-split conduction bands can be inferred

TABLE IX. Multiplication table for the C3h double-group [52].

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

�1 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

�2 �2 �3 �1 �5 �6 �4 �10 �12 �8 �11 �7 �9

�3 �3 �1 �2 �6 �4 �5 �11 �9 �12 �7 �10 �8

�4 �4 �5 �6 �1 �2 �3 �9 �10 �7 �8 �12 �11

�5 �5 �6 �4 �2 �3 �1 �8 �11 �10 �12 �9 �7

�6 �6 �4 �5 �3 �1 �2 �12 �7 �11 �9 �8 �10

�7 �7 �10 �11 �9 �8 �12 �6 �1 �3 �4 �5 �2

�8 �8 �12 �9 �10 �11 �7 �1 �5 �4 �2 �3 �6

�9 �9 �8 �12 �7 �10 �11 �3 �4 �6 �1 �2 �5

�10 �10 �11 �7 �8 �12 �9 �4 �2 �1 �5 �6 �3

�11 �11 �7 �10 �12 �9 �8 �5 �3 �2 �6 �4 �1

�12 �12 �9 �8 �11 �7 �10 �2 �6 �5 �3 �1 �4

from the first-principles band-structure calculations because
the origin of the spin-orbit splitting in the conduction band
is nontrivial and due to the competition between the minority
orbitals coming from the chalcogen atom and the interaction
with other nearby bands [28]. The irreps of the bands at the
−K valley are related to those of the bands at the K valley by
the time-reversal symmetry.

2. Vortex beam profile
During the analysis of the spatial profile of the beam, we

make use of the cylindrical and spherical coordinates inter-
changeably. The vortex beam propagates along the z-axis,
which is perpendicular to the ML TMD crystal lying on the xy
plane [see Fig. 1(h)]. By placing a ML TMD crystal around
the beam waist (z ≈ 0), we can obtain a much simplified
spatial profile for the fundamental radial mode (p = 0) of the
Laguerre-Gauss beam where the complex Gouy phase van-
ishes. We limit our attention to the fundamental radial mode
(p = 0) as p does not affect the selection rules qualitatively.
In the vicinity of the beam vortex (ρ � w0):

Al (ρ, φ, z) =
√

2|l|+1

π |l|!
ρ|l|

w
|l|
0

eilφ. (A2)

In the spherical coordinates, the vortex beam assumes the
following form:

Al (r, θ, φ) =
√

2|l|+1

π |l|!
r|l|

w
|l|
0

(sin θ )|l|eilφ

= (−1)l

√
23|l|+3|l|!
(2|l| + 1)!

r|l|

w
|l|
0

Y l
|l|, (A3)

TABLE X. Symmetry of the beam polarization (SAM).

SAM Bases Irreps

σ− Y −1
1 (θ, φ) = 1

2

√
3

2π

x−iy
r �3

π Y 0
1 (θ, φ) = 1

2

√
3
π

z
r �4

σ+ Y +1
1 (θ, φ) = − 1

2

√
3

2π

x+iy
r �2
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TABLE XI. Symmetry of the beam OAM for l � 2.

OAM Bases Irreps

−2 Y −2
2 (θ, φ) = 1

4

√
15
2π

(x−iy)2

r2 �2

−1 Y −1
1 (θ, φ) = 1

2

√
3

2π

x−iy
r �3

0 Y 0
0 (θ, φ) = 1

2

√
1
π

�1

+1 Y +1
1 (θ, φ) = − 1

2

√
3

2π

x+iy
r �2

+2 Y +2
2 (θ, φ) = 1

4

√
15
2π

(x+iy)2

r2 �3

where we have used the identity (sin θ )|l|eilφ =
(−1)l2|l||l|!√4π/(2|l| + 1)!Y l

|l|. Here, Y l
|l| is a spherical

harmonic function of degree (order) |l| (l). The transformation
symmetry properties of the SAM and OAM of the light are
given in Tables X and XI, respectively.

3. Transition matrix element

Fermi’s Golden rule states that a direct optical transition
rate from the crystal ground state to the excited state is given
by

R = 2π

h̄

∑
X

| 〈�X |Ĥint|0〉 |2δ(EX − E0 − h̄ω), (A4)

where Ĥint is the light-crystal interaction Hamiltonian and ω

is the light frequency. The sum is taken over all final (exciton)
states. We assume that the linear center-of-mass momentum
of excitons is only determined by the in-plane momentum
of the light beam, which is negligible for normal incidence
[55]. Nevertheless, we do not rule out the possibility of the
transition rates being affected by the finite center-of-mass
momentum of excitons, which would require a more general
framework [50]. In this approximation, the exciton wave func-
tion is a triple product of the electron-hole envelope function,
and the electron and hole Bloch wave functions at the conduc-
tion and valence bands, respectively [56],

�X (re, rh) =
∑

k

Fnm(k)ψck(re)ψ∗
vk(rh), (A5)

where Fnm(k) = Rn|m|(k)eimφ is the Fourier transform of the
2D exciton envelope function 	nm(r). Because of the spheri-
cal symmetry of the radial function both in real and reciprocal
space, the phase factor entirely defines the symmetry of
the exciton envelope function. Because exp(imφ) ∝ [x +
sgn(m)iy]|m| in Cartesian coordinates, it can serve as the bases

TABLE XII. Basis functions and corresponding irreps of few
exciton envelope functions.

Envelope func. Bases Irreps

1s 1 �1

2p+ (x + iy) �2

2p− (x-iy) �3

3d+ (x + iy)2 �3

3d− (x − iy)2 �2

TABLE XIII. Symmetry of 1s envelope function, conduction
band, valence band, and exciton wave functions.

Type Valley Envelope Conduction Valence Exciton

Bright A −K �1 �12 �8 �2

+K �1 �11 �7 �3

Bright B −K �1 �10 �7 �2

+K �1 �9 �8 �3

Dark A −K �1 �10 �8 �4

+K �1 �9 �7 �4

Dark B −K �1 �12 �7 �6

+K �1 �11 �8 �5

for the irreducible representations of the group relevant at
individual valleys. Subsequently, one can assign an irreducible
representation to each exciton state in the series depending
upon the sign and value of m (see Table XII). For m = 0
(i.e., 1s exciton), the irreducible representation of the envelope
function is �1, while for m = ±1, it is �2 and �3, respectively.
For |m| > 1, it will be |m| direct products of �2 or �3. There-
fore, the triple direct product represents the symmetry of an
exciton state

�X = �env ⊗ �c ⊗ �∗
v . (A6)

In the Coulomb gauge, one can show that the interaction
Hamiltonian

Ĥint ∝ eikzr · εAl

≈ (−1)l

√
23|l|+3|l|!
(2|l| + 1)!

r|l|+1

w
|l|
0

(1 + ikz)Y s
1 Y l

|l|. (A7)

Here, the spherical harmonic function Y l
|l| (Y s

1 ) expresses the
orbital (spin) angular momentum of light. The right (left)
circularly polarized light is designated with s = +1(−1) val-
ues. When the light beam is polarized along the direction
perpendicular to the crystal plane, s = 0. As these functions
form bases for the irreps in the double-point group C3h rel-
evant at the ±K valleys, we can assign corresponding irreps
depending on the values of l and s. The symmetry properties
of the spin degree of freedom are represented by �2 (�3)
for s = +1 (−1) and �4 for s = 0 since Y ±1

1 ∝ (x ± iy) and
Y 0

1 ∝ z, respectively. These transformation properties of SAM

TABLE XIV. Total symmetry of a vortex beam with OAM of
|l| � 1 in the dipole and quadrupole regimes.

OAM SAM Dipole Quadrupole

−1 σ− �2 �5

π �6 �3

σ+ �1 �4

0 σ− �3 �6

π �4 �1

σ+ �2 �5

+1 σ− �1 �4

π �5 �2

σ+ �3 �6
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are tabulated in Table X. On the other hand, for the spherical
harmonic function Y l

|l| ∝ [x + sgn(l )iy]|l|, we can assign an
irrep for specific values of the beam OAM l . For example,
for l = 1 (−1) it is �2 (�3) and for l = 0 it is �1. For
high values of l one needs to compute a direct product of l
number of �2 or �3 using the irrep multiplication table for
the double-group of C3h. These transformation properties of
the vortex beam for a few values of OAM are tabulated in
Table XI. When the vector potential is expanded in powers of
kz (i.e., eikz = 1 + ikz + · · · ), its order has the symmetry of
�1 for the zeroth-order transition (electric dipole) and �4 for
the first-order transition (electric quadrupole plus magnetic
dipole). We note that the prefactors that are not dependent on
the orbital coordinates (x, y, z) do not affect the symmetry
transformations because they constitute a basis to the totally
symmetric irrep of the group, �1. Consequently, the symmetry
of the vortex beam is equal to

�beam = �order ⊗ �OAM ⊗ �SAM. (A8)

For an optical transition from the crystal ground state
to an excitonic state to occur, the transition matrix element
〈�X |Ĥint|0〉 must be nonzero (see Eq. (A4)). For that to hap-
pen, the triple direct product of the exciton state, vortex beam,

and the crystal ground state must span the totally symmetric
irrep of the group C3h, which is �1. The symmetry of the
crystal ground state is also represented by �1. Thus, the al-
lowed exciton transitions satisfy the following direct product
equation:

�∗
X ⊗ �beam ⊗ �1 = �1. (A9)

This statement is also known as the matrix element theorem
[25,57], which states that the symmetry of the final (exciton)
state must contain symmetry of the driving field operator for
an excitation from the ground state to occur.

In Table XIII, we tabulate the symmetry of the 1s bright
(and dark) exciton of A (and B) type. For the formation
of a particular type of exciton by a vortex beam, its to-
tal symmetry (Table XIV) should match that of the exciton
[Eq. (A9)]. By comparing the symmetry of a vortex beam
and that of a 1s exciton of a given type, one can obtain
the allowed transitions. For example, in the dipole coupling
regime, an ordinary Gaussian beam of light (l = 0) with σ−
(σ+) polarization can create a bright exciton only at K (−K)
valley. These are the famous valley selection rules for ML
TMDs [12].
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