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Understanding ice and water film formation on soil particles by combining density
functional theory and Casimir-Lifshitz forces
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Thin films of ice and water on soil particles play crucial roles in environmental and technological processes.
Understanding the fundamental physical mechanisms underlying their formation is essential for advancing
scientific knowledge and engineering practices. Herein, we focus on the role of the Casimir-Lifshitz force, also
referred to as dispersion force, in the formation and behavior of thin films of ice and water on soil particles
at 273.16 K, arising from quantum fluctuations of the electromagnetic field and depending on the dielectric
properties of interacting materials. We employ the first-principles density functional theory (DFT) to compute
the dielectric functions for two model materials, CaCO3 and Al2O3, essential constituents in various soils.
These dielectric functions are used with the Kramers-Kronig relationship and different extrapolations to calculate
the frequency-dependent quantities required for determining forces and free energies. Moreover, we assess the
accuracy of the optical data based on the DFT to model dispersion forces effectively, such as those between soil
particles. Our findings reveal that moisture can accumulate into almost micron-sized water layers on the surface
of calcite (soil) particles, significantly impacting the average dielectric properties of soil particles. This research
highlights the relevance of DFT-based data for understanding thin film formation in soil particles and offers
valuable insights for environmental and engineering applications.

DOI: 10.1103/PhysRevB.108.125434

I. INTRODUCTION

Ice and water, omnipresent in nature, play pivotal roles in
an array of environmental and technological phenomena, as
evidenced by multiple studies [1–3]. Therefore, comprehend-
ing the primary physical principles that dictate the formation
of thin ice and water films is crucial for numerous scientific
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pursuits and engineering applications. One specific example
lies within civil engineering, where thin films of ice and
water on soil particles bear significant implications [4]. They
influence the construction and maintenance of critical infras-
tructure, including building foundations, roads, and bridges.
Gaining insights into the generation and characteristics of
these films enables engineers to design structures with en-
hanced resistance to frost heave and thaw settlement damage.
Likewise, soil is a complex and dynamic system, and under-
standing its behavior at a fundamental level can lead to new
insights and discoveries in geology, chemistry, and physics.
Comprehension about the formation of thin films of ice and
water on soil particles is also critical for predicting and mit-
igating the impact of climate change on soil ecosystems. As
temperatures fluctuate, the formation and melting of ice and
water films affect the availability of nutrients and water to
plants, the stability of soil structure, and overall, the health
of soil micro-organisms [5]. In addition, having knowledge of
the formation of thin films of ice and water on soil particles is
important for advancing our understanding of basic questions
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such as frost heave [6], and, more generally, the physical and
chemical properties of soil. In recent years, there has been
growing interest in the role of the Casimir-Lifshitz force in
the formation and behavior of thin films of ice and water
in diverse (astro-)geological systems, covering ice seeding
particles in clouds [7,8] and the potential involvement of
insulating gas hydrate caps [9] in facilitating the persistence
of liquid water on celestial bodies like the moon Enceladus
[10]. This force, which arises from quantum fluctuations of
the electromagnetic (EM) field, also called dispersion force,
strongly depends on the dielectric properties of the interacting
materials, amongst other parameters.

Motivated by the above, herein, we investigate the ne-
cessity of accurate dielectric functions derived from density
functional theory (DFT), which can provide more informa-
tion of the optical response of materials than the standard
experimental measurements, for reliable modeling of disper-
sion forces between soil particles. Specifically, we present
the imaginary part of the dielectric functions (related to dis-
sipative properties of the materials) for CaCO3 and Al2O3,
vital components found in diverse soil compositions [11,12].
These are then used with a Kramers-Kronig relationship and
different extrapolations to calculate the real-valued dielectric
function evaluated at imaginary frequencies, which facilitates
the computation. This latter quantity is used to calculate
forces and free energies. Our main objective is to determine
how well-established low- and medium-energy optical spectra
from DFT can be combined with high-energy extrapolations,
aiming to confirm the validity of previous conclusions based
on the comparison between experimental optical data and the-
oretical forces [13]. Remarkably, our findings indicate that the
calculated interaction energies remain largely unaffected by
the specific approach employed for the low- and high-energy
extrapolations in a few significant scenarios.

Our DFT-based predictions indicate a dielectric constant of
8.7 for calcite, which aligns closely with the previously mea-
sured static dielectric constant range of 8 to 9 [14]. However,
our current research reveals a significant phenomenon: The
accumulation of moisture, in the form of water molecules, in
micron-sized layers on the surface of calcite particles found
in soil. This accumulation profoundly impacts the average
dielectric properties of soil particles. Notably, existing models
[14] utilized to estimate water content in soils rely on a min-
eral static dielectric constant value of 5 as an input parameter.
This poses a potential problem since calcite is a primary
constituent in various soils. Consequently, accurate modeling
of soil dielectric properties necessitates a comprehensive un-
derstanding of these properties for constituent materials such
as calcite, quartz, water, and others [14]. Given the significant
impact of calcite on various soil compositions, addressing this
issue becomes imperative.

II. THE SEMICLASSICAL THEORY FOR LIFSHITZ
INTERACTIONS

A. Some initial considerations

The semiclassical theory of intermolecular forces fol-
lows from the realization that much of the quantum
electrodynamics formalism [15,16] can be derived via

Maxwell’s equations with boundary conditions, and the sub-
sequent assignment to each quantized EM mode a zero-point
energy at zero temperature (or, at finite temperatures, the free
energy). Previously, it was believed that the complex Lifshitz
theory [16] required knowledge of the dielectric function over
the entire spectrum to calculate dispersion forces in layered
structures. However, van Kampen, Nijboer, and Schram [17]
made progress in simplifying the theory by demonstrating the
derivation of nonretarded interactions from a semiclassical ap-
proach. In 1969, Parsegian and Ninham [13] further advanced
this work, leading to numerous Lifshitz and Casimir interac-
tion calculations. Although outdated in light of subsequent
publications, Parsegian and Ninham’s pioneering paper [13]
remains significant. Their breakthrough was recognizing that
only partial knowledge of the optical spectrum of different
materials is sufficient to understand the van der Waals-Lifshitz
interaction between planar surfaces separated by intervening
material [13,18–20]. In what follows, we will explore similar
concepts to examine how approximations in DFT-based mate-
rial properties present in soil particles relate to the accuracy
of calculated Hamaker constants and Lifshitz interactions.
Our findings confirm that different high-frequency extrapola-
tions for evaluating DFT-derived dielectric functions are not
crucial for obtaining accurate Lifshitz forces and Hamaker
constants.

B. Optical quantities and their interrelationships

The real (ε′
i) and imaginary (ε′′

i ) parts of the dielectric
function (for material i = 1, 2, and 3) are related via the well-
known Kramers-Kronig relationships using Cauchy principal
(P) value integration [21]

ε′
i (ω) = 1 + 2

π
P

∫ ∞

0
d�

�ε′′
i (�)

�2 − ω2
. (1)

We can also use the well-known relationship to the refractive
index ni and the extinction coefficient ki [21],

√
ε′

i (ω) + iε′′
i (ω) = ni(ω) + iki(ω), (2)

which can be rewritten as

ε′
i (ω) = ni(ω)2 − ki(ω)2, (3)

and

ε′′
i (ω) = 2ni(ω)ki(ω). (4)

The Kramers-Kronig transformation requires a sufficiently
wide frequency range to obtain accurate estimates for the
complex-valued dielectric function. Ab initio DFT modeling
of the materials has the advantage over utilizing experimental
data by describing the response functions for much larger
frequencies. Normally they are calculated from 0 to ∼1.5 ×
1017 rad/s (i.e., ∼100 eV), while the measurements are re-
stricted to photon energies typically below some tens of eV
and by using different sources for the exciting beam. More-
over, the wider frequency range is important also to accurately
calculate the Casimir-Lifshitz forces.
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C. The Ninham-Parsegian model for Lifshitz forces

We are revisiting the Ninham-Parsegian [13] model for
Lifshitz interaction, closely following the approach outlined
in some remarkably lucid papers from the 1970s [13,18,19].
We aim to enhance our understanding of this model and its
implications. At zero temperature, the nonretarded (NR) van
der Waals-Casimir-Lifshitz interaction energy is simply the
change in zero-point energies (h̄ωλ/2) of the allowed quan-
tized EM surface modes when two surfaces are at a finite
distance d compared to when the surfaces are infinite apart,

ENR(d ) = h̄

2

∑
λ

∫
d2q

(2π )2
[ωλ(d ) − ωλ(∞)], (5)

where zero-point energies are summed over different allowed
(λ) modes and integration is done over the different wavevec-
tors (q). The EM surface modes arise from solving Maxwell’s
equations with appropriate boundary conditions. The
dispersion equation to be solved to obtain the surface modes
is in the nonretarded regime (i.e., short separations between
the plates, where one can ignore finite velocity of light) [18],

D(d, ω) = 1 − [ε1(ω) − ε2(ω)][ε3(ω) − ε2(ω)]

[ε1(ω) + ε2(ω)][ε3(ω) + ε2(ω)]
e−2qd = 0

(6)
with subscripts 1 and 3 representing the two interacting
materials, through material 2.

Following the generalized argument theorem [18] (see the
equations below), a much simplified formula for intermolec-
ular forces between surfaces can be presented. Assuming
an analytic function � with zeros at ωλ(d ), and that has a
derivative, which has singularities at ωλ(∞), complex analy-
sis produces [18]

∑
λ

h̄

2
[ωλ(d ) − ωλ(∞)] = 1

2π i

∮
C

h̄ω

2

dω

�(d, ω)

∂�(d, ω)

∂ω
.

(7)
Here, C is the closed path going down the imaginary axis and
closing in the right-hand plane forming a semicircle at which
all quantities vanish. Doing a partial integration, we find [18]

1

2π i

∮
C

h̄ω

2

dω

�(d, ω)

∂�(d, ω)

∂ω
= h̄

4π

∫ ∞

−∞
dξ ln[�(d, iξ )],

(8)
where ξ is a variable of integration (which at finite tempera-
tures it goes over to the so-called Matsubara frequencies). By
substituting the above expression in Eq. (5) we get

ENR(d ) ≈ h̄

4π2

∫ ∞

0
dqq

∫ ∞

0
dξ ln

[
1 − �NR

12 �NR
32 e−2qd

]
,

(9)
where the nonretarded (NR) reflection coefficients are given
as

�NR
i j = εi(iξ ) − ε j (iξ )

εi(iξ ) + ε j (iξ )
. (10)

This can be generalized when the finite speed of light is
accounted for by writing it as a sum of a transverse magnetic

(TM) and a transverse electric (TE) contributions [18],

E (d ) ≈ h̄

4π2

∫ ∞

0
dqq

∫ ∞

0
dξ{ln[GTM] + ln[GTE]}, (11)

GTM/TE = 1 − �
TM/TE
12 �

TM/TE
32 e−2γ2d , (12)

�TM
i j = γ jεi(iξ ) − γiε j (iξ )

γ jεi(iξ ) + γiε j (iξ )
, �TE

i j = γ j − γi

γ j + γi
, (13)

where γ 2
i = q2 + ξ 2εi/c2, and c is the speed of light.

At finite temperature T the zero-point energy of each mode
should be replaced with the Helmholtz free energy [18]

F (ω, T ) = kBT ln[2sinh(h̄ω/[2kBT ])] (14)

with kB the Boltzmann constant. A derivative of the Helmholtz
free energy expression, arising from a partial integration in the
same way as in Eq. ( 8), provides a factor coth[h̄ω/(2kBT )].
The coth factor has an infinite number of poles on the imagi-
nary axis. This leads to the fact that zero temperature and finite
temperatures can be dealt with a simple substitution [18],

h̄

2π

∫ ∞

0
dξ → kBT

∞∑
m=0

′, ξ → ξm = 2πkBT m/h̄, (15)

where the sum was originally from minus infinity to plus
infinity leading to a factor of 1/2 for the m = 0 term. The
quantity related to forces expressed in Matsubara frequencies
ξm can be obtained directly from ε′

i (ω) and ε′′
i (ω), i.e., from

materials optical properties, via well-known Kramers-Kronig
relationships [21],

εi(iξm) = 1 + 2

π

∫ ∞

0
dω

ωε′′
i (ω)

ω2 + ξ 2
m

. (16)

This quantity is real valued and decays smoothly towards one
leading to very simple calculations.

The leading nonretarded interaction energy [using Eq. (9)]
is [13]

ENR(d ) ≈ −A

12πd2
, (17)

with A a Hamaker constant for the system. We will use the
finite-temperature nonretarded expression for the Hamaker
constant,

A = −6kBT
∞∑

m=0

′
∫ ∞

0
dqq ln

[
1 − �NR

12 �NR
32 e−2q

]
. (18)

The measurements by Haydon and Taylor [22] of the en-
ergy were in the past [13] used to estimate the Hamaker
constant for water surfaces separated by a biomolecular lipid
film. The measured energy was −3.94 × 10−6 J/m2 for a
film of estimated thickness 56 Å. To test the Lifshitz theory,
one requires to model dielectric functions that are derived
from optical data or, in recent years, density functional theory
(DFT) has become a commonly employed method. Within
the Ninham and Parsegian model [13] the dielectric functions
ε(ω) of water, oil (resembling the lipid membrane), and many
different materials can be modeled as

ε(ω) = 1 + crot

1 − iω/ωrot
+

∑
j

c j

1 − (ω/ω j )2 + iγ jω
, (19)
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where ω j are characteristic frequencies and c j are propor-
tional to the oscillator strengths. For calculations of the
Hamaker constant, one requires the dielectric functions for
imaginary frequencies,

ε(iξ ) = 1 + crot

1 + ξ/ωrot
+

∑
j

c j

1 + (ξ/ω j )2
, (20)

where the damping term (γ j) on the imaginary frequency
axis can usually be ignored since bandwidths are generally
much smaller than the absorption frequencies. The rotational
relaxation (ωrot) occurs at very low frequencies. In the far
ultraviolet, both water and the oil film behave as a simple
plasma with

ε(iξ ) = 1 + ω2
P

ξ 2
, (21)

being ω2
P = 4πNe2/m the plasma frequency with N , e, and

m the electron density, charge, and mass, respectively. Since
water and oil have similar electron densities [13] contribu-
tions from the ultraviolet frequency region and higher were
ignored. The experimental Hamaker constant for water sur-
faces separated by a biomolecular lipid film was (within large
error estimates) equal to A ∼ 4.66 × 10−21 J [13,22]. Testing
different parameters [13] suggested that removing the ultravi-
olet contribution gave a Hamaker constant A ∼ 3.9 × 10−21 J,
while varying the refractive index of oils lead to A ∼ 4.5 −
5.4 × 10−21 J.

Since the 1970s, numerous groups worldwide have con-
ducted extensive comparisons between theory and experi-
ments analyzing the effect of the accuracy of the optical data
in the calculation of dispersion forces. Despite this, the funda-
mental concepts remain largely unchanged. In the following
discussion, we will demonstrate that for a few selected model
examples, the treatment of the extrapolated high-frequency
tail in DFT-based dielectric functions for imaginary frequen-
cies is not as critical as initially anticipated when it comes to
accurately describing Hamaker constants and Lifshitz interac-
tions.

III. DFT MODELING OF THE SOLIDS

The modeling of Al2O3 and CaCO3, essential components
in diverse soil compositions, are performed within the DFT
and with the projector augmented wave (PAW) method for
the GW -type core potentials, as implemented in the Vienna
Ab initio Simulation Package (VASP) [23]. The valence con-
figurations for the atoms are chosen to C: 2s2 p2, O: 2s2 p4,
Al: 2s2 p63s2 p1, and Ca: 3s2 p64s2. As these compounds are
wide-gap insulators, we employ as default the generalized gra-
dient approximation, revised exchange-correlation functional
for solids (PBEsol), developed by Perdew et al. [24], the band
gap energy is corrected with a hybrid functional. The unit
cells are described by ten-atom trigonal lattices, and the ir-
reducible Brillouin zones are sampled by a 6 × 6 × 6 k mesh.
A quasi-Newton (variable metric) algorithm is utilized for the
structural relaxation with a cut-off energy of 800 eV, to an
accuracy of 10−4 eV/Å for the forces on all atoms. Thereafter,
the charge density is generated with a 600 eV cut-off energy,
using the linear tetrahedron integration, and iterated in the

electronic self-consistent loop to reach an energy accuracy
of 10−6 eV. The irreducible representations of the electronic
eigenstates are determined by the open-source program Irvsp
[25].

From the electronic structure, the imaginary part ε′′(ω)
of the macroscopic dielectric function is calculated. With
the independent single-electron eigenfunctions, the response
due to electronic transitions is described as the joint density-
of-states modulated by the optical matrix elements. In the
long-wavelength limit, the latter reads

ε′′ ele
αα (ω) = lim

q→0

4π2e2

V�q2

∑
v,c,k

δ(εc,k − εv,k − h̄ω)

× 〈
uc,k+eαq

∣∣uv,k
〉〈

uv,k
∣∣uc,k+eαq

〉
, (22)

in the three Cartesian directions eα . Here, V� is the unit-cell
volume and uv/c is the cell periodic part of the valence (v)
or conduction (c) state eigenfunction with the energy εv/c,k.
Local field effects are neglected. As the two compounds are
insulators, we perform the k-space summation by Blöchl’s
linear tetrahedron method. Since the accuracy of the calcu-
lation can strongly depend on the size of the k-point grid [26],
we use a 12 × 12 × 12 k mesh although the values of the
low-frequency dielectric constants are sufficiently converged
already for the charge density from the 6 × 6 × 6 k mesh.

Alumina and calcite are ionic compounds, and we, there-
fore, consider the local lattice dynamics. The vibrations
associated with the longitudinal optical (LO) modes build up
an electric field that screens the carriers. The dipole-active LO
phonons and the corresponding transverse optical (TO) modes
contribute to the dielectric response. In the long-wavelength
limit, the phonon dispersion is approximated to be constant,
and the ionic response is modeled as Lorentz oscillators,

ε′′ ion
αα (ω) =

∑
j

S j ω
2
TO� jω(

ω2
TO − ω2

)2 + �2
j ω

2
. (23)

� j is the damping and S j is the oscillator strength of the
jth mode in its vibration direction. We employ the density
functional perturbation theory to compute the Hessian matrix
of the ionic displacements, incorporating the symmetry of the
crystals.

The total imaginary part of the dielectric function is the
summation of the two contributions. The corresponding di-
electric response function for the real part of ε′(ω) is obtained
from the Kramers-Kronig relation. For the average response
functions, we take the arithmetic mean of the three Cartesian
directions.

IV. RESULTS

A. Crystalline structures and dielectric response
functions of alumina and calcite

Both Al2O3 and CaCO3 crystalize in the space group
structure R3c (D6

3d ; No. 167), based on the ditrigonal-
scalenohedral point group with rhombohedral Bravais lattices.
Since the accuracy of split-off energies in the electronic
structure can depend on bond lengths and bond angles
[27], we relax the crystalline structures with four different
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TABLE I. Lattice constants a and c of alumina and calcite de-
scribing the hexagonal structures. The direct band-gap energy E dir

g,�

refers to the � point.

LDA PBE PBEsol HSE Expt.

Al2O3

a [Å] 4.728 4.809 4.777 4.742 4.766 [28]
4.756 [29]
4.600 [30]

c [Å] 12.884 13.122 13.018 12.950 13.010 [28]
12.982 [29]
12.993 [30]

E dir
g,� [eV] 6.45 5.85 6.02 8.7 8.8 [31]

9.1 [32]

CaCO3

a [Å] 4.939 5.039 4.990 4.990 4.988 [33]
4.990 [34]
4.984 [35]

c [Å] 16.302 17.225 16.841 17.097 17.068 [33]
17.064 [34]
17.056 [35]

E dir
g,� [eV] 5.67 5.63 5.70 8.0 5.65–6.35 [36]

6.9–7.7 [37]

exchange-correlation functionals; see Table I, where the two
lattice constants describe hexagonal lattices.

As expected, the local density approximation (LDA)
overbinds by about 1%, while the regular generalized gradi-
ent approximation (PBE) underbinds by about 1%. Both the
revised PBE for solids (PBEsol) and the hybrid functional
(HSE with 30% Hartree-Fock exchange) agree very well with
the experimental data. Since we want to compute the elec-
tronic transitions on a dense k mesh and to energetically very
high states, we choose to use the PBEsol functional. Lattice
parameters for the rhombohedral lattices are a = 5.137 Å
and γ = 55.34◦ for Al2O3 and a = 6.307 Å and γ = 46.57◦
for CaCO3, with the PBEsol potential. Although the two
oxides crystallize in the same space group symmetry, they
have rather different crystalline structures (see Supplemental
Material (SM) [38]), which mainly depends on the cation sizes
and valence configurations. For alumina, each O atom binds to
two Al atoms with the bond length 1.86 Å and to two other Al
atoms with the bond length 1.97 Å. For calcite, each O atom
has a bond to one C atom with the bond length 1.29 Å and to
two Ca atoms with the bond length 2.34 Å.

The underestimated gap energy for the PBE potential is
adjusted by a constant energy shift of the conduction bands
so that the �-point gap corresponds to that of HSE. The two
compounds are wide-gap insulators, and we do not expect any
valence-conduction band hybridization that could otherwise
affect the band dispersion [39] and thereby also the transition
probability. The differences in the bond character are reflected
in the electronic structures. Al2O3 is a insulator with a direct
gap at the � point, and we estimate the gap energy to Edir

g ≈
8.7 eV. CaCO3, on the other hand, has an indirect gap of
E ind

g ≈ 7.3 eV, located close to the k point ( 1
2 , 1

2 , 0), for which
the direct gap is Edir

g ≈ 7.4 eV.

FIG. 1. Dielectric function of Al2O3 and CaCO3. Left panel de-
scribes the vibrational contribution and the right panel describes the
electronic transitions.

Further, both compounds have the same single-group ir-
reducible representations at the � point for the energetically
lowest conduction state (a single degenerate �+

1 ) and the
topmost valence state (single degenerate �−

2 ). However, while
the second highest valence state in alumina is a double de-
generate state (�−

3 ) only 0.04 eV below the topmost valence
state, the corresponding state in calcite is single degener-
ate (�+

2 ) 0.48 eV below the topmost �-point valence state.
The irreducible representations for three symmetry points are
presented in the SM [38]. Calcite has more flat conduction
band dispersion, and one could expect a stronger onset to the
electronic dielectric response for this compound.

The dielectric response functions for alumina and calcite
are presented in Fig. 1. The response due to electronic transi-
tions contributes above the direct-gap energy on the eV scale,
while the lattice dynamics contributes on the 0.1-eV scale;
here, below 0.2 eV. We find that the PAW potential for Al with
the electronic valence configuration 2s2 p63s2 p1 easily yields
incorrect vibrational frequencies, and we therefore instead use
the corresponding potential with the valence configuration
3s2 p1. As expected, CaCO3 has a strong electronic response
right above 9 eV, while Al2O3 has a smoother increase of the
response up to the energy 14 eV. Since CaCO3 constitutes both
a lighter and a heavier cation, it is natural that the compound
has vibrations that are both lower and higher in frequency
than those of Al2O3. From the figure, one can observe that
the two compounds have rather different dielectric functions,
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TABLE II. The static ε0 and high-frequency ε∞ dielectric con-
stants in the perpendicular ⊥ and parallel || (z) direction. The average
(avg.) data represents the arithmetic mean.

DFT Expt. [40]

⊥ || avg. ⊥ ||
Al2O3

ε0 9.3 11.4 10.0 9.34 11.54
ε∞ 3.0 3.0 3.0

CaCO3

ε0 9.2 7.8 8.7 8.68 8.31
ε∞ 2.9 2.3 2.7

both in the regime of the vibrational contribution and for
higher frequencies where the electronic transitions contribute.
In the SM [38], we present the dielectric functions in more
detail for both CaCO3 and Al2O3, showing that there is only
a moderate difference between the components in the per-
pendicular and the parallel directions. That is also obvious
for the dielectric constants (Table II). Both compounds have
high-frequency constants from the electronic contribution that
is close to 3. The optical vibration modes contribute to the
static dielectric constant; this is somewhat larger for Al2O3

(∼7.0) compared to CaCO3 (∼6.0). One can notice that the
main difference is that Al2O3 has a much larger response in
the parallel direction. Overall, there is a good agreement with
the experimental findings [40] and the average static dielectric
constant is calculated to be 10.0 in Al2O3, and 8.7 in CaCO3.

B. Sensitivity of DFT-based Hamaker constants
for selected calcite systems

Before we set out to exploit the calculated dielectric func-
tions at imaginary frequencies, we first explore how sensitive
the results are to the low and high-frequency extrapolations
methods.

The dielectric response for the Matsubara frequencies
ε(iξm) is obtained from the Kramers-Kronig relation as in
Eq. (16). The calculated electronic structure from DFT im-
plies energies up to about 250 eV, much higher than energies
reached by standard experimental measurements with el-
lipsometers (typically, well below 10 eV). Higher energies
have only small probability for excitation. However, in order
to include high-energy transitions, we extrapolate the high-
frequency tail of ε(iξm) with a 1/ξ 2

m behavior up to about
10 keV. With that extrapolation we can analyze the accuracy
of the calculations of the Hamaker constants with respect to
the number of Matsubara frequencies. Moreover, while the
default calculations include semicore states down to 100 eV
below the valence band maximum, we have also generated
spectra of the dielectric functions with no semicore states for
the cations Al and Ca, i.e., 3s2 p1 and 3p64s2 valence configu-
rations, respectively. Those spectra are denoted by “no SC”.

To analyze the importance to consider the optical phonons
for small Matsubara frequencies (typically, m < 4), we have
generated diectric functions for which the vibrational contri-
bution is completely neglected (those spectra are denoted by

TABLE III. The Hamaker constants at 273.16 K using Eq. (18),
A123 and its contributions from the zeroth Matsubara term A123;0 for
various three-layer configurations with CaCO3 (1)-ice (2)-vapor (3)
for different models CaCO3 and using different cut-off Matsubara
number (mmax).

Model mmax A123 (10−20J) A123;0 (10−20J)

Default 250 –3.088 0.260
500 –3.332 0.260

1000 –3.385 0.260
1500 –3.391 0.260
2000 –3.392 0.260

No SC 2000 –3.459 0.260
No vib 2000 –3.325 0.306
No vib with ε0 2000 –3.371 0.260

“no vib”) but where the static dielectric constant is included
for the m = 0 term (denoted by “no vib with ε0”).

Parsegian and Ninham’s study [13] in 1969 provided clear
evidence that having partial knowledge of the optical spectra
could sometimes be enough to make reasonable estimates
of Hamaker constants and calculate the corresponding force.
Assuming accurate model calculations using DFT, the ex-
trapolation schemes mentioned earlier in this discussion yield
very similar Hamaker constants for the calcite-ice-vapor sys-
tem, with an accuracy of approximately 10%. According to
the findings presented in Table III, the predicted values for the
calcite (1)-ice (2)-vapor (3) configuration are approximately
A123 ∼ −3.39 × 10−20 J and A123;0 ∼ 0.26 × 10−20 J, where
A123;0 is the contribution from the zeroth Matsubara term of
A123.

Significant variations in precision are observed when cal-
culating the Hamaker interaction for calcite-vapor-calcite at
different temperatures, as indicated in Table IV. At lower tem-
peratures, a greater number of Matsubara terms is required to
cover the necessary upper-frequency range for achieving com-
parable accuracy. Utilizing only 500 Matsubara terms could
result in a substantial 25% error in the calculated Hamaker
constant. In Table IV, the “default”, “noSC”, and “no vib
with ε0” approximations all yield identical zero-frequency
Hamaker constants (as shown in the first row of Table IV).
However, when vibrations are disregarded, the zero-frequency
Hamaker constant experiences a decrease of 0.045, 0.185,

TABLE IV. The Hamaker constants at different temperatures us-
ing Eq. (18), A123 (10−20J), in three-layer configurations with CaCO3

(1)-vacuum (2)-CaCO3 (3) using different cut-off Matsubara number
(mmax) for the default dielectric function. The case with mmax = 0
corresponds to the zero-frequency Hamaker constant.

70 K 370 K 1500 K
Model mmax A123 (10−20J) A123 (10−20J) A123 (10−20J)

Default 0 0.0505 0.267 1.082
500 10.441 14.316 14.970

1000 13.051 14.430 14.972
1500 13.802 14.442 14.972
2000 14.078 14.445 14.972
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TABLE V. Parametrization of the average dielectric function of continuous media ε(iξ ) at imaginary frequencies for Al2O3 and CaCO3 as
calculated with first-principles calculations. In this table frequencies are given in eV. The largest difference between fitted and calculated ε(iξ )
is about 0.08%.

Cj and ω j (in eV) for different compounds

Al2O3 CaCO3

Modes (ω j) Coefficient (Cj) Modes (ω j) Coefficient (Cj)

0.0478 3.4263 0.0038 0.0879
0.0684 3.5999 0.0127 2.9661
1.1552 0.0015 0.035 2.6176
13.0704 1.0213 0.1696 0.4434
20.5561 0.8539 1.6088 0.0023
48.8508 0.0929 10.3375 0.8039
119.7988 0.0295 18.9299 0.6241
1288.9534 0.0 34.3621 0.2317
67441.835 0.0005 71.2998 0.0
102566.9502 0.0 81.1893 0.0221
407868.9726 0.0 84.7809 0.0
889915.6853 0.0 114.126 0.0
1723890.6517 0.0 124.3659 0.0
3447781.2791 0.0 241.5762 0.0005

and 0.749 × 10−20 J at temperatures of 70 K, 370 K, and
1500 K, respectively. It is crucial to highlight, however, that
when considering different material combinations, such as
cases where the dielectric functions of the materials intersect
at certain frequencies or for the large separation behavior of
gapped metals [41], the results become more reliant on the
chosen approximations.

C. Parametrized ε(iξ) for optimised data sets for
calcite and alumina

To enable simple use of the calculated dielectric func-
tions to study, for example, Casimir-Lifshitz interactions, we
present parametrized average dielectric functions (see Table V
for parameters) using a 14-mode oscillator model [42], ex-
ploiting Eq. (20) but without any rotational relaxation. To be
explicit we use the following model:

ε(iξ ) = 1 +
∑

j

Cj

1 + (ξ/ω j )2
. (24)

Here ω j are the characteristic frequencies (given in eV in the
Table V) and Cj are proportional to the oscillator strengths.
For ice and cold water (T = 273.16 K) we use parametrized
dielectric functions given in the literature [7,8,43].

D. Casimir-Lifshitz force near alumina and calcite surfaces

The relationship between the retarded (distance-
dependent) Hamaker constant and the retarded free
energy, denoted as Aret (d ) and F (d, T ) respectively, can be
expressed as Aret (d ) = −12πd2 × F (d, T ). This connection
is illustrated in Fig. 2 for various material combinations,
including alumina-vacuum-alumina, calcite-vacuum-calcite,
alumina-water-vapor, and calcite-water-vapor. The first two
cases unequivocally confirm the well-known phenomenon
where the interaction between identical surfaces is attractive
and influenced by the material properties of the surfaces.

Moreover, in situations involving the interface between a
solid and a region with water vapor, there is a possibility
of a short-range repulsion transitioning into a long-range
attraction, that enables the formation of thin water films. In
the latter two cases, where water serves as an intermediate
layer, theoretical analysis suggests that in the presence of
moisture (water vapour), a thin layer of water can indeed
form on the outer surface of calcite, such as on soil particles.
The corresponding free energy for these cases are presented
in Fig. 3. Interestingly, the systems exhibit energy minima
for finite-sized water layers, further supporting the notion
of water formation at these interfaces. At short separations,
specifically when the finite velocity of light can be considered

FIG. 2. The retarded Hamaker constant Aret (d ) = −F (d, T ) ×
12πd2 for alumina-vacuum-alumina (red curve), calcite-vacuum-
calcite (green curve), alumina-water-vapor (blue curve), and calcite-
water-vapor (black curve). Temperature is 273.16 K, and other details
are given in the text. The corresponding free energies in the region
where blue and black curves cross over to positive values are studied
in Fig. 3.
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FIG. 3. The retarded free energy per unit area for two cases
studied in Fig. 2 where energy minima are predicted: alumina-
water-vapor (blue curve), and calcite-water-vapor (black curve).
Temperature is 273.16 K, and other details are given in the text.

infinite, the product of reflection coefficients is proportional
to

(ε1 − ε2)(ε3 − ε2)

(ε1 + ε2)(ε3 + ε2)
. (25)

This observation suggests that in cases where the dom-
inating frequency range exhibits dielectric functions, which
fulfill ε1 > ε2 > ε3, a repulsive interaction can occur. On the
other hand, when the intermediate layer possesses a higher (or
lower) dielectric function than both surrounding media within
the dominant frequency range, an attractive force emerges.
Analyzing the dielectric functions of water (which has an
exceptionally high zero-frequency dielectric constant) and
calcite (whose dielectric function surpasses that of water at in-
termediate and high frequencies), we find that, through energy
minimization, a Casimir-Lifshitz force can induce the forma-
tion of moisture on the surfaces of calcite (and alumina). This
phenomenon, driven by Casimir-Lifshitz interactions, leads
to the wetting of soil particles by water. In the subsequent
subsection, we will further discuss how this Casimir-Lifshitz-
induced water wetting affects the effective dielectric function
of calcite soil particles.

E. Application to water and ice formation on calcite surfaces

In a pioneering paper, Elbaum and Schick [44] predicted
that a minimum in the dispersion free energy of a thin liq-
uid water film growing on ice would provide an explanation
for observed partial melting on ice surfaces near the triple
point of water. Following improvements of the modeling of
water and ice dielectric functions [7,8,43] further studies ex-
plored this idea. These studies include ice melting and ice
formation on ice nucleating particles in the atmosphere [7,8],
the modeling for anomalous stability of gas hydrates in ice
cold water [9,45], and ice formation/melting [43,46] on cold
water surfaces. Some additional effects of temperature and
intermolecular forces on ice adhesion have been discussed
by Emelyanenko et al. [47]. An interesting idea to explore
is the understanding of how the accumulation of ice-cold
water or ice from available water vapor outside a calcite

FIG. 4. The estimated effective dielectric constants for ice-
coated calcite sphere (red dashed curve) and for water-coated calcite
sphere (blue solid curve), both curves as functions of the bare calcite
radius. Details are given in the text.

surface occurs at the triple point of water. This phenomenon
is predicted to lead to the formation of either a thin water or
ice film, resulting in a reduction of the overall free energy.
Additionally, we identify a previously overlooked correction
to the effective dielectric function of soil particles associ-
ated with this process. Addressing this aspect is crucial for
the advancement of soil science models. To investigate this
phenomenon, we utilize the dielectric functions for ice and
cold water proposed by Luengo-Márquez and MacDowell [7].
The prediction based on Casimir-Lifshitz theory is that the
growth of almost micron-sized ice or water layers is favored.
For each calcite model considered in Table III, the combina-
tion of calcite-ice-vapor results in an equilibrium ice layer
with thickness deq

2 . Utilizing the retarded finite-temperature
Casimir-Lifshitz theory, the values for deq

2 are found to be
0.151 µm, 0.153 µm, 0.121 µm, and 0.141 µm for the “default”
calculations, “default noSC”, “no vib”, and “no vib with ε0”,
respectively. These estimated thicknesses of approximately
0.12 µm to 0.15 µm are not significantly influenced by the
number of terms included in the Matsubara summation, as
long as a minimum of 500 terms is considered. Using the
best available models for the dielectric functions of calcite and
cold water [7] we find that above the freezing point of water,
the Lifshitz interaction promotes the existence of water vapor
accumulating on the calcite surface leading to an ∼0.14 µm
water film on the surface of soil particles. As an example,
a calcite particle with a radius of ∼1 µm (neglecting cur-
vature effects for demonstration purposes) could experience
a volume increase of around 48% due to the presence of
the wetting film. This phenomenon has implications for the
effective dielectric function of soil, even in the absence of
liquid water but in contact with water vapor. Notably, based
on volume-averaged theory, the effective dielectric constant of
a water-coated calcite particle would be approximately 34.8
for the specific example provided. Similarly, an ice coating
with a thickness of approximately 0.15 µm would result in
an effective dielectric constant of approximately 37.1. Fig-
ure 4 illustrates the estimated effective dielectric constants for
calcite spheres coated with either ice or water as a function
of the calcite particle’s radius. Above the freezing point of
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water, water can adsorb onto soil particles, while at the triple
point of water, the growth of ice, water, or a combination
thereof depends on the initial conditions. It is noteworthy
that even for a calcite particle with a radius of 100 µm, the
effective dielectric constant is enhanced by approximately 4%
compared to the dielectric constant of pure calcite.

V. CONCLUSIONS

Lebedew, in 1894, likely pioneered the connection between
intermolecular forces and radiation processes [48,49]. The
theory linking optics and forces was subsequently established
by Lifshitz and colleagues in their seminal papers [15,16].
Initially, incorporating optical data across a broad frequency
range seemed challenging for achieving highly accurate force
calculations. However, Parsegian and Ninham demonstrated
that a few oscillator models for the dielectric function could
yield reasonably good agreement between theory and ex-
perimental forces [13,18,19,50,51]. In our current study, we
employed DFT to investigate the optical properties of two
significant components, CaCO3 and Al2O3, commonly found
in diverse soil compositions. Our main objective was to in-
vestigate the influence of accurately describing the optical
properties of these components on the formation of thin layers
of water and ice on soil particles. This investigation carries
significant scientific and engineering implications related to
soil dynamics and related phenomena. Intriguingly, our find-
ings reveal that the extrapolations made for low and high
frequencies have minimal impact on the Hamaker constants
and Lifshitz interactions. Importantly, all the extrapolations
we investigated were reasonably accurate, as an inadequate
extrapolation would lead to erroneous predictions for Casimir-
Lifshitz forces and Hamaker constants, as evidenced by the
divergent outcomes for the two materials. However, it is es-
sential to acknowledge that the accuracy of these conclusions

may vary for other systems, especially those characterized by
crossings of different ε(iξ ) functions at specific frequencies
[44,52] or involving metallic components [41,53]. This paper,
along with prior research, establishes a direct link between
optics derived from DFT and dispersion forces and their asso-
ciated energies. We analyze these interactions and their impact
on the formation of water and ice layers on soil particles
in contact with moisture. Our findings reveal the previously
unrecognized significance of this phenomenon in assessing
soil water content, as highlighted by Lebron et al. [14]. Fur-
thermore, our predictions hold substantial implications for
future models concerning frost heave [6], as well as related
effects such as cement storage and degradation in moist envi-
ronments [3].
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