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Effects of uniaxial and shear strains on the electronic spectrum of Lieb and kagome lattices
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We systematically study the effects of the shear and uniaxial strains, applied along different crystallographic
directions, on the electronic spectrum of Lieb and kagome lattices by using the tight-binding model with a
general Hamiltonian that describes both lattices by means of only one control parameter. Our findings show
that such deformations do not open an energy gap in their electronic spectra but can cause (i) approximation of
the energy cones, (ii) anisotropy in the energy levels, and (iii) deformation of the flat band, such that the triply
degenerate Dirac point in the Lieb lattice transforms into two doubly degenerate Dirac points. By analyzing
hypothetical strain cases in which the values of the hopping parameters do not change, we observe that effects
such as deformation in the flat band and division of the triply degenerate Dirac point are only due to the hopping
parameter changes caused by the strain. Moreover, we identify cases in which there are non-null strain-induced
pseudovector potentials in Lieb and kagome lattices.
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I. INTRODUCTION

The discovery of many interesting properties of two-
dimensional (2D) crystals has led in recent years to renewed
interest in the study of structures such as the Lieb and
kagome lattices. In these systems a conical Dirac energy
band coexists with a flat (nondispersive) band. The de-
velopment of experimental techniques for the synthesis of
electronic and chemical structures with such lattice config-
urations has motivated research on electronic-based lattices
[1,2], waveguide-based photonic systems [2–12], and even
structures formed by organic bonds [13–24]. In this context
this review paper [25] presents some such artificial kagome
materials connecting the theoretical ideas and experimental
observations, as well as the bond between quantum interac-
tions within kagome magnets and kagome superconductors,
and their relation to the concepts in topological insulators,
topological superconductors, Weyl semimetals, and high-
temperature superconductors, whose topics are at the cutting
edge of research into topological quantum matter. Such exper-
iments have allowed the verification of theoretical predictions
[26–28], such as the coexistence of Dirac-like cones and flat
bands [29–33], and have encouraged theoretical investiga-
tions of the effects of deformation on the optoelectronic and
magnetic properties of these structures. Recently, there have
been investigations of the stability of the flat band and the
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band-touching points due to breathing anisotropy [34] and
disordered flat bands in the kagome lattice [35], as well as
multifunctional twisted-kagome lattices [36], strain-induced
topological magnon phase transitions [37], and strain-induced
pseudomagnetic fields in kagome crystals [38]. Similar stud-
ies have explored the dispersion relations of strained and
complex Lieb lattices [39] and strain-induced superconductor-
insulator transitions on a Lieb lattice [40].

In addition, it has been shown that the Lieb and kagome
lattices are interconvertible by applying strain along the diag-
onal direction [15,16,41–44]. So far there is a lack of studies
that present a generic tight-binding Hamiltonian that describes
the effect of strain on both Lieb and kagome lattices. Refer-
ences [15,16,41–44] include strain applied along the diagonal
direction of the lattice in order to induce the interconvert-
ibility between Lieb and kagome lattices. These studies have
demonstrated that a generic lattice (defined in Sec. SI of the
Supplemental Material [45]) has a unit cell composed of three
sites at the basis (labeled as A, B, and C), which, according to
the angle choice ranging from π/2 � θ � 2π/3, corresponds
to the Lieb (θ = π/2), transitions (π/2 < θ < 2π/3), and
kagome (θ = 2π/3) lattices (Fig. 1). But no strain tensor is
used in the Hamiltonian, such that diagonal strains are used
as a thought experiment, not being explicit in the methodol-
ogy of these articles. A tight-binding Hamiltonian with the
presence of the strain tensor was reported in Ref. [38] but
only for the study of strained kagome lattices. However, the
authors did not use the knowledge of the interconversibility of
Lieb and kagome lattices, which would allow a comparison
between the strained Lieb and kagome lattices. Thus, as an
extension of the previous studies, in this work we present
a general tight-binding Hamiltonian that not only describes
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FIG. 1. Real (top panels) and reciprocal (bottom panels) generic lattices: (a) Lieb lattice, (b) transition lattice, and (c) kagome lattice.
The primitive vectors are �a1 = aυ̂1 and �a2 = aυ̂2, with υ̂1 = (1, 0) and υ̂2 = (− cos θ, sin θ ). The unit cells are denoted by the red dashed
lines containing the three nonequivalent sites A (blue open circle), B (yellow filled circle), and C (green circle with dot inside). The distance
between nearest-neighbor sites is a0 = a/2 (a = 1 Å), and the non-null hopping parameters are represented by tBA, tBC , t−

AC , t+
AC . For Lieb and

kagome lattices, the nearest-neighbor hopping is tBA = tBC = t = 1.0 eV and the next-nearest-neighbor hopping is t−
AC = t+

AC = t ′. The first
Brillouin zone of the (d) Lieb, (e) transition, and (f) kagome lattices are denoted by the dashed blue lines. The reciprocal vectors are �b1 = b1ν̂1

and �b2 = b2ν̂2, with ν̂1 = (sin θ, cos θ ) and ν̂2 = (0, 1). The high-symmetry points in the first Brillouin zone are �� = (0, 0) (filled circle),
�X = (b/2)ν̂1 (open solid circle), �M = (b/2)(ν̂1 + ν̂2) (circle with dot inside), and �K = (1/2)(b − l cos θ )ν̂1 + (l/2)ν̂2 (open dashed circle),
with l = b/(1 − cos θ ).

the interconvertibility between the Lieb and kagome lattices
but also enables the investigation of these structures under
strains along various crystallographic directions, according to
the strain theory for 2D materials (presented in Sec. SII of
the Supplemental Material [45]). Based on this formalism we
investigate the effects of strain on the energy spectrum of Lieb
and kagome lattices that have not been previously explored,
such as (i) the appearance of anisotropy in the energy levels,
(ii) the variation of the Fermi level, (iii) strain-induced flat-
band deformations, (iv) a shift of the Dirac points with respect
to the location of the high-symmetry k-space points, and (v)
the appearance of strain-induced pseudovector potentials. In
Ref. [38] the pseudovector potential terms originated by strain
in the kagome lattice were presented, but the effects caused
by such terms on the energy spectrum were not explored.
In the present work, on the other hand, we show both the
effect of nonzero strain-induced pseudovector potentials on
kagome and Lieb lattices and make a comparison between
these lattices.

Furthermore, inspired by studies that explore the strain ef-
fects on graphene-based systems [46–51], we investigate two
theoretical methodologies for applying deformations in Lieb
and kagome lattices, namely, real and hypothetical cases [45].
In the former case, we consider that the strain tensor changes
the position of the lattice sites, and consequently, it modifies
the hopping parameter values that connect the atomic sites.
In the latter we admit that the hopping parameters’ values
remain unchanged, being independent of the applied lattice
deformation [52–56]. Six different types of strains are inves-
tigated here, which are uniaxial strain along (i) the x direction

(UX) [Fig. 2(a)] and (ii) the y direction (UY) [Fig. 2(b)], (iii)
biaxial (BI) strain [Fig. 2(c)], simple shear strain along (iv)
the x direction (SX) [Fig. 2(d)] and (v) the y direction (SY)
[Fig. 2(e)], and (vi) pure shear (PS) strain [Fig. 2(f)]. In the
hypothetical case, the labels are denoted with the subscript h,
such as UXh, UYh, BIh, SXh, SYh, and PSh [45].

The paper is organized as follows. In Sec. II we describe
the tight-binding model applied to a strained generic lattice. In
Secs. III and IV we discuss the strain effects on the Lieb and
kagome lattices, respectively. Finally, in Sec. V we summarize
our main findings. We also provide Supplemental Material
[45] which discusses the following related issues: (Sec. SI) the
crystallographic aspects of the Lieb-kagome generic lattice;
(Sec. SII) a detailed strain analysis in 2D materials; (Secs. SIII
and SIV) the relevance of the hopping renormalization in the
tight-binding model; (Sec. SV) the choice of the n parameter
associated with the hopping decay ratio and its consequences
on the Lieb, transition, and kagome band structures; extra
energy spectrum plots for the Lieb lattice under (Sec. SVI)
UX and SX strains, and (Sec. SVII) UY and SY strains;
(Sec. SVIII) evolution of the flat band at the � point for
kagome lattice under BI strain; (Sec. SIX) comparative ana-
lyzes of the hypothetical strain cases for all six investigated
strain types; and (Sec. SX) the existence or not of a non-null
strain-induced pseudovector potential.

II. THEORETICAL MODEL

The tight-binding Hamiltonian for the strained generic lat-
tice (derived in Sec. SIII of the Supplemental Material [45]) is
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FIG. 2. Comparison of the nonstrained (ε = 0) and strained (ε �= 0) generic lattices subjected to (a) uniaxial strain along the x direction
(UX) and (b) along the y direction (UY), (c) biaxial strain (BI), (d) simple shear strain along the x direction (SX) and (e) along the y direction
(SY), and (f) pure shear strain (PS). The generic lattice sites (A, B, and C) are represented by black-filled symbols connected by black dashed
lines and primitive vectors �a1 and �a2, whereas the strained lattice sites (A′, B′, and C′) are represented by open red symbols connected by red
dashed lines and primitive vectors �a′

1 and �a′
2.

given as follows:

Ĥ =
∑

j j′
[t ′

BA(b̂†
j′ â j + â†

j b̂ j′ ) + t ′
BC (b̂†

j′ ĉ j + ĉ†
j b̂ j′ )]

+
∑

j j′
[t ′

AC (â†
j′ ĉ j + ĉ†

j â j′ )], (1)

where â j (â†
j ), b̂ j (b̂†

j), and ĉ j (ĉ†
j ) are annihilation (creation)

operators corresponding to the jth site of sublattice A, B, and
C, respectively.

In our model, as represented in Fig. 2, we consider the
hopping energy contributions due to the neighbors located on
±�a′

2/2, ±�a′
1/2, ±(�a′

1 − �a′
2)/2, and ±(�a′

1 + �a′
2)/2, which are

denoted as t ′
BA, t ′

BC , t ′−
AC , and t ′+

AC , respectively. These hopping
parameters follow the transformation (described in Sec. IV of
the Supplemental Material [45])

t ′
i j = te−n(a′

i j/a0−1)a0/a′
i j, (2)

where n = 8, and a′
i j represents the distance between the

atomic sites i and j in the strained lattice, which is given with
respect to the undeformed lattice distances ai j , according to
�a′

i j = (I + ε)�ai j with a′
i j = (�a′

i j · �a′
i j )

1/2, since

ε =
(

εxx − σεyy εxy

εyx εyy − σεxx

)
, (3)

where σ = 0.1 denotes the Poisson ratio [46]. Thus the cor-
respondence of the atomic positions of the strained lattices,
�r′ = (r′

x, r′
y), with the nonstrained lattice sites, �r = (rx, ry), is

given by [57,58]

(
r′

x

r′
y

)
=

(
[1 + (εxx − σεyy)]rx + εxyry

εyxrx + [1 + (εyy − σεxx )]ry

)
, (4)

with εi j values (with i, j = x, y) being summarized in Table I
for all six investigated deformations.

From Eq. (2) it is seen that the hopping energy decreases as
the value of the n parameter increases. Thus the n parameter
governs the range of interactions between the atomic sites.
That is, the effects of more distant sites are suppressed for
n � 8 and intensified for n < 8. Figures S1 and S2 of the Sup-
plemental Material [45] show that for n = 8, the energy bands
give a good approximation of the characteristic of the Lieb
and kagome lattices within the nearest-neighbor tight-binding
model, since they present almost flat bands and Dirac cones,
as expected for such structures [42]. A detailed discussion is
presented in Sec. SV of the Supplemental Material [45].

TABLE I. Strain tensor elements [Eq. (3)] for each type of strain
applied in Lieb and kagome lattices.

Type of strain εxx εxy εyx εyy

UX ε 0 0 0
UY 0 0 0 ε

BI ε 0 0 ε

SX 0 ε 0 0
SY 0 0 ε 0
PS 0 ε ε 0

125433-3
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FIG. 3. Band structures along the high-symmetry path �� − �X −
�M − �Y (= �b2/2) − �� in the first Brillouin zone of Lieb lattice sub-

mitted to (a) UX and (b) UY strains for different strain amplitudes:
ε = 0.0 (solid black), ε = 0.1 (dashed blue), ε = 0.7 (dotted red).
Vertical gray lines with their respective line styles linked to the ε

value indicate the position of the high-symmetry points for ε = 0.0
(solid), ε = 0.1 (dashed), and ε = 0.7 (dotted).

III. STRAINED LIEB LATTICE

In Fig. 3(a) [3(b)], we illustrate the dispersion relation
along the path connecting the high-symmetry points �� − �X −
�M − �Y − �� in the reciprocal space of the strained Lieb lattice

under UX strain [UY strain] for various strain amplitudes. The
isoenergy curves corresponding to the upper (right panels),
middle (middle panels), and lower (left panels) bands for the
UX-strain case are depicted in Fig. 4. The corresponding case
for UY strain is shown in Fig. S5 of the Supplemental Material
[45].

Note that the energy spectrum shows electron-hole sym-
metry even with the strain application. By varying the ε

parameter, one notices that if ε > 0 (ε < 0) the Dirac cones
approach (move away) the �M − �Y direction, i.e., along the �kx

direction (Fig. 4), and the �X − �M direction, i.e., along the �ky

direction (Fig. S5) [45], for UX-strain and UY-strain cases,
respectively. As seen in Figs. 3(a) and 3(b), such uniaxial
strains do not cause an energy-gap opening, regardless of the
application direction. Instead of the appearance of an energy
gap, as shown in strained graphene [46], the Lieb lattice under
uniaxial strain presents the formation of a triply degenerate
linear band, i.e., a Dirac line, at the Fermi level along the
�M − �Y direction for the UX-strain case and along the �X − �M

direction for UY-strain case, as shown by the red dashed
curves in Figs. 3(a) and 3(b), respectively. This also can be
verified in the fifth row (for ε = 0.3) of contour plots in Fig. 4
and in Fig. S3(d) [45] for the UX-strain case, and in the first
row (for ε = −0.3) of contour plots in Fig. S5 [45] for the
UY-strain case. Thus one has a type-III Dirac point (critically
tilted) that combines flat-band and linear dispersion, similar to
cones emerging from flat bands in photonic orbital graphene
[59]. This triply degenerate Dirac strain-induced line state
is formed by the approach (separation) of the Dirac cones,
which, in turn, is accompanied by a small decrease (increase)
in the separation and curvature of the upper and lower energy
bands in the energetic line that connects the cones along the
kx (ky) direction, for a fixed ky (kx) near to the first Brillouin

FIG. 4. Contour plots of the lower (left panels), middle
(middle panels), and top (right panels) energy bands for
Lieb lattice under UX strain for different strain amplitudes:
ε = −0.3, −0.1, 0.0, 0.1, 0.3 from top to bottom panels.

boundaries for the UX-strain (UY-strain) cases. This trend of
the triply degenerate linear band formation can be noticed
by comparing panels (b), (c), and (d) in Fig. S3 [45] for the
UX-strain case. This evolution of the UX(UY)-strain-induced
band deformation increases the energetic distances between
the upper and lower bands along the ky (kx) direction, for a
fixed kx (ky) value, reaching the larger value at the �� point.

As expected, the dispersion relations in Fig. 4 (Fig. S5
[45]) are compressed (extended) along the kx (ky) direction
by taking UX(UY)-strain amplitudes with positive ε > 0 and
oppositely for negative ε < 0 values. In addition, one notices
small band distortions along the ky (kx) direction due to the
considered Poisson ratio, as a less expressive response in the
opposite applied strain direction. The consequence of these
effects is the flattening of the cones along the ky (kx) direction
such that they no longer exhibit circular isoenergy curves but
rather have approximately elliptical shape [see second and
fourth panel rows of the contour plots in Fig. 4 (Fig. S5
[45]) for lower and top bands, respectively, for UX(UY)-strain
case]. This leads to anisotropic Fermi velocities, resulting
in anisotropic transport properties that may be relevant to
direction-dependent electronic transport devices similar to
2D anisotropic semiconductors such as phosphorene [60]. It
is worth mentioning that an equivalent direct analysis be-
tween the results under the UX-strain and UY-strain cases
can be easily achieved by taking the following transformation:
�kx → �ky and x → y for the reciprocal and real spaces, re-
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FIG. 5. The same as in Fig. 4, but now for the Lieb lattice under
BI strain.

spectively. This is due to the fact that Lieb lattice obeys
D̂4h symmetry. Therefore compression (ε < 0) and extension
(ε > 0) for UX strain can be mapped by extension and com-
pression, respectively, for the UY-strain case. This statement
can be verified by the correspondence between the panels of
the following rows: 1UX ←→ 5UY , 2UX ←→ 4UY , 4UX ←→
2UY , and 5UX ←→ 1UY for Fig. 4 ←→ Fig. S5 [45].

In contrast to the real UX- and UY-strain cases in the Lieb
lattice, as shown in Figs. 4 and S5 [45], for both corresponding
hypothetical cases UXh and UYh presented in Fig. S8 of the
Supplemental Material [45], it can be observed that (i) the flat
band remains undeformed, maintaining the same energy scale
as the color bar, and (ii) the deformed upper and lower bands
in the hypothetical strained cases do not give rise to the triply
degenerate Dirac strain-induced line state [45].

In order to verify additive effects due to the combination
of uniaxial strains along x and y directions, viewed as biaxial
deformations, Fig. 5 shows the band structures of Lieb lattice
under BI strain for the same strain amplitudes adopted in
Fig. 4. Regardless of the strain amplitude, it is seen in Fig. 5
that the bands’ curvatures and their aspect ratios in k space
are kept undeformed, keeping the circular symmetry of the
contour lines close to the Fermi level, which indicates that
the Fermi velocity remains isotropic under BI strain. This is
easily understood, given that the high-symmetry points are
also shifted uniformly in both directions in the BI strain as
a consequence of the modules’ increase (decrease) of the
two lattice vectors for extension ε > 0 (compression ε < 0),
leading to the modules’ reduction (increasing) of the two

reciprocal lattice vectors and also to a smaller (larger) first
square Brillouin zone.

In contrast to the real BI-strain case (Fig. 5), where the
bands deform in such a way that the color bar range is clearly
altered, resulting in a maximum energy scale ten times greater
than the unstrained case, this is not the case for the Lieb lattice
with BIh strain. In Fig. S9 of the Supplemental Material [45],
it can be observed that the energy scale on the color bar re-
mains unchanged for any strain value and for any of the three
bands. This can be easily understood by the fact that we are
imposing changes in the lattice structure without considering
any modifications in the hopping parameters, which in turn,
prevents alterations in the energy scale of the bands [45].

Analyzing the Dirac cone position in the reciprocal space
for Lieb lattice under uniaxial and biaxial strains in Fig. S14 of
the Supplemental Material [45], one notes that the results for
both hypothetical and real strain cases exhibit the Dirac point
coinciding with the �M ′ point. This means that such strain types
in the Lieb lattice do not require correction terms to make
matching the position of the Dirac points and the �M ′ point
of the strained reciprocal lattice, and consequently, no vector
pseudopotential is expected, i.e., �A = 0 [45].

Let us now analyze the energy spectrum of the Lieb lattice
subjected to shear strain. For SX strain, Fig. 6 shows that
the triply degenerate Dirac point at Fermi energy level in the
vicinity of the M point gives place to two pairs of doubly
degenerated Dirac points. The larger the strain amplitude, the
more noticeable is the formation of these two pairs of doubly
degenerate Dirac points, which arises from the deformation of
the flat band, without a band-gap opening, adjusting itself to
touch a pair of points in the upper energy band and a pair
of points in the lower energy band. This is clearly shown
in the three-dimensional plots [Figs. S4(a) and S4(b)] of the
Supplemental Material [45], and through the band evolution
in Fig. 6 and the Brillouin zone (white dashed line) distortion
by increasing ε value. Moreover, the connecting energetic
lines between the pair of doubly degenerate points in the
upper bands and in the lower bands, which are initially per-
pendicular in k space, for high ε values tend to be aligned
in k space, and these double Dirac points move away from
each other. This can be clearly seen in Figs. S4(c) [45] and
S4(d) [45] for ε = 0.5. From these results (Figs. 6 and S4)
it becomes evident that the flat band plays an important role
as it deforms, creating four Dirac points that do not allow
the band gap to open. Reference [43] explores the emergence
of Dirac points from flat bands in generic lattices of Lieb
and kagome during their interconversibility process. This can
be understood in view of the fact that diagonal deformations
inherent to the interconversibility process result in structures
that can be achieved with a combination of shear and uniaxial
deformations.

A particular observation can be noticed on the SX-strained
case for ε = 0.5 (Figs. S4(c) [45] and S4(d) [45]). For this
strain amplitude, the x components of the vectors that locate
the A sites in relation to the B sites have exactly half of the
distance value that separates the B − C sites. However, per-
haps as expected by the analysis of the triangle BAC formed
by the sublattices A, B, and C, this strain situation does not
lead to the case of the kagome lattice. This is due to the fact
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FIG. 6. The same as in Fig. 4, but now for the Lieb lattice under
SX strain and assuming the following order of the strain amplitudes:
ε = −0.7, −0.5, −0.3, −0.1, 0.0, 0.1, 0.3, 0.5, 0.7 from top to
bottom panels. The strain cases with ε > 0 and ε < 0 are enan-
tiomorphs in absolute values of ε.

that a simple shear strain in x direction does not change the
y coordinate of the vector that locates the A sublattice, and
thus it does not form an equilateral triangle BAC, which in
turn does not correspond to the spatial configuration referred
to the θ = 2π/3 case. Therefore, by applying the SX strain in
the Lieb lattice with strain amplitude ε = 0.5, one obtains a
lattice structure that resembles the kagome lattice compressed
uniaxially in the x direction, with some ε < 0, as indicated

by the contour plots in the eighth row of Fig. 6. This result
further confirms the fact that the Lieb and kagome lattices are
interconvertible under diagonal strain, as it is easy to under-
stand geometrically that the combination of uniaxial strain and
simple shear strain can generate deformations similar to those
caused by diagonal strain. Moreover, notice that for ε > 0.5,
the inversion in the orientation of the isoenergy curves is
owing to the fact that the A sublattice is closer to the left of
sublattice C than the right of sublattice B, generating a spatial
configuration of sites that behaves like a simple shear strain
with ε < 0, as shown in Fig. 6.

The isoenergy curves for the Lieb lattice under the effect of
SY strain are shown in Fig. S6 of the Supplemental Material
[45]. Similarly to the SX-strain case (Fig. 6), one notices that
the energy spectra for the SY-strained Lieb lattice are very
similar to those for a diagonally strained kagome lattice when
ε = 0.5 (we shall return to this in Sec. IV). Moreover, one
notes the following equivalence between the results under SX
strain (Fig. 6) and SY strain (Fig. S6 [45]): transformations
in the SX-strained (SY-strained) isoenergies composed by a
π/2 rotation in the k space combined with a compression-to-
distension (or vice verse) exchange lead to the same energetic
band curves as the SY-strained (SX-strained) Lieb case with
a sign change in the strain amplitude ε, i.e., by applying a
Ĉ2 symmetry operation in the momentum space and changing
ε < 0 by ε > 0 (or vice versa), one gets the same energy
spectrum for Lieb lattice with shear strain applied in the other
direction. This statement can be verified by the correspon-
dence between the panels of the following rows of Fig. 6 (SX)
and Fig. S6 [45] (SY): 1SX ≡ Ĉ29SY (9SY ≡ Ĉ21SX ), 2SX ≡
Ĉ28SY (8SY ≡ Ĉ22SX ), 3SX ≡ Ĉ27SY (7SY ≡ Ĉ23SX ), 4SX ≡
Ĉ26SY (6SY ≡ Ĉ24SX ).

Therefore it becomes evident that the cases with ε > 0 and
ε < 0 are enantiomorphs in absolute values of ε parameter,
i.e., they are mirror images of each other. The energy spectra
being enantiomorphs are a consequence of the fact that the
displacement of the sites in the simple shear are mirror images
of each other for deformations caused by positive and negative
values of the ε parameter. The reference line to perform the
simple shear must be the same in both cases, and the atoms
will move on both sides of the reference line in order to form
exactly deformed structures enantiomorphs.

In the Supplemental Material [45], we verified the behavior
of the Lieb lattice under simple shear strain in a hypothetical
case (Fig. S10). Specifically, we found that the electron-hole
symmetry is nearly preserved, and the triple degeneracy of
the Dirac point is maintained regardless of the applied strain
amplitude and direction. It also observes the absence of the
connecting energetic lines between the upper and middle
bands and middle and lower bands that are formed for high
strain amplitudes when the triply degenerate Dirac cone is
divided into two. Notable differences between the hypothet-
ical shear strain cases and the corresponding real cases can
be seen by comparing Figs. 6 and S6 [45] for SX and SY
strains with Fig. S10 [45] for SXh and SYh strains. Therefore
the effects of degeneracy breaking and the nonconservation
of the electron-hole symmetry in the energy spectrum of the
Lieb lattice under simple and pure shear strains are due to the
variation of the strain-induced hopping parameters, indicating
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FIG. 7. The same as in Fig. 6, but now for the Lieb lattice under
PS strain. Note that the cases for ε > 0 and ε < 0 are mirror images
of each other in absolute values of the ε parameter, or equivalently
mapped on each other by π/2 rotation.

a non-null term for the vector potential �A for the real cases of
SX and SY strains [45].

To investigate combined effects due to simple shear strains
along the x and y directions, we present in Fig. 7 the band
structures of the Lieb lattice under PS strain for the same
strain amplitudes adopted in Figs. 6 and S6 [45]. Note that,
similarly to the simple shear strain cases, the original triply
degenerate Dirac point of the Lieb lattice is split into two
doubly degenerate Dirac points. When this occurs, the lower
and upper energy bands are divided into two, so the connect-
ing energetic lines between the upper and middle bands and
middle and lower bands are always perpendicular, regardless
of the applied strain amplitude. This situation is opposite
to that discussed cases of simple shear strains, where such
two energetic lines connecting the par of doubly degenerate
points tend to align with each other. The case corresponding
to ε = 0.5 (ε = −0.5), shown in the first (seventh) row of
Fig. 7, resembles the energy spectrum of the kagome lattice

rotated by π/4 clockwise (counterclockwise) in relation to to
the positive kx axis.

From Fig. 7 a diagonal deformation is clearly noticeable
caused by the PS strain but now without any rotation of the
energy spectrum, as observed for the simple shear strain cases
(Figs. 6 and S6 [45]). This can be understood by Eq. (4) and
Table I, which for the PS-strain case has that �a′

1 = (εa, 0) and
�a′

2 = (0, εa), leading to ( �a′
1)x = ( �a′

2)y = εa and ( �a′
1)y =

( �a′
2)x = 0, and which consequently sets a diagonal defor-

mation without any isoenergy curve rotation. On the other
hand, the rotation of the isoenergy spectrum for simple shear
strain cases occurs because, in these cases, ( �a′

1)x �= ( �a′
2)y and

( �a′
1)y �= ( �a′

2)x = 0. This discussion also explains the reason
why PS-strain results for ε > 0 and ε < 0 are mirror images of
each other in absolute values of the ε parameter, i.e., they can
be mapped on each other by rotations of π/2 both clockwise
and counterclockwise in relation to the energy axis, which no
longer occurs in the simple shear strain cases, whatever the
deformation direction.

In the Supplemental Material [45] we demonstrate that,
unlike the real PS-strain case (Fig. 7), for a Lieb lattice under
hypothetical PS strain (PSh), (i) the triply degenerate Dirac
point at Fermi energy level does not split into two pairs of
doubly degenerate Dirac points, and (ii) the electron-hole
symmetry is nearly preserved, as noted by the fact that the
lower and upper bands obey the following Elower = −Eupper

symmetry and the color-bar scale of the flat band for ε > 0 re-
mains nearly unchanged. Oppositely, one has for the PS-strain
case that the lower and upper energy bands are connected
to the middle band by energetic lines that are perpendicu-
lar between themselves, i.e., between the upper and middle
bands and middle and lower bands, reinforcing the symmetry-
breaking argument for the real PS-strain case.

IV. STRAINED KAGOME LATTICE

Let us now investigate the effects of the six deformation
types illustrated in Fig. 2 and given in Table I on the energy
spectrum of the kagome lattice. Figure 8 shows the energy
spectrum of the kagome lattice under UX strain. For ε > 0
(distention) the Dirac cones approach and merge, forming an
elliptical isoenergy similar to the situation found for graphene
[46]. However, unlike the latter, the cones in the kagome
lattice approach indefinitely, without opening an energy gap
(compare the isoenergies on the fourth and fifth rows of
Fig. 8). As ε increases, the Dirac cones approach at the same
time that the lower band becomes more dispersive, tending
to form a single Dirac cone. This can be noticed by the
energy-scale increase on the color bar for the lower bands in
Fig. 8 when ε increases. In this process the lower band creates
spikes that form Dirac cones with the middle band, to the point
where this middle band tends to become flat (also note the
energy-scale decrease on the color bar for the middle bands
when ε increases), thus resembling the Lieb lattice case. The
UX-strained dispersion relation for the kagome lattice (Fig. 8)
close to the Fermi level is roughly similar to that for simple
shear case applied along the x direction for the Lieb lattice
(Fig. 6), as shown in the previous section. These obtained
results agree with the evident interconversibility between Lieb
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FIG. 8. The same as in Fig. 4, but now for the kagome lattice
under UX strain.

and kagome lattices. Furthermore, for ε < 0 (compression),
the first and second rows of Fig. 8 show that the Dirac cones
move away when the absolute value of ε increases, and con-
sequently, the UX-strained kagome energy spectrum becomes
very similar to that displayed by the Lieb lattice under simple
shear strain along the x direction (compare with the first row
of Fig. 4).

To carefully analyze the approaching behavior of the Dirac
cones in the kagome energy spectrum under UX strain, we
present in Fig. 9(a) [9(b)] the dispersion relation along the
kx [ky] direction and keeping ky = 0 [kx = 0] fixed, i.e., it
is depicted the spectrum E (kx, ky = 0) [E (kx = 0, ky)], for
different strain amplitudes. In Fig. 9(a) one notices that as
ε increases, the Dirac cones deform, exhibiting a tilted cone
shape with an asymmetric kx-projected spectrum. As shown
in Fig. 9(a), the Dirac cone approximation induced by UX
strain results in a total cone immersion when ε = 0.7 (purple
dash-double-dotted lines). On the other hand, in Fig. 9(b) one
observes an unusual behavior (which brings the flat band to
the E = 0 level as ε increases) of the Dirac cone formed by
the crossing between the dispersive band in the hole region
and the flat band. Similar band structure behavior was reported
in Refs. [41,43,59,61–64], which explains this energy band
evolution as a characteristic behavior of Dirac points emerging
from flat bands and merging on flat bands, the latter being the
exact case here.

The energy spectra of the kagome lattice under UY strain
for the same strain amplitudes as in the UX-strain case (Fig. 8)
are depicted in Fig. 10. Because the kagome lattice obeys

FIG. 9. Dispersion relation of the kagome lattice under UX strain
(a) along the kx direction, keeping ky = 0, and (b) along the ky direc-
tion, keeping kx = 0, for different strain amplitudes: ε = 0.0 (black
solid lines), ε = 0.1 (blue dashed lines), ε = 0.3 (green dotted lines),
ε = 0.5 (red dash-dotted lines), and ε = 0.7 (purple dash-double-
dotted lines). The band crossing is emphasized by circles with the
same strained color lines.

the D̂6h symmetry, which in turn includes Ĉ2, Ĉ3, and Ĉ6

symmetries, it was expected that UX-strain and UY-strain
results would indeed be correlated by, roughly speaking, a
π/2 rotation linked to Ĉ2 symmetry, except by an energy-
scale difference and a size difference on the aspect ratio of
the Brillouin zone for each uniaxial strain case (for instance,
compare the isoenergies in the first row in Fig. 10 for UY
strain and the fifth row in Fig. 8 for UX strain). This aspect
ratio difference of the Brillouin zone on k space between

FIG. 10. The same as in Fig. 4, but now for the kagome lattice
under UY strain.
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UX-strain and UY-strain results for the kagome lattice is
linked to the following factors: (i) uniaxial strain causes a
larger deformation in the interatomic distances along the ap-
plied deformation direction, and (ii) the larger the spatial
deformation in a certain direction in the real space the smaller
is the Brillouin zone dimension along the corresponding di-
rection. For instance, note that by comparing the ε = 0 (black
symbols) with ε �= 0 (red symbols) illustrations in Figs. 2(a)
and 2(b) that the x component of the displacement vectors �δ(�r)
in Fig. 2(a) is greater than in Fig. 2(b), increasing (decreasing)
its modules in the former (latter) situation when one compares
the unstrained (black symbols) with the strained (red symbols)
cases, which leads to a greater length along the kx direction
of the Brillouin zone for the UY-strain case with ε > 0 in
comparison to the UX-strain case with ε < 0. (Compare the
isoenergies in the first and second rows in Fig. 8 for UX strain
and the fourth and fifth rows in Fig. 10 for UY strain). A
similar analysis for the y direction can be done by connect-
ing the distension case (ε > 0) for the kagome lattice under
UX strain (Fig. 8) and the compression case (ε < 0) for the
kagome lattice under UY strain (Fig. 10), as can be seen by the
isoenergies in the fourth and fifth rows in Fig. 8 for UX strain
and the first and second rows in Fig. 10 for UY strain. This
qualitatively direct analogy is such that compression (ε < 0)
and extension (ε > 0) results for the kagome lattice under UX
strain can be mapped by extension and compression, respec-
tively, for the UY-strain case. This statement can be viewed by
the following correspondence between the rows of Figs. 8 and
10: 1UX ≈ 5UY , 2UX ≈ 4UY , 4UX ≈ 2UY , and 5UX ≈ 1UY .

Unlike the results for the kagome lattice subjected to real
uniaxial strains shown in Figs. 8 (UX strain) and 10 (UY
strain), in the hypothetical cases (Fig. S11) one observes that
(i) the dispersive character of the bands and, consequently,
the color-bar-scale ranges are kept unchanged for all three
bands, regardless of the strain amplitude and direction; (ii) the
approaching of the Dirac cones (for the ε > 0 and UXh case
or for the ε < 0 UYh case) and the moving away of the Dirac
cones (for the ε < 0 and UXh case or for the ε > 0 UYh case)
are less expressive here than in the real case; (iii) the energetic
location of the flat band is not altered in the presence of the
hypothetical strain case, whereas in the real UX- and UY-
strain cases it approaches the E = 0 level as ε increases, as
depicted in Fig. 9(b); and (iv) the upper and middle bands are
energetically mirror images of each other, and such symmetry
is preserved regardless of the strain amplitude and direction.
Figures 8 and 10 show that such mirror symmetry between
the upper and middle bands is lacking in the real UX- and
UY-strain cases. Similarly to the hypothetical cases discussed
previously for the Lieb lattice, here for the kagome lattice the
absence of the energy-scale change of the bands as well as of
the unaltered dispersion character of the bands and the lack of
energetic movement of the flat band are due to hypothetical
strain not changing the values of the hopping energies. This
is an indication that there is a non-null vector pseudopoten-
tial term for real UX- and UY-strain cases for the kagome
lattice [45].

The additive effects of combined uniaxial strains applied
along the x and y directions, i.e., BI strain, in the energy bands
of the kagome lattice are shown in Fig. 11. The consequences

FIG. 11. The same as in Fig. 4, but now for the kagome lattice
under BI strain.

on the energy spectrum of the kagome lattice under BI strain
are similar to those observed in Fig. 5 for the Lieb lattice
subjected to the same strain type: (i) regardless of the strain
amplitude, the band curvatures and their aspect ratios in k
space are kept undeformed, maintaining in the current case
its original hexagonal structure of the unstrained middle and
upper bands; and (ii) the biaxial lattice deformation roughly
keeps the flat band without dispersion. On the other hand,
unlike the Lieb response to BI strain (Fig. 5), the kagome
lattice biaxially strained (Fig. 11) presents an energetic shift
of the flat band, as verified by the energy-scale change of
the lower-band color bar in the left column of Fig. 11 and
in Fig. 9(b). As already discussed in Sec. II, due to strain
the lattice distances change, and consequently, t ′ ≡ ti j varies
with respect to the ε parameter according to Eq. (2). Thus, by
increasing the value of the strain amplitude ε for the BI-strain
case, the entire flat band of the kagome lattice (see the left
column in Fig. 11) is energetically shifted up (down) along the
energy axis for ε > 0 (ε < 0). This behavior is emphasized
in Fig. S7 of the Supplemental Material [45], which shows
the evolution of the flat band at the � point as a function
of the (a) strain amplitude ε and (b) the strained hopping
parameter ti j expressed in Eq. (2), that for the kagome lattice
case corresponds to ti j ≡ t ′. In Fig. S7(a) [45] one notices
that the flat band of the kagome lattice under BI strain obeys
an exponential tendency given by the fitting function E/t =
a exp(bε − c) + d with a = −399.9, b = 8.359, c = 5.328,
and d = −0.043, being in concordance with the exponential
behavior of the hopping in Eq. (2). Analyzing Fig. S7(b)

125433-9



LIMA, DA COSTA, SENA, AND PEREIRA JR. PHYSICAL REVIEW B 108, 125433 (2023)

[45] one observes a linear dependence of the energy value
of the flat band on the t ′ parameter. This can be understood
considering that the energy expression for the flat band in
the nondeformed case [65] is given by Eflat ≈ −2t ; thus, in
a similar manner it leads to roughly writing an analytical
expression for the flat band in the strained kagome case, such
as Eflat ≈ −2t ′. This is confirmed by the fitting function of the
obtained data given by Efit = at ′ + b with a = −2.014 and
b = 0.009 257.

In the Supplemental Material [45] one observes that the
BIh-strained band curvatures and their aspect ratios in k
space are kept unchanged, similarly to the real BI-strain case
(Fig. 11), and in addition to that, likewise to each separated
hypothetical uniaxial strain case, i.e., to the UXh and UYh

cases for the kagome lattice shown in Fig. S11 [45], one
obtains upper and middle bands obeying an energetic mirror
symmetry between themselves without any variation on the
energetic scale range for any of the three bands, regardless
of the ε value. Such lack of energetic alteration in the BIh-
strained kagome energy bands is equally explained, as in the
previous hypothetical cases, in view of there being no changes
in the hopping parameters to be considered.

The isoenergy spectra obtained by applying shear strain
along the x direction (SX strain) and along the y direction
(SY strain) in the kagome lattice are shown in Figs. 12 and 13,
respectively. By a careful analysis of Fig. 12, one realizes that,
similarly to the Lieb lattice subjected to SX strain (Fig. 6),
the strained isoenergies corresponding to distension (ε > 0)
and compression (ε < 0) deformations are enantiomorphs in
absolute values of the ε parameter, i.e., they are mirror images
of each other (compare the first, second, third, and fourth
rows of Fig. 12 with the ninth, eighth, seventh, and sixth rows
of Fig. 12, respectively). This is due to the isotropic lattice
structure of the kagome lattice under shear strain for positive
and negative values of the ε parameter, which has its atomic
positions deformed oppositely to both sides with respect to an
atomic reference line in the lattice (see a similar discussion in
the ante-penultimate paragraph in Sec. III for the Lieb lattice
under shear strain). Furthermore, the kagome lattice under
SX strain with ε = 0.5 roughly resembles the undeformed
Lieb lattice, and the undeformed kagome lattice roughly re-
sembles the Lieb lattice under UY strain together with a
weakly applied simple shear strain. Although this geometric
argument is coherent with respect to the equivalence between
these lattice structures, the energy spectra for these two situ-
ations are not fully equivalent. On the contrary, it is observed
that the obtained isoenergy spectra of the deformed kagome
lattice under SX strain (Fig. 12) qualitatively resemble the
deformed spectra of the Lieb lattice under SY strain (Fig. S6).
For instance, note the similarities between the results of the
lower, middle, and upper bands in the fifth and sixth rows
of Fig. 12 and the corresponding ones in Fig. 6 for ε = 0.3
and ε = 0.5. On the other hand, for high strain amplitudes
(see the ninth row of Fig. 12 for ε = 0.7), the Brillouin zone
(white dashed lines) of the kagome lattice under SX strain
is no longer a six-sided polygon but rather a parallelogram.
In the evolving process of Brillouin zone deformation into a
parallelogram, the flat (lower) band becomes more dispersive
while the middle band becomes less dispersive, leading to a
displacement of the doubly degenerate Dirac points such that

FIG. 12. The same as in Fig. 6, but now for the kagome lattice
under SX strain.

for high ε values, these doubly degenerate Dirac points start
to merge two-by-two, connecting the high-symmetry points in
a parallelogram format.

For the kagome lattice under SY strain, the isoenergies
shown in Fig. 13 present a very distinct behavior as com-
pared to the previous SX-strain case (Fig. 12). Due to the
lattice deformation caused by the SY strain applied in the
kagome lattice, the band structure is strongly affected, becom-
ing highly (less) dispersive for the lower and middle (upper)
bands (compare the energy-scale changes on the color bar
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FIG. 13. The same as in Fig. 6, but now for the kagome lattice
under SY strain.

in Fig. 13). One also observes the doubly degenerate points
located at the high-symmetry points in the Brillouin zone
being flattened and thus forming energetic lines connecting
these degenerate points. Energetically speaking, similar fea-
tures as those obtained in Fig. 13 for a deformed kagome
lattice under SY strain are roughly observed: (i) in the case of
the Lieb lattice under pure shear strain (PS strain) subjected
to high-strain amplitudes, as can be verified by comparing
the seventh row of Fig. 7 for ε = 0.5 with the eighth row
in Fig. 13, and (ii) when the kagome lattice is subjected to

FIG. 14. The same as in Fig. 7, but now for the kagome lattice
under PS strain.

uniaxial strain along the y direction (UY strain), as shown in
Fig. 10, but being oriented diagonally in the reciprocal space.

By a direct comparison between Fig. S13 [45] for hypothet-
ical shear strain SXh and SYh cases and Figs. 12 and 13 for
SX and SY real cases, respectively, one notices that regardless
of the strain amplitude and applied direction, there is no way
to get the energetic line in the hypothetical (simple or pure)
shear strain cases, as well as the emergence of the doubly
degenerate points and the breaking mirror symmetry between
the middle and upper bands. In this way we can state that
the variation of the hopping parameters due to strain is the
main cause of the drastic changes in the real pure and simple
shear strained energy spectra, indicating that a non-null vector
pseudopotential term should be associated with the real cases
of SX and SY strains in the kagome lattice, as discussed in
more detail in Sec. SX of the Supplemental Material [45].

In order to verify the combined effects of simple shear
strains along x (SX-strain) and y (SY-strain) directions in the
kagome lattice, Fig. 14 shows the strained isoenergy spec-
tra subjected to pure shear deformation. One notices that,
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unlike the Lieb case subjected to the same strain (Fig. 7)
where PS strain just causes a diagonal-like deformation in
the isoenergies, the strained kagome isoenergies are not only
diagonally deformed but rather present a smoother rotation
than those corresponding to simple shear cases in Figs. 12
and 13. According to Eq. (4) and Table I for the PS-strain
case and taking the primitive vectors for the kagome lattice,
one finds that ( �a′

1)x �= ( �a′
2)y and ( �a′

1)y �= ( �a′
2)x = 0. This

geometric statement of the deformed lattice vectors for each
situation explains the nature of the difference between apply-
ing PS strain in Lieb (Fig. 7) and kagome (Fig. 14) lattices,
as well as between PS strain and SX and SY strains in the
kagome lattice.

The most pronounced difference between the kagome lat-
tice under PS and PSh strains is the nonformation of the
energetic lines connecting the doubly degenerate points lo-
cated at the high-symmetry points in the Brillouin zone caused
by the flattening of the middle band. This is a consequence of
the lack of band curvature distortion in the PSh-strain case by
keeping the hopping unchanged.

Generally speaking, no pronounced modification of the
dispersion relations of the BIh and PSh kagome strained cases,
shown in Fig. S12 [45], are observed when compared with the
unstrained case, but the isoenergies of such hypothetical cases
present huge differences with respect to the real BI (Fig. 11)
and PS (Fig. 14) strained kagome cases. By such comparison,
we understand that the asymmetry of the middle and upper
bands, together with the deformation of the flat band, is also
due to the variation of the hopping parameters with the strain,
indicating non-null vector pseudopotential terms for BI and
PS strains in the kagome lattice.

Our results lead us to write an analytical strain-induced
ε̄-dependent pseudovector potential for the kagome lattice
based on Ref. [38] such as �A ∝ n(εyy − εxx, εxy + εyx ), where
εi j is given by Eq. (3) and the n parameter governs the
strain-dependent hopping variation, given by Eq. (2). It is
worth mentioning that this �A expression is the same as that
for strained graphene, this analogy being possible due to the
hexagonal symmetry shared by the kagome and graphene
lattices.

V. CONCLUSIONS

In summary, we systematically studied the effects of strain
on the electronic properties of the Lieb and kagome lat-
tices based on a recently proposed tight-binding Hamiltonian
reported in Ref. [42] that takes into account the intercon-
versibility between the Lieb and kagome lattices by defining
a transition lattice that maps such structures by one control
parameter. For this purpose, using the concept of a generic
lattice [15,16,42,43] (Sec. SI) and the standard deformation
theory (Sec. SII), we derived a more general Hamiltonian,
including the strain tensor for studying in-plane deformation
effects on the energy spectra of such structures within the
elastic and linear deformation regimes (Secs. SIII and SIV).

Initially, we discussed the evolution of the energy spectra
of nonstrained Lieb and kagome lattices in view of their lattice
interconversibility. The effects that the variation of the n pa-
rameter, which governs the variation of hoppings parameters,
causes on their energy band structures are also investigated

(Sec. SV). We found that n = 8 is the appropriate value to
resume the known energy spectra of the nonstrained (ε = 0)
Lieb and kagome lattices and, in turn, is the one assumed here
to investigate the strained cases (ε �= 0). We verified that for
n < 8, the effects of second nearest neighbors become more
evident, causing distortions on the energy spectra, particularly
on the flat band, making it more dispersive. In addition, for
the Lieb lattice, the changes of the n parameter (taking n < 8)
do not move the Dirac point, being located in the �M point,
which is due to the lattice configuration symmetry of the
next-nearest-neighbor sites. On the other hand, for the kagome
lattice and n < 8, the Dirac cone moves away from the �K
point in reciprocal space, and the isoenergies become clearly
anisotropic.

In general, we observed some effects analogous to those
known in the strained graphene literature, such as the presence
of anisotropic Fermi velocity, the approach or separation of
the Dirac cones, as well as the existence of strain-induced
pseudovector potentials for some types of strain. On the other
hand, unlike graphene, the strain in the Lieb and kagome
lattices never opens an energy gap. Instead, in general terms,
we identified effects such as the deformation of the flat bands,
division of the triply degenerate Dirac point in two doubly
degenerated Dirac points (in the Lieb lattice), as well as
the appearance of a non-null vector pseudopotential terms in
some types of strain.

The results showed that the flat band deforms without
opening an energy gap for strains applied in the Lieb and
kagome lattices. For the cases of UX, UY, and BI strains in the
Lieb lattice, the flat band deforms such that the original triply
degenerate Dirac point splits into two doubly degenerated
Dirac points that shift in opposite directions away from the
zero energy level.

In addition, for some cases of strain we found that there
are non-null strain-induced pseudovector potentials, such as
SX, SY, and PS strains in the Lieb lattice, and UX, UY, SX,
SY, and PS strains in the kagome lattice. Thus we conclude
that for the Lieb lattice �A ∝ n(0, εxy + εyx ), with εi j given
by Eq. (3) and the n parameter being the one that governs
the variation of hopping parameters with the strain [Eq. (2)].
On the other hand, the general expression of strain-induced
pseudovector potentials for the kagome lattice must be �A ∝
n(εyy − εxx, εxy + εyx ), as demonstrated in Ref. [38].

Furthermore, we find that some strain effects in the energy
spectra are due exclusively to the variation of the hopping
parameters with the strain. Such effects disappear for the
hypothetical case, i.e., when we assume that the strain tensor
only modifies the configuration of sites of the real lattices,
keeping the hopping parameters unchanged. Examples of this
are the deformations in the flat band, the separation of the
triply degenerate Dirac point in two doubly degenerated Dirac
points (in Lieb lattice), and the formation of the triply degen-
erate Dirac band with the presence of a type-III Dirac point
(critically tilted), combining flat-band and linear dispersions.
On the other hand, some effects seem to arise exclusively from
deformations in real space, which are maintained in hypothet-
ical cases of strains, such as the approximation or separation
of Dirac cones and the asymmetry in the energy-level curves.

We believe that such a systematic study pertinent to the
effects of different types of strains applied in 2D lattices with

125433-12



EFFECTS OF UNIAXIAL AND SHEAR STRAINS ON THE … PHYSICAL REVIEW B 108, 125433 (2023)

the coexistence of flat and conical bands is very interesting
for understanding the defects’ effects on the optoelectronic
properties of flat-band 2D systems. These are the 2D materi-
als’ electrical and optical properties, and consequently, their
band-gap tunability and band deformations can be dictated by
strain engineering, being one of the various approaches for
the proposals aiming to apply 2D lattices for future 2D device
technologies.
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