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Non-Abelian Berry phase for semiconductor heavy holes under the coexistence of Rashba and
Dresselhaus spin-orbit interactions
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We formulate the non-Abelian Berry connection (tensor R) and phase (matrix �) for a multiband system and
apply them to semiconductor holes in the presence of Rashba and Dresselhaus spin-orbit interactions (SOIs).
For this purpose, we focus on heavy-mass holes confined in a SiGe two-dimensional quantum well, whose
electronic structure and spin texture are explored by the extended k · p approach. To explore the influence of the
nonadiabatic process, we perform the contour integral of R faithfully along the equienergy surface by combining
the time-dependent Schrödinger equation with the semiclassical equation of motion for a cyclotron and then
calculate the energy dependence of � computationally. The intersubband interactions in the valence band strongly
modifies the SOIs. Accordingly, holes conserve the spin quasidegeneracy at several specific points, where the
interstate hybridization generates off-diagonal components both of R and �, and the simple π quantization
found in the Abelian Berry phase is violated. Moreover, these off-diagonal terms cause “resonant repulsion” at
the quasidegenerate energy. Consequently, HH± exhibits a discontinuity in the energy dependence of �.
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I. INTRODUCTION

Recent intensive studies coupled with physicomathemat-
ics [1–3] have provided novel interpretations of the unusual
quantum phenomena discovered in graphene [4–7]. Then, a
novel perspective “topology” was born in condensed matter
physics. The representative for identifying materials’ topol-
ogy is Berry parameters (connection, curvature, and phase)
[8] and/or Chern number [9]. In fact, Novoselov et al. [5]
and Zhang et al. [10] confirmed the relevance of Berry’s
phase to an unusual half-integer quantum Hall effect by
observing magneto-oscillations in graphene. Physicomathe-
matics further reveals that two types of symmetry breaking
cause topological features in materials via spin-orbit inter-
action (SOI). These symmetry breakings are the structure-
inversion-asymmetry (SIA) and bulk-inversion-asymmetry
(BIA), causing Rashba(R)- [11] and Dresselhaus(D)-type [12]
SOI, respectively. Thus electrons and holes having a simple
Dirac- or Weyl-type Hamiltonian have been intensively and
extensively studied both from experiments and theories [20].

The addition of spatial asymmetry naturally causes SOIs
for holes in three-dimensional (3D) bulk semiconductors
because of the finite angular momentum (|�| = 1). Conse-
quently, a k-linear (or odd) term appears in the dispersion
relation, and the spin degeneracy is fully resolved in the
Brillouin zone (BZ), except at the center point � [13,14].
However, this finite value |�| = 1 produces a complicated
valence band comprising three types of subbands: heavy-
mass (HH), light-mass (LH), and split-off (SoH) holes. The
existence of these subbands inevitably causes a strong in-
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tersubband interaction (ISI), which produces anisotropy and
nonparabolicity in the valence band E-k dispersion relation.
This valence-band complexity makes it difficult to deeply
understand the peculiar SOI- and spin-related quantum phe-
nomena originating from the hole topology, leading to a few
previous studies. Winkler and his group pioneered studies
on holes’ SOI-related phenomena by refining the E-k disper-
sion via the appropriate removal of warping and anisotropy
[15–19].

Considering the above background, ISI is expected to cause
unusual quantum phenomena in holes. To comprehend these
peculiar quantum phenomena originating from the valence
band topology, it is necessary to revert to a fundamental
understanding of topological parameters, such as Berry’s con-
nection, curvature, and phase. Therefore we focused on HHs
in a SiGe two-dimensional quantum well (2DQW) and studied
the Berry parameters using numerical calculations [8,13,14].
The application of our extended k · p approach to SiGe 2DQW
reveals that the SOI owing to the BIA coupled strongly with
the ISI produces the quasidegenerate states at specific points
in the 〈100〉 direction. It also shows that the SOI by the SIA
couples strongly with the ISI and causes the quasidegenerate
states at specific points in the 〈110〉 direction. Of interest is
that these plural quasidegenerate points remain even in the
2DQW system and that these quasidegenerate points generate
a complicated distribution of the effective magnetic field, such
as vortices, sources, and sinks, leading to characteristic spin
textures [13,14,20].

However, our previous calculation of Berry’s parameters
appears to be one-sided because the treatment was performed
while considering an adiabatic process. Despite the small
energy difference between the quasidegenerate states, we ig-
nored the intersubband transition. It is necessary to consider
the influence of the nonadiabatic process via intersubband
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hybridization and revisit the fundamental Berry’s parame-
ters. We first formulate the non-Abelian Berry connection
(tensor R) and phase (matrix �) for a multiband system (Sec-
tion II). Several pioneering studies have been conducted on
the non-Abelian treatment of Berry’s analysis, which have
deepened our understanding [21–23] in the field of the quan-
tum information and computation [24–27]. Here, we develop
non-Abelian formulation in conformity with the practical sub-
ject of semiconductor holes, while sacrificing mathematical
strictness, because we intend to apply our formulation to semi-
conductor holes having complicated electronic structures and
spin textures owing to the coexistence of R- and D-type SOIs
(Sec. III). Thus we focus on HHs confined in a SiGe 2DQW
and then calculate the energy dependence of � computation-
ally by performing the contour integral of R faithfully along
the equienergy surface by combining the time-dependent (TD)
Schrödinger equation with the semiclassical equation of mo-
tion for a cyclotron (Sec. III C).

II. THEORETICAL TREATMENT FOR NON-ADIABATIC
PROCESSES

A. Non-Abelian Berry connection tensor

The Berry phase is the phase difference of the wave func-
tion and is defined by the contour integral when the final state
becomes identical to the initial state during the specific motion
characterized by the parameters used to describe the system
accurately. As we are investigating the Berry phase of the
carrier having a Bloch state, we can use a wave vector k as
the parameter that describes the system well. We define the
periodic part of the nth Bloch eigenstate as |un

k〉. Thus any
state |φk〉 of the carrier is represented by the expansion of |un

k〉
because of the completeness at k:

|φk〉 =
∑

n

cn
k

∣∣un
k

〉
, (1)

where n represents the spin polarization (α and β) as well as
the nth band index.

We now explore the k-space trajectory, the final state k f of
which returns to the initial state ki. The equienergy surface is
representative of this trajectory, which is realized by the “cy-
clotron motion.” Thus we recreate the “dynamical” process of
the carrier via the cyclotron motion, the TD feature of which
is described by the semiclassical equation of motion. This
recreation via the cyclotron motion enables us to solve the
time dependence of the wave vector by coupling the semiclas-
sical equation of motion with the TD Schrödinger equation.
Accordingly, we can implicitly include the time dependence
in the projection coefficient cn

k in Eq. (1), although the wave
vector k does not originally comprise a time-dependence
term. In addition, energy conservation during the cyclotron
motion results in the following physical insights. The adia-
batic process specifically determines the equienergy surface of
the single eigenstate |un

k〉. Consequently, the closed trajectory
with ki = k f is naturally and uniquely determined by the
single-cycle motion. In contrast, the nonadiabatic process al-
lows the carrier to cause interstate hybridization, even during
the cyclotron motion, along the energy-conserved k-space tra-
jectory. The resulting k-space trajectory cannot be represented
by the single equienergy surface of the specific eigenstate

but by synthesizing multi-equienergy surfaces because the
carrier switches between multiple states. Thus the single-cycle
cyclotron motion in the nonadiabatic process does not always
equalize the final wave vector k f to the initial one ki. Multicy-
cle cyclotron motion is possibly required to realize the closed
trajectory of ki = k f .

Using Eq. (1), we rewrite the TD Schrödinger equation

ih̄
d

dt
|φk(t )〉 = Ĥk |φk(t )〉 , (2)

into the following rate equation:

dcm
k

dt
= −

∑
m′

⎛
⎝∑

ξ

〈
um

k

∣∣∣∣∣ ∂um′
k

∂kξ

〉
dkξ

dt

⎞
⎠cm′

k − i
Em

k

h̄
cm

k

= i
∑

m′

⎛
⎝∑

ξ

Rξ

mm′ (k) k̇ξ

⎞
⎠cm′

k − i
Em

k

h̄
cm

k . (3)

Here, the normalized orthogonality 〈um
k |um′

k 〉 = δmm′ results in
the relation 〈

dum
k

dt

∣∣∣∣∣ um′
k

〉
= −

〈
um

k

∣∣∣∣∣ dum′
k

dt

〉
. (4)

In Eq. (3), we further define a tensor component Rξ

mm′ (k) as
follows:

Rξ

mm′ (k) = i

〈
um

k

∣∣∣∣∣ ∂um′
k

∂kξ

〉
. (5)

Because we are studying a 2D system herein, we focus on the
in-plane components ξ = x and y. This procedure does not
eliminate the generality of the formulation (5).

The tensor Rξ

mm′ (k) defined by Eq. (5) is mathematically
equivalent to the Berry connection tensor. From the physical
perspective, this tensor is the non-Abelian Berry connection
for the nonadiabatic process [22,28] because the interstate hy-
bridization between |um

k 〉 and |um′
k 〉 is taken into consideration.

The noncommutativity of the non-Abelian Berry connection
tensor appears explicitly in the time-ordered product in the
calculation of the Berry phase matrix.

The diagonal term (m′ = m) of Eq. (5) is given by

Rξ
mm(k) = i

〈
um

k

∣∣∣∣∣ ∂um
k

∂kξ

〉
≡ Aξ

m(k). (6)

The symbol Aξ
m(k) is the ξ component of the Abelian Berry

connection vector Am(k) for the mth carrier, which is given by

Am(k) = i
〈
um

k

∣∣∇k

∣∣um
k

〉
. (7)

B. Non-Abelian Berry phase matrix

To eliminate the dynamical phase from Rξ

mm′ (k), we further
redefine the rationalized Berry connection tensor R̄ξ (k) as
follows:

R̄ξ (k) =
(

exp

[
i
∫ t

0
�k(t ′ )dt ′/h̄

])
Rξ (k)

×
(

exp

[
−i

∫ t

0
�k(t ′ )dt ′/h̄

])
. (8)
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Here, we introduce the energy eigenvalue matrix �k, the
diagonal elements of which are the eigenvalues of the Bloch
eigenstates:

�k =

⎛
⎜⎝

E1
k 0

E2
k0 . . .

⎞
⎟⎠. (9)

Accordingly, when a “time” t = Tcls passes, and the final point
k f (E ) becomes the initial point ki(E ) (t = 0), we have the
non-Abelian Berry phase matrix �(E ) [21,22]:

�(E ) = − i

Ncyc
ln

⎛
⎝T exp

⎡
⎣i

∑
ξ

∫ Tcls

0
R̄ξ k̇ξ (E )dt

⎤
⎦
⎞
⎠

= − i

Ncyc
ln

⎛
⎝T exp

⎡
⎣i

∑
ξ

∮ k f (E )

ki (E )
R̄ξ dkξ (E )

⎤
⎦
⎞
⎠,

(10)

where we define the time derivation of the wave vector k using
the notation k̇(= dk/dt ), and Ncyc is the number of cycles
required to form the closed trajectory. We also employ the
time-ordered product T while considering the noncommuta-
tivity in the Berry connection tensor R̄ξ (k(E )).

If the system is described well by the adiabatic approx-
imation, the off-diagonal elements (noncommutative) of the
Berry connection R̄ are negligible, which results in a diagonal
Berry connection Rmm(= Am). Accordingly, R̄ at any time is
commutative, and the time-ordered product simply offsets the
mathematical operations “ln” and “exp” in Eq. (10). Conse-
quently, Stokes’ theorem transforms the contour integral to
the surface integral as follows:

�(E ) = − i

Ncyc
ln

(
exp

[
i
∮ k f (E )

ki (E )
R̄ · dk(E )

])
⇒

∮
E

R · dk

=
∫∫

�E
∇ × R dkxdky. (11)

C. Cyclotron motion

To calculate the non-Abelian Berry phase, we must per-
form the contour integral in Eq. (10) by focusing attention
on the time-ordered product caused by the noncommutativity
of the non-Abelian Berry connection. In addition, we are
required to describe the “time dependence” of the wave vector
because the integrand has the term k̇. Here, we focus on the
magnetic field B0 = (0, 0, B0) applied to resolve the spin de-
generacy. This field causes a “cyclotron motion,” using which
we can alter the motion of the wave vector to follow the k
trajectory. The semiclassical equation of motion describes this
TD feature as follows:

dk
dt

= q

h̄2 〈φk|∇kĤk|φk〉 × B0. (12)

Accordingly, the coupling of Eqs. (3) and (12) enables us to
perform the contour integral accurately along the cyclotron
k trajectory by taking into consideration the time-ordered
product in Eq. (10).

III. APPLICATION TO SIGE BINARY ALLOY SYSTEM

A. Electronic structure and spin texture

Here, we have extended the k · p approach of Dresselhaus,
Kip, and Kittel (hereafter, abbreviated DKK) [29] by consider-
ing the crossings between the k · p and R- or D-SOI coupling
up to the second-order terms. We, then, applied it to SiGe
2DQW system and studied the spin textures of the R- and
D-SOI competition system [13,14]. The extended k · p ap-
proach can be used to determine both the periodic part |un

k〉 and
eigen energy En

k of the nth Bloch hole |ϕn
k (r)〉 = eik·r |un

k(r)〉
precisely while taking into consideration the ISI:

Ĥexd
k

∣∣un
k

〉 = (Ĥ0 + Ĥ′
k + μBσ̂ · B0)

∣∣un
k

〉
=

(
En

k − h̄2

2m
k2

) ∣∣un
k

〉 ≡ En
k

∣∣un
k

〉
. (13)

Here, Ĥ0 is the nonperturbed Hamiltonian, and Ĥ′
k is the

extended k · p Hamiltonian given by

Ĥ′
k = Ĥ′

k·p + Ĥ′
cSOI + Ĥ′

SIAk + Ĥ′
SIAp⊗k·p + Ĥ′

BIAk

+ Ĥ′
BIAp⊗k·p. (14)

Here, Ĥ′
k·p is the DKK second-order k · p perturbation Hamil-

tonian, and Ĥ′
cSOI is the internal SOI perturbed Hamiltonian

caused by the crystal potential (corresponding to so-called
� · s coupling) [29]. The remaining four terms in Eq. (14)
correspond to the SOI terms that are related to the SIA and
BIA, as defined in our previous work [30,31]. Eventually,
we have diagonalized the extended k · p Hamiltonian Ĥexd

k
of 6 × 6 matrix. We have already reported the formulation of
the above extended k · p approach [13,30]. The essence of the
perturbed Hamiltonians is summarized in Ref. [32].

In this calculation, the holes are assumed to be confined
in the Si0.5Ge0.5 2DQW system, which has an alternating
configuration and where the BIA is the most strengthened
[47,48]. We apply a Rashba electric field perpendicular (z) to
the (001) quantum plane (xy) to study the SIA-BIA coexis-
tence system [14,49–53]. We also consider 2D quantization by
employing the conventional approach of 〈kz〉 = 0 and 〈k2

z 〉 =
(πnz/Lz )2, where Lz and nz are the quantum plane thickness
and z-directional quantum number, respectively, [54]. Of a
remark is that the competition between the internal SOI and
2D quantization changes the valence band structure of the
2DQW from that of the 3D bulk. The 2D system enables us
to classify holes based on their in-plane (xy) and out-of-plane
(z) symmetry characteristics. We demonstrated that the former
in-plane holes have two characteristics analogous to conven-
tional HH and LH. We further revealed that 2D quantization
destabilizes the out-of-plane hole energetically, separating it
from HH and LH using internal SOI coupling. As such, we
refer to this third hole as a separate hole (SH) because it has
an electronic feature resembling that of an SoH of the 3D bulk
system but is not always equal to SoH (Ref. [32]).

The 2DQW system considered herein has a thickness of 41
atomic layers to incorporate the BIA characteristics straight-
forwardly. This thickness separates the first excited states of
these three types of holes from their ground states (at least
140 meV). Accordingly, the ground state is crucial for the
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FIG. 1. E-k dispersion relation (a), and spin texture (vector field)
with equienergy contours (b) of the 2DQW system, consisting of the
Si0.5Ge0.5 alternating alloy. The system comprises the (001) quantum
plane, and the SIA and BIA couplings have an equivalent strength
[14]. The E-k dispersion relations of the HHs, LHs, and SHs are
indicated in red, blue, and green, respectively; the solid and broken
lines represent states with a stabilized spin (+) and destabilized
spin (−), respectively. We present the equienergy contours of HH±
with an energy interval of 5 meV (b). The colored circles in the
figures indicate the quasidegenerate points between HH±. We il-
lustrate the norm value of the in-plane vector by the arrow length
in a logarithmic scale. All the E-k dispersions (a) and equienergy
surfaces (b) are those of the ground state against the 2D quantization.
[These figures are reproduced from our previous work [14] and partly
modified. Copyright (2022) by Wiley-VCH GmbH.]

present consideration. The influence of the excited states is
negligible in this non-Abelian analysis because an interesting
feature in the non-Abelian Berry phases arises in the region
with energies less than 20 meV, as mentioned in Sec. III C.
The details of the Hamiltonian formulation and calculations
are summarized in Ref. [32], respectively.

Figure 1(a) presents the ground-state E-k dispersion rela-
tions of the three types of holes confined in the Si0.5Ge0.5

2DQW system under the SIA–BIA coexistence [13]. As
the SOIs caused by the Rashba and Dresselhaus couplings
stabilize(+)/destabilize(−) each type of hole, we indicate
them using solid/broken lines, respectively. We then present
the corresponding equienergy contours and spin texture of
HH± in Fig. 1(b). The ISI causes strong anisotropy and
nonparabolicity in both HH+ and HH− toward the 〈110〉
directions, resulting in quasidegeneracy between HH±, as
found in Figs. 1(a) and 1(b). The C2 symmetry of the system
results in two pairs of the quasidegenerate points: M1 and M2

in the [1̄1̄0] and [110] directions, respectively, and D1 and
D2 in the [11̄0] and [1̄10] directions, respectively. A definite
spin-vortex results around point M, while the spin distribu-
tion spreads characteristically in the 〈11̄0〉 direction, and the
resulting vortex around point D is comparatively indistinct.

B. Non-Abelian Berry connection

By employing the eigenvector |un
k〉, we calculate the non-

Abelian Berry connection R based on Eq. (5) and present
the distribution of the in-plane component in the vector-field
representation in Fig. 2(a). The Berry connection R is gauge
variant. However, we herein execute the contour integra-
tion faithfully along the closed loop of the Berry connection

FIG. 2. Vector-field representation of the in-plane vector of the
non-Abelian Berry connection with the equienergy surfaces (a). We
illustrate the norm value of the in-plane vector by the arrow length
in a logarithmic scale. We present the distribution of the Abelian
Berry curvature of HH+ in (b); the negative values are indicated
in blue while the positive ones are in red. [(b) is reproduced from
our previous works [13,14] and partly modified. Copyright (2020)
by Elsevier B.V., (2022) by Wiley-VCH GmbH.]

and estimate the non-Abelian Berry phase (gauge invariant).
Therefore the distribution of R deepens our understanding
on the feature of the contour integral, especially an energy
dependence of the non-Abelian Berry phase.

In the lower-energy region around the point �, the in-plane
component vector is concentrically distributed with an anti-
clockwise rotation. It is also characteristic that the norms of
the in-plane vectors are uniform. This feature remains as long
as the energy is less than 5 meV. However, when the energy
is greater than 5 meV, the in-plane component is weakened in
the 〈100〉 direction but strengthened in the 〈110〉 direction. As
such, the uniform concentrical-distribution breaks.

The nonuniform distribution thus obtained results in the
characteristic vector-field of the non-Abelian Berry connec-
tion. Particularly around the quasidegenerate point M at
16 meV, a vortex of the non-Abelian Berry connection is ob-
served. Furthermore, with an increase in energy, the in-plane
component decreases in the 〈110〉 direction and increases in
the 〈11̄0〉 direction. However, a vortex is not observed at the
other quasidegenerate point D; the non-Abelian Berry con-
nection strengthens its own in-plane component maximally.
Eventually, with a further increase in energy, the in-plane
component is reduced, even in the direction of 〈11̄0〉. Thus
the resulting vector-field has a complicated distribution with a
change in energy; the direction of the in-plane vector in 〈110〉
is opposite to that in 〈11̄0〉. Nevertheless, the total vector-field
has a C2 rotational symmetry.

C. Non-Abelian Berry phase

While employing the non-Abelian Berry connection R, we
explore the Berry phase � for HH± beyond the adiabatic
process. In the practical calculation, we set the initial state
of the considered hole |φk〉 to the eigen state of HH+, hav-
ing kHH+

i = (kHH+
i , 0), and execute the contour integral along

the k-space cyclotron trajectory under energy conservation
by coupling the semiclassical equation of motion for the cy-
clotron motion (12) with the rate equation (3).
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FIG. 3. Energy dependence of the non-Abelian Berry phase for
HH+ and HH− beyond the adiabatic approximation. A discontinuity
in the non-Abelian Berry phases [red solid (+) and broken (−)
lines] is observed at the energy indicated by ×. For the purpose of
comparison, we overwrite the corresponding energy-dependence of
the Abelian Berry phase (gray lines) [13,14] that is calculated using
Eq. (11). [The gray lines are reproduced from our previous works
[13,14] and partly modified. Copyright (2020) by Elsevier B. V.,
(2022) by Wiley-VCH GmbH.]

To obtain the time-ordered product in the integration of
Eq. (10), we rewrite the non-Abelian Berry phase matrix using
the unitary matrix U (t ) as

�(E ) = − i

Ncyc
ln[U (Tcls)], (15)

where the unitary matrix is given by

U (t ) = T exp

⎡
⎣i

∑
ξ

∫ t

0
R̄ξ k̇ξ (E )dt ′

⎤
⎦. (16)

On employing the Crank–Nicolson algorithm, we determine
the unitary matrix having a short-time proceeding �t :

U (t + �t )

=
⎛
⎝I − i

∑
ξ

R̄ξ (t + �t/2) k̇ξ (t + �t/2)
�t

2

⎞
⎠

−1

×
⎛
⎝I + i

∑
ξ

R̄ξ (t + �t/2) k̇ξ (t + �t/2)
�t

2

⎞
⎠U (t ),

(17)

with the initial condition of U (0) = I . Thus we have the
non-Abelian Berry phase of Eq. (10). We have provided the
calculation details in Appendix B 2.

Figure 3 presents the non-Abelian Berry phase versus en-
ergy: eigenvalues of γHH±(E ). The red solid and broken lines
indicate the energy dependence of HH+ and HH−, respec-
tively. The comparison of the non-Abelian Berry phase with
the Abelian one reveals the influence of the nonadiabatic pro-
cess and deepens our understanding of the energy dependence
of the Berry phase. For the adiabatic process, we have the
Berry curvature as shown in Fig. 2(b). Consequently, by em-
ploying Stokes’ theorem, we can calculate the Abelian Berry
phase using Eq. (11). We give those in Fig. 3 by gray solid
(HH+) and broken (HH−) lines.

As in the case of other semiconductors, the present
Si0.5Ge0.5 2DQW system has a massive Weyl-like singularity
at point �, and HH± has the Berry phase of ±π , irrespective
of whether an adiabatic or a nonadiabatic process is consid-
ered. Thus the non-Abelian Berry phase γ (E ) for HH± also
converges into ±π toward the top of the valence band, as ob-
served in Fig. 3. For the Abelian Berry phase in the adiabatic
process, HH± maintains the value ±π until the quasidegen-
erate points M1 and M2 newly appear. In the lower-energy
region, with an energy of less than ∼10 meV, the nonadiabatic
process results in almost no change in the energy dependence
of γ (E ) from that observed in the adiabatic process, i.e., the
nonadiabatic process exhibits a similar plateau profile with
γHH±(E ) = ±π .

The Abelian Berry curvature around point M is negative
[Fig. 2(b)], and the surface integral provides the Berry phase
of −π (Fig. 3). As this feature is similar to the conven-
tional massive Dirac fermion [55], we refer to point M as
a “monopole.” Consequently, the monopole-like singularity
changes the Abelian Berry phase from ±π to ∓π for HH± at
the quasidegenerate energy. However, the nonadiabatic pro-
cess causes an unexpected change in the sign of the Berry
phase and produces a discontinuity in γ (E ) owing to the
mutual interchange between HH±. This feature is completely
different from the abrupt but continuous change in the sign of
the Berry phase observed in the case of the adiabatic process.
Figure 2(b) also shows that the Berry curvature exhibits a
change in its sign from negative to positive at point D with an
increase in energy. The surface integral around point D results
in a “zero” Berry phase. Accordingly, point D possibly has a
“dipole” character and has less influence on the Abelian Berry
phase [13,14]. In contrast, the nonadiabatic process results in
a characteristic “bumpy” profile that is different from the flat
profile (γ = ∓π ) in the adiabatic process.

1. In the lower energy region

Here, we explore the non-Abelian Berry phase γ (E ) up
to ∼10 meV. Figure 4(a) presents the vector field of the
non-Abelian Berry connection. We also illustrate the k tra-
jectory owing to the cyclotron motion while overwriting the
equienergy surfaces of HH± with 10 meV. The cyclotron
motion trajectory completely coincides with the equienergy
surface of HH+. Moreover, the final position k f of the hole
|φk〉 accurately returns to the initial position ki owing to
the single-cycle motion. The projection analysis reveals that
the hole |φk〉 consists primarily of HH+, and few states are
hybridized even under the nonadiabatic process during the cy-
clotron motion. Accordingly, the k-space trajectory coincides
with the HH+ equienergy surface of 10 meV [Fig. 4(b)].

Figure 4(c) presents the successive integration (red line)
of the inner product between the Berry connection R and the
time-derivative of the wave vector k̇. We perform integration
stepwise until time t along the cyclotron trajectory. Any in-
termediate values obtained are gauge variant and physically
meaningless, with the exception of the full contour integral.
However, the “midway” integrals explain the determination
process of the Berry phase well. Figure 4(a) demonstrates that
the non-Abelian Berry connection results in the large values
in the 〈110〉 and 〈11̄0〉 directions. Moreover, these connection
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FIG. 4. k-space trajectory (black solid line) of the hole having an energy of 10 meV (a). We illustrate the vector-field distribution of the
non-Abelian Berry connection (red arrows) for HH+ with the equienergy surfaces (10 meV) of HH+ (red solid line) and HH− (red broken
line). We illustrate the norm value of the in-plane vector by the arrow length in a logarithmic scale. We present the projection profile (b), and
the successively integrated values (red line) of the inner product (black broken line) between R̄ and k̇ (c).

vectors are antiparallel to the cyclotron direction of the hole
having an energy of 10 meV. Consequently, the absolute value
of an inner product between R̄ and k̇ increases stepwise at
every point at which the hole crosses the aforementioned four
directions [broken line in Fig. 4(c)]. Except in the case of
the aforementioned four directions, the value of the Berry
connection vector is small, and a small inner-product value
is obtained. It should be noted that the C2 rotational symmetry
of the system lets the hole repeat the same TD profile when
the time equals half the cycle time Tc(= Tcls/Ncyc). In such
a manner, the hole in the nonadiabatic process undergoes
these complicated gauge-variant processes. Nevertheless, the
non-Abelian Berry phase γ determined by the contour integral
coincides with the value obtained under the adiabatic process.
That is, the non-Abelian Berry phase of HH+ (and HH−) up
to ∼10 meV is well described by the adiabatic approximation.

2. At the “monopole” point M

We explore how the non-Abelian Berry phase is affected
when the hole passes the quasidegenerate points M1 and M2.
For this purpose, we set the hole initially with the HH+
eigenstate having 16 meV. The resulting k trajectory and
projection coefficients are presented in Figs. 5(a) and 5(b),
respectively. The hole first exhibits a k trajectory (black sold
line) equal to the equienergy surface of HH+ (red solid line)
because the hole initially has the HH+ eigenstate. Figure 5(b)
demonstrates that the hole changes from HH+ to HH− when
it passes point M1. Accordingly, the hole also changes the
trajectory from the equienergy surface of HH+ (red solid
line) to that of HH− (red broken line). The C2 symmetry
of the system further results in a transition back to HH+ at
the quasidegenerate point M2. The trajectory returns to the
equienergy surface of HH+, and the closed trajectory having

ki = k f is inevitably realized owing to the single cyclotron
cycle. Thus the hole alternates between the HH± states when
it passes the “monopole” points M1 and M2 and goes back
and forth over the two equienergy surfaces of HH± during
the cyclotron motion owing to the conservation of energy.

The nonadiabatic process allows the interstate transition
and then induces the off-diagonal terms Rξ

mm′ (k). Conse-
quently, the non-Abelian Berry connection vector has a
characteristic distribution comprising a vortex at the quaside-
generate point M, as shown in Fig. 5(a). This off-diagonal
Berry connection element Rξ

mm′ (k) further induces the off-
diagonal terms of the non-Abelian Berry phase matrix �.
Figure 6 illustrates the energy dependence of the diagonal
(a) and off-diagonal (b) elements of � for HH± around the
quasidegenerate point M. The absolute value of the diagonal
element decreases and becomes zero at point M. These di-
agonal terms then cross mutually and increase. The energy
profiles of these diagonal elements resemble those of the
Abelian Berry phases (Fig. 3), wherein the adiabatic process
prohibits interstate hybridization. In contrast, the nonadiabatic
process causes the off-diagonal terms to reach a maximum at
point M [Fig. 6(b)]. That is, the intercrossing of the Abelian
Berry phases at point M changes into the “avoid crossing” by
the off-diagonal elements which are caused by the interstate
transition via the nonadiabatic process. This “resonant repul-
sion” causes discontinuity in the non-Abelian Berry phases
for HH± at the quasidegenerate point M (Fig. 3). Moreover,
the interstate transition breaks the rigorous π quantization.

We investigate what happens when the cyclotron trajectory
is slightly away from point M. Figure 7 presents the k tra-
jectory (a), the projection coefficients (b), and their Fourier
analysis (c) for the hole having an energy of 15 meV. The
further away the cyclotron trajectory is from point M, the
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FIG. 5. k-space trajectory (black solid line) of the hole having an energy of 16 meV with the vector-field distribution of the non-Abelian
Berry connection (red arrows) and the equienergy surfaces (16 meV) of HH+ (red solid line) and HH− (red broken line) (a). We illustrate the
norm value of the in-plane vector by the arrow length in a logarithmic scale. We present the projection coefficients |cm

k |2 vs time (b).

greater the energy difference �E± between the HH± results,
and the interstate transition between HH± is reduced. Thus
the k trajectory (a) is formed by synthesizing the equienergy
surfaces of HH+ and HH− having an energy of 15 meV
in accordance with the hybridization ratio. The nonadiabatic
process results in this complicated interstate transition and
requires 80 cyclotron cycles to close the trajectory for E =
15 meV. The Fourier analysis [Fig. 7(c)] demonstrates that any
peaks are expressed by a rational number with a denominator
of 80, because the frequency ratio of the lth harmonics is given
by ωl/ωc = l/Ncyc.

FIG. 6. Energy dependence of the non-Abelian Berry phase
matrix for HH± around the quasidegenerate points M; diagonal
elements (a) and off-diagonal elements (b). Schematic explanation
for the discontinuity in the energy dependence of the non-Abelian
Berry phase around the quasidegenerate points M (c).

3. At the “dipole” point D

We further explore the k trajectory (a) and the projec-
tion profile (b) when the hole passes other quasidegenerate
points D1 and D2 at approximately 24 meV (Fig. 8). De-
spite the small energy difference between the states HH±
at point D1, the transition to the HH− state is incomplete,
which is in contrast to the situation at point M1. The pro-
jection profile further demonstrates that the hole consists of
both the states of HH± during the cyclotron motion. Ac-
cordingly, the resulting trajectory is between the equienergy
surfaces of HH+ and HH− (Appendix A); e.g., from the
point D1 to D2 in the second cycle, the hole has nearly an
even ratio of the hybridization between HH±, and the trajec-
tory is midway between two equienergy surfaces of HH±.
When the hole passes point D2, the incomplete transition
to HH+ prevents the hole trajectory from returning to the
equienergy surface of HH+. Consequently, the cyclotron tra-
jectory cannot be closed in a single cycle, and multi cycles are
required.

We reinvestigate the distribution of the Abelian Berry cur-
vature near the “dipole”-like singularity D [Fig. 9(a)]. In the
[11̄0] direction, we find the minimum point of the negative
curvature at 22.4 meV, whereas the maximum point of the
positive curvature is at 25.4 meV. We perform surface in-
tegration of the Abelian Berry curvature surrounded by the
contour illustrated in Fig. 9(a); the negative area has a value
of −0.04π and the positive area 0.05π . Thus these values of
−0.04π and 0.05π cause the surface integral around point D
to become negligible, which resulted in a “dipole”-like na-
ture. In contrast, the corresponding surface integration around
points � and M presents the values of 0.998π and −0.986π ,
respectively, and these points function as the “monopole”-like
singularity.

We finally explore the features when the hole passes
through these negative (22 meV) and positive (25 meV)
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FIG. 7. k-space trajectory (black solid line) of the hole having an energy of 15 meV (a). We overwrite the vector-field distribution of the
non-Abelian Berry connection (red arrows) and the equienergy surfaces (15 meV) of HH+ (red solid line) and HH− (red broken line). We
illustrate the norm value of the in-plane vector by the arrow length in a logarithmic scale. We show the projection coefficients |cm

k |2 against
time (b) and their Fourier components (c).

extrema. Figures 9(b) and 9(c) illustrate the trajectories of
these holes having an energy of 22 and 25 meV, respectively.
It should be noted that the cyclotron motion passing through
the “monopole”-like point M requires a single cycle or a few
cycles to close the cyclotron trajectory owing to the full-
alternate transition. However, the above negative (22 meV)

and positive (25 meV) extrema deviate from point D, and
the energy difference between HH± increases. Accordingly,
the TD components of the hole interchange neither fully nor
alternately owing to the reduced interstate transitions between
these two states. Thus the closing of the trajectory requires
multiple cycles of the cyclotron motion, as shown in Figs. 9(b)

FIG. 8. k-space trajectory (black solid line) of the hole having a quasidegenerate energy of 24 meV while overwriting the non-Abelian
Berry connection vector field (red arrows) and the equienergy surfaces (24 meV) of HH+ (red solid line) and HH− (red broken line) (a). We
illustrate the norm value of the in-plane vector by the arrow length in a logarithmic scale. We present the projection coefficients |cm

k |2 against
time (b). We indicate the first, second, and third cycles in red, green, and blue, respectively.
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FIG. 9. k-space distribution of the Abelian Berry curvature for HH+ (a), and the resulting cyclotron trajectory (black solid line) of the hole
having an energy of 22 (b) and 25 meV (c). We illustrate the contour of the Abelian Berry curvature of ±1.0 × 10−15 cm2 in (a) and overwrite
the vector field of the non-Abelian Berry connection (red arrows) and the equienergy surfaces of HH+ (red solid line) and HH− (red broken
line) in (b) and (c). We illustrate the norm value of the in-plane vector by the arrow length in a logarithmic scale. [(a) is reproduced from our
previous works [13,14] and partly modified. Copyright (2020) by Elsevier B. V., (2022) by Wiley-VCH GmbH.]

and 9(c), respectively. The weakened singularity around point
D causes the “convex and dent” of the non-Abelian Berry
phases, which is observed at approximately 21 and 26 meV
in Fig. 3.

IV. SUMMARY

We formulated the non-Abelian Berry connection tensor
R and phase matrix � for the multiband system and ap-
plied them to semiconductor holes under the coexistence of
the R- and D-type SOIs. We then calculated the energy de-
pendence of � computationally while focusing on the HHs
confined in Si0.5Ge0.5 2DQW. We performed the contour in-
tegral of R along the equienergy surface by combining the
TD Schrödinger equation with the semiclassical equation of
motion for the cyclotron motion.

The SOIs coupled strongly with ISI results in quasidegen-
erate states plurally around the semiconductor valence-band
edge. These quasidegenerate points work as a Weyl-like sin-
gularity and cause π quantization in the energy dependence
of the Berry phase under the adiabatic process. The nona-
diabatic process induces intersubband hybridization, and the
off-diagonal elements both in R and � increase, in partic-
ular, around the quasidegenerate points. Consequently, the
simple π quantization in the Berry phase is violated. More
interestingly, the non-Abelian Berry phase for HH± inter-
changes mutually at the quasidegenerate energy of point M.
Consequently, HH± exhibits a discontinuity in the energy
dependence of �. This interchange-and-discontinuity can be
explained by the interstate hybridization due to the nona-
diabatic process, through which the off-diagonal terms are
generated and the “resonant repulsion” is formed.

APPENDIX A: NON-ABELIAN BERRY CURVATURE

By employing the 2D non-Abelian Berry connection ten-
sor Rξ

mm′ of Eq. (5), the out-of-plane component of the

non-Abelian Berry curvature matrix �z
mm′ is given by [23,28]

�z
mm′ (k) = [∇k × Rmm′ (k)]z − i

∑
l

[Rml (k) × Rlm′ (k)]z

=
(

∂Ry
mm′ (k)

∂kx
− ∂Rx

mm′ (k)

∂ky

)

− i
∑

l

(
Rx

ml (k)Ry
lm′ (k) − Ry

ml (k)Rx
lm′ (k)

)
. (A1)

We further define the symbols �
(1)z
mm′ (k) and �

(2)z
mm′ (k) as

�
(1)z
mm′ (k) ≡ [∇k × Rmm′ (k)]z = ∂Ry

mm′ (k)

∂kx
− ∂Rx

mm′ (k)

∂ky
,

�
(2)z
mm′ (k) ≡ −i

∑
l

[Rml (k) × Rlm′ (k)]z

= −i
∑

l

[
Rx

ml (k)Ry
lm′ (k) − Ry

ml (k)Rx
lm′ (k)

]
. (A2)

Accordingly, the out-of-plane component Eq. (A1) is decom-
posed into

�z
mm′ (k) ≡ �

(1)z
mm′ (k) + �

(2)z
mm′ (k). (A3)

Because the non-Abelian Berry curvature has a matrix
form �z

mm′ (k) owing to the nonadiabatic process, we cannot
compare the non-Abelian result with the Abelian one in a
straightforward manner. We therefore focus on the diagonal
elements of �(1)z

mm (k) and �(2)z
mm (k) and investigate the influ-

ence of the nonadiabatic process on the diagonal elements.
Figure 10(a) presents the diagonal elements of �(1)z

mm (k). The
comparison of Fig. 10(a) with Fig. 9(a) reveals that the di-
agonal component �(1)z

mm (k) coincides with the Abelian Berry
curvature because the diagonal element �(1)z

mm (k) can be rewrit-
ten as

�(1)z
mm (k) = ∂Ry

mm(k)

∂kx
− ∂Rx

mm(k)

∂ky

= ∂Ay
m(k)

∂kx
− ∂Ax

m(k)

∂ky
= Bz

m(k). (A4)
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FIG. 10. k space distribution of the in-plane diagonal component of the non-Abelian Berry curvature for HH+; �(1)z
mm (k) (a) and �(2)z

mm (k) (b).

Here, Aξ
m(k) denotes the Abelian Berry connection for the

mth hole, as defined in Eq. (7). As such, the diagonal ele-
ment �(1)z

mm (k) represents the out-of-plane (z) component of
the Abelian Berry curvature, which indicates complete coin-
cidence between Figs. 10(a) and 9(a).

The sum over the interstates in Eq. (A2) demonstrates that
the second term �

(2)z
mm′ (k) of Eq. (A3) represents the influence

of the interstate transition due to the nonadiabatic process. In
the present work, we have a particular interest in how the
ISI via a nonadiabatic process modifies even the diagonal
element of the non-Abelian Berry curvature. Accordingly,
we obtain the sum l over other hole states (LHs and SHs)
and calculate the distribution of �(2)z

mm (k) [Fig. 10(b)]. As the
resulting values are small, we magnify them by 20 times
to perform a comparison with �(1)z

mm (k). In the lower-energy
region of less than 10 meV, �(2)z

mm (k) does not provide any
meaningful values. This is why the non-Abelian Berry phase
in such a lower-energy region is not influenced much by the
nonadiabatic process. With an increase in energy, the nonadi-
abatic process causes intersubband hybridization, especially
around the quasidegenerate points M and D. Thus small but
meaningful values are produced in the 〈110〉 and 〈11̄0〉 direc-
tions [Fig. 10(b)]. Eventually, the nonadiabatic process has an
influence even on the diagonal component of the non-Abelian
Berry curvature via �(2)z

mm (k).

APPENDIX B: CALCULATION DETAILS IN
NON-ABELIAN BERRY PHASE

1. Time-ordered product

We rewrite Eq. (3) into its vector representation as

dck

dt
= i

⎛
⎝∑

ξ

Rξ (k)k̇ξ − �k

h̄

⎞
⎠ck, (B1)

where we represent the expansion coefficient vector ck as

ck =

⎛
⎜⎜⎜⎜⎝

c1
k

c2
k
...

cN
k

⎞
⎟⎟⎟⎟⎠. (B2)

In order to eliminate the dynamical term explicitly from the
time-dependent process, we define the expansion coefficient
vector c′

k(t ) as

c′
k(t ) = ei

∫ t
0 �k(t ′ )dt ′/h̄ck(t ). (B3)

Thus the rate equation (B1) is rewritten as

dc′
k

dt
= i

∑
ξ

R̄ξ (k)k̇ξ c′
k. (B4)

Here, we define the rationalized non-Abelian Berry connec-
tion tensor R̄ξ

mm′ (k) as

R̄ξ

mm′ (k) = exp

[
i
∫ t

0

Em
k(t ′ ) − Em′

k(t ′ )

h̄
dt ′

]
Rξ

mm′ (k)

= i exp

[
i
∫ t

0

Em
k(t ′ ) − Em′

k(t ′ )

h̄
dt ′

]〈
um

k

∣∣∣∣∣ ∂um′
k

∂kξ

〉
. (B5)

The tensor R̄ξ

mm′ (k) is further simplified when eigenstates |um
k 〉

and |um′
k 〉 are not degenerate, i.e., Em

k �= Em′
k ;

R̄ξ

mm′ (k) =

⎧⎪⎨
⎪⎩

i〈um
k | ∂

∂kξ
| um

k 〉 (m = m′)

−i exp
[
i
∫ t

0

Em
k(t ′ )

−Em′
k(t ′ )

h̄ dt ′] 〈um
k | ∂

∂kξ
Ĥk | um′

k 〉
Em

k −Em′
k

(m �= m′).
(B6)
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The employment of the time-ordered product T for R̄ξ (k) allows us to obtain the formal solution of the rate equation (B4):

c′
k(Tcls ) = T exp

⎡
⎣i

∫ Tcls

0

∑
ξ

R̄ξ (k)k̇ξ dt

⎤
⎦c′

k(0) ≡ exp(iNcyc�)c′(0). (B7)

Thus we can determine the non-Abelian Berry phase tensor � as

� = − i

Ncyc
ln

⎛
⎝T exp

⎡
⎣i

∫ Tcls

0

∑
ξ

R̄ξ (k)k̇ξ dt

⎤
⎦
⎞
⎠. (B8)

2. Application of Crank–Nicolson method

In Eq. (16), we have U (t + �t ), which has a short-time proceeding �t

U (t + �t ) = T exp

⎡
⎣i

∑
ξ

∫ t+�t

0
R̄ξ k̇ξ (E )dt ′

⎤
⎦

= T exp

⎡
⎣i

∑
ξ

∫ t+�t

t
R̄ξ k̇ξ (E )dt ′

⎤
⎦T exp

⎡
⎣i

∑
ξ

∫ t

0
R̄ξ k̇ξ (E )dt ′

⎤
⎦

= T exp

⎡
⎣i

∑
ξ

∫ t+�t

t
R̄ξ k̇ξ (E )dt ′

⎤
⎦U (t ). (B9)

We further divide the short-time period �t into halves:

U (t + �t ) = T exp

⎡
⎣i

∑
ξ

∫ t+�t

t+�t/2
R̄ξ k̇ξ (E )dt ′

⎤
⎦T exp

⎡
⎣i

∑
ξ

∫ t+�t/2

t
R̄ξ k̇ξ (E )dt ′

⎤
⎦U (t ). (B10)

Accordingly, we obtain the following relation:⎛
⎝T exp

⎡
⎣i

∑
ξ

∫ t+�t

t+�t/2
R̄ξ k̇ξ (E )dt ′

⎤
⎦
⎞
⎠

−1

U (t + �t ) = T exp

⎡
⎣i

∑
ξ

∫ t+�t/2

t
R̄ξ k̇ξ (E )dt ′

⎤
⎦U (t ). (B11)

The Crank–Nicolson approach employs the first-order Taylor expansion for the time-ordered product at t + �t/2.

U (t + �t ) =
⎛
⎝I − i

∑
ξ

R̄ξ (t + �t/2) k̇ξ (t + �t/2)
�t

2

⎞
⎠

−1⎛
⎝I + i

∑
ξ

R̄ξ (t + �t/2) k̇ξ (t + �t/2)
�t

2

⎞
⎠U (t ). (B12)

Thus we can determine U (t ) at any time t by setting the initial condition as U (0) = I .
In the practical calculation, we focus our attention on the unitarity of the matrix U (t ) because Eq. (B12) has a unitary

operation. We divide the k space into the line element of dk ∼ 1 × 103 cm−1. Accordingly, the time-ordered product along
the equienergy surface (e.g., E = 10 meV) requires the calculation of 13 550 000 steps. We executed the present numerical
calculations of the total energy with an accuracy within an error of less than 1 × 10−6 % to confirm that the energy is conserved
during the “cyclotron motion.” Owing to the matrix form of the non-Abelian Berry phase � [Eq. (10)], we diagonalize it and
identify the eigenvalues of HH±, LH±, and SH±, respectively, based on the components |yz〉, |zx〉, and |xy〉 including a spin.
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