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Complete escape from localization on a hierarchical lattice: A Koch fractal with all states extended
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An infinitely large Koch fractal is shown to be capable of sustaining only extended, Bloch-like eigenstates
if certain parameters of the Hamiltonian describing the lattice are numerically correlated in a special way,
and a magnetic flux of a special strength is trapped in every loop of the geometry. We describe the system
within a tight-binding formalism and prescribe the desired correlation between the numerical values of the
nearest-neighbor overlap integrals, along with a special value of the magnetic flux trapped in the triangular
loops decorating the fractal. With such conditions, the lattice, despite the absence of translational order of any
kind whatsoever, yields an absolutely continuous eigenvalue spectrum and becomes completely transparent to
an incoming electron with any energy within the allowed band. The results are analytically exact. An in-depth
numerical study of the inverse participation ratio and the two-terminal transmission coefficient corroborates
our findings. Our conclusions remain valid for a large set of lattice models, built with the same structural
units, but beyond the specific geometry of a Koch fractal, unraveling a subtle universality in a variety of such
low-dimensional systems.
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I. INTRODUCTION

Interference between multiple scattering events leads to a
localization of waves in a disordered environment. This is
the essence of what we now know as Anderson localization
[1,2]. The details of the phenomenon are of course sensitive
to the dimensionality of the system, and tight-binding studies
of lattice models in three, two, and one dimensions reveal
that while there is a critical concentration of the disorder in
three dimensions to see the absence of diffusion [1], in two
dimensions [3] and in one dimension [4,5] all single-particle
states are localized in general, for any arbitrary amount of
disorder. This disorder-driven quantum interference effect,
conceptualized more than 60 years ago, is of everlasting inter-
est as the manifestation of disorder is ubiquitous [6,7] and was
experimentally observed in the recent past for a wide variety
of systems using light [8–11] or Bose-Einstein condensates
[12], or the very recent one involving cold atoms [13], to name
a few.

A substantial volume of the existing literature addresses
different aspects of disorder-induced localization [14–22] and
this field of research has been further enriched by the discov-
ery of localization even in the absence of disorder, viz., in
translationally invariant lattice geometries where local lattice
topology becomes the root cause of localization [23]. This
observation pioneered extensive research in the physics of
the flat bands and compact localized states in a class of
“engineered” lattice models in quasi-one, two, or even three
dimensions [24–31].
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In the present paper, we investigate the counterintuitive
case of a complete delocalization of all the single-particle
states, representing, say, an electron propagating in a dis-
ordered environment, where the disorder has a structure.
Delocalization of single-particle states in lattices with geo-
metrically correlated disorder is not new and began with the
pioneering “random dimer model” (RDM) [32,33]. It was
substantiated later by several other interesting works on (ge-
ometrically) correlated disordered lattices [34–38], and also
in a whole class of quasiperiodic lattices where the dimerlike
[32] geometric correlation is built in the growth sequences
[39–43]. Delocalized eigenstates are also seen in deterministic
fractal lattice models [44–46] and the origin of the existence
of extended, delocalized single-particle states in such lattices
can be traced back to the lattice geometry as a whole, in
contrast to local clusters of sites, as shown in the RDMs or
the quasiperiodic lattices referred to above.

In all the previous works mentioned above, delocalization
(leading to extended eigenfunctions) is observed only at spe-
cial energy eigenvalues. In an infinitely large quasiperiodic
lattice [39–41] or in a deterministic fractal in its thermo-
dynamic limit [44,46], one can extract an infinity of such
resonant energy eigenvalues leading to unscattered single-
particle states. But, the distribution of such energy values is
always of a discrete nature, and the energies do not really
form a continuous band, and definitely do not span the entire
spectrum of eigenvalues.

With this backdrop, it has recently been proposed and
shown that a class of one-dimensional topologically disor-
dered lattices can indeed have a major part of the energy
spectrum, or even the entire spectrum in some cases, popu-
lated by extended Bloch-like eigenstates only [47–50]. The
entire spectrum, or most of it, depending upon the geometry
of the lattice, becomes absolutely continuous. Such lattices are
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FIG. 1. (a) The building block (seed) of a Koch fractal. (b) The
Koch fractal is in its second generation. The variety of sites A, B,
C, and D is explained through the color code in the inset. (c) A
linear chain is obtained from (b) after decimating out the A sites. The
magnetic flux trapped in the triangular plaquettes, in each figure, is
shown as �.

linear, periodic, and have side-coupled atomic clusters. Typi-
cally the systems are described by a tight-binding Hamiltonian
with off-diagonal disorder. A very nominal quasi-one dimen-
sionality is introduced through the coupling of the clusters of
atomic sites from one side of the periodic backbone. This is
crucial. One then finds that a special correlation between the
numerical values of the nearest-neighbor hopping (overlap)
integrals is needed to observe the delocalization effect. The
studies [47–50] based on the solution of the time-independent
Schrödinger equation were later substantiated by a study of
quantum dynamics of similar systems [51]. In the present
paper, we look deeper into this aspect of the problem; that is,
we look into the possibility and the mechanism of generating
an absolutely continuous band of energy eigenvalues with all
states extended, in a disordered environment. We choose a
recursively grown Koch fractal (KF) geometry, which is a
well-studied example of a hierarchical lattice [52–58], as our
system of interest. The KF lattice is deterministic, but lacks
translational invariance. Generating extended eigenstates is
such lattices, especially a continuous band of the same, is very
much nontrivial. The KF geometry considered here is just an
example and, towards the end of the paper, we explain that the
conclusion drawn in this paper remains valid for many more
lattice varieties, in addition to that considered here.

The KF geometry in this work [Figs. 1(a) and 1(b)] is
described using a tight-binding Hamiltonian with a distribu-
tion of the nearest-neighbor hopping integrals. Due to the
hierarchical nature of the growth of the fractal, the constituent
clusters, viz., a triangle and a dot, are nonperiodically placed
along the backbone of the lattice. There is no translational
invariance and the system, in general, has poor electrical con-
ductance. The self-similarity of the geometry facilitates the
application of the real-space renormalization group (RSRG)
methods to study the eigenvalue spectrum, and this has been
exploited [59,60] to extract the density of states and also to

identify clusters of isolated delocalized (extended, but non-
Bloch) single-particle states at special, discrete energy values.
However, no report is available yet in regard to achieving, by
any mechanism, a completely continuous band structure in
such geometries. This is the central motivation of the present
work. We solve this problem in an analytically exact way.

Our results are very interesting. The model is described
in Sec. II. We show that a subtle correlation between the
numerical values of the nearest-neighbor hopping integrals on
a Koch curve geometry can render the entire energy spectrum
absolutely continuous with all the eigenstates having an ex-
tended character. The entire fractal geometry, however large,
becomes completely transparent to an incoming electron with
any energy lying within the band. The energy band, under the
special correlation between the hopping integrals, shows the
gross features of a perfectly periodic one-dimensional lattice
of identical atoms, with a typical singularity at the edges of
the band. This is discussed in detail, through a display of the
density of states and the transmission spectrum, and is laid
out in Sec. III. That the correlation is of a much more general
nature is discussed next in Sec. IV, and in Sec. V we draw
the conclusion. The mathematical details, which are needed
to appreciate the results, are provided in the Appendixes.

II. THE MODEL

A Koch fractal lattice is recursively grown from a seed,
shown in Fig. 1(a). The lattice, grown to its second genera-
tion, is shown in Fig. 1(b), and the subsequent generations
are easily understood [53,59]. The four kinds of atomic sites
(vertices) are distinguished depending on the number of the
nearest neighbors they have, viz., A (yellow vertex of a tri-
angle), B (blue, base atoms of a triangle), C (orange sites
with two nearest neighbors), and D (green sites with four
nearest neighbors), The colors are explained by the codes
given in Fig. 1. There is a uniform magnetic field, piercing
each triangle perpendicular to its plane. The field results in a
magnetic flux � “trapped” in every triangular plaquette [59].
This breaks the time-reversal symmetry only locally, that is,
when an electron circulates around the triangle.

The system is described using a tight-binding Hamiltonian,

H = ε |i〉 〈i| +
∑
〈i j〉

τi j |i〉 〈 j| + H.c. (1)

Here, ε is the uniform on-site potential (set equal to zero in
all our numerical calculations), and τi j is the nearest-neighbor
hopping integral connecting the ith site with its nearest jth
sites. We will assign a value τi j = t , a constant, when the
hopping takes place between the adjacent sites lying on the
backbone and does not encircle the trapped flux (that is, when
the hopping is not around a triangle). τi j = x exp(±iθx ) when
an electron hops along the angular sides of a triangle, and
τi j = y exp(±iθy) for a hop along the “base” of a triangle.
θx and θy are the Peierls’ phases picked up by a propagating
electron only when it moves along an arm of a triangle and is
related to the total flux � trapped in the triangle through the
equation 2θx + θy = 2π�/�0. �0 = hc/e is the fundamental
flux quantum. For simplicity, we have set all bond lengths to
be equal to unity.
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As a result of the broken time-reversal symmetry along the
sides of a triangle, θ ji = −θi j . Without losing any generality,
we choose the positive sign for θx or θy when the electron
“hops” anticlockwise along an arm of the triangle. We refer to
it as the “forward” hopping from now on. Naturally, the term
“backward” hopping will be used when θi j will have a nega-
tive sign as the electron hops back in a clockwise direction.
For hopping along the bond on the backbone between vertices
B and C, not enclosing any flux, θi j = 0, and thus τi j = t .

The time-independent Schrödinger equation Hψ = Eψ is
cast into an equivalent set of discrete difference equations.
The equations for the atomic sites at the vertices of a triangle
read

(E − ε)ψi =
∑

j

τi jψ j, (2)

with τi j = t , x exp(±iθx ), or y exp(±iθy) as the case may
be, and the sign of the Peierls’ phase chosen appropriately.
The summation runs over the nearest neighbors of the vertex
considered here.

In the next section, we will use the set of Eq. (2) to explain
our findings.

III. THE COMMUTING TRANSFER MATRICES
AND THE CONTINUOUS SPECTRUM

A. The correlation and the commutation

Using Eq. (2), we first decimate out [61] the A sites (yel-
low) throughout the KF geometry and map the entire lattice
onto a purely one-dimensional chain [Fig. 1(c)]. The B and
the D sites in the parent KF are now renormalized to β and δ

sites, and they have energy-dependent, renormalized values of
the on-site potentials, viz.,

εβ = ε + x2

(E − ε)
,

εδ = ε + 2x2

(E − ε)
. (3)

The decimation also renormalizes the hopping amplitudes
across the ββ, βδ, and δδ pairs of sites on the effectively linear
chain shown in Fig. 1(c). Owing to the broken time-reversal
symmetry caused by the trapped flux �, the forward (F ) and
backward (B) hopping integrals across such pairs are complex
conjugates of each other. The “forward” hopping integrals are
given by tF

ββ = tF
βδ = tF

δδ = λ exp(iξ ) ≡ λF (say), where

λ =
√

y2 + x4

(E − ε)2
+ 2x2y cos(2π�/�0)

E − ε
,

ξ = tan−1

[
y sin(θy) − x2 sin(2θx )

E−ε

y cos(θy) + x2 cos(2θx )
E−ε

]
. (4)

The “backward” hoppings, as expected, are tB
ββ = tB

βδ = tB
δδ =

λ exp(−iξ ) ≡ λB = λ∗
F . The nomenclature is illustrated in the

inset of Fig. 1(b). For simplicity, we set θx = θy throughout
the calculation. This does not affect the Physics in any way
because all we have to ensure is that the total Peierls’ phase
around a triangle will be 2π�/�0. Now the values of θx and
θy become θx = θy = 2π�

3�0
.

On the effectively linear chain [Fig. 1(c)], one can connect
the amplitudes of the wave function on neighboring sites using
transfer matrices. In general, this corresponds to a difference
equation of the form

(E − εn)ψn = tn,n+1ψn+1 + tn,n−1ψn−1, (5)

where tn,n±1 imply the hopping amplitudes connecting the nth
site to the (n + 1)th and the (n − 1)th sites, and one can relate
the amplitudes of the wave function ψn and ψn±1 through a
matrix equation, [

ψn+1

ψn

]
= Mn

[
ψn

ψn−1

]
(6)

or [
ψN

ψN−1

]
=

1∏
n=N−1

Mn

[
ψ1

ψ0

]
, (7)

for a chain of atoms N-sites long. ψ1 and ψ0 provide the
desired initial conditions. The transfer matrix Mn is given by

Mn =
[

E−εn
tn,n+1

− tn,n−1

tn,n+1

1 0

]
. (8)

In our case, the hopping amplitudes tn,n±1 will have to be
appropriately replaced by λF , λB, or simply t , while εn will be
εβ , εδ , or simply ε for the sites marked β, δ, and C in Fig. 1(c).

Following Fig. 1(c), we identify three blocks of sites. Block
1 consists of the pair ββ, block 2 consists of a single site of
type C, and block 3 is built out of the quadruplet βδδβ. Three
different transfer matrices can be worked out corresponding
to these three blocks. They are

M1 =
[ (E−εβ )

t − λB
t

1 0

][ (E−εβ )
λF

− t
λF

1 0

]
,

M2 =
[

(E−ε)
t −1
1 0

]
,

M3 =
[ (E−εβ )

t − λB
t

1 0

][ (E−εδ )
λF

− λB
λF

1 0

]2[ (E−εβ )
λF

− t
λF

1 0

]
.

(9)

The string of matrices in the product
∏

n Mn corresponding
to Fig. 1(c) now reads∏

n

Mn = M2M1M2M3M2M1M2. (10)

Needless to say, if one considers a KF of arbitrarily large
generation, the effectively linear chain will appear indefinitely
long and, consequently, the string of Mn will consist of an
indefinitely long sequence of M1, M2, and M3. The order
of appearance of these matrices will obviously be dictated by
the construction of the fractal.

We now make the most important observation. Let us work
out the commutators [M2,M1] and [M2,M3]. These turn
out to be

[M2,M1(3)] =
[

0 �2,1(3)

�2,1(3) 0

]
, (11)
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where

�2,1 = −ei 4π�
3�0

[
2x2y cos 2π�

�0
+ (E − ε)(−t2 + x2 + y2)

]
t
[
x2 + ei 2π�

�0 (E − ε)y
] ,

�2,3 = −ei 4π�
�0

[
(E − ε)(−t2 + x2 + y2) + 2x2y cos 2π�

�0

]
ξ

t
[
x2 + ei 2π�

�0 (E − ε)y
]3

,

(12)

with ξ = E4 − 4E3ε + 6E2ε2 − 4Eε3 + ε4 − 4E2x2 +
8Eεx2 − 4ε2x2 + 3x4 − (E − ε)2y2 − 2(E − ε)x2y cos 2π�

�0
.

From Eqs. (11) and (12), it is clear that a selection
of x2 + y2 = t2 and � = 1

4�0 makes [M2,M1(3)] = 0
independent of energy E . This implies that in the effectively
linear chain in Fig. 1(c) and its longer versions (of any length
actually), we can rearrange the clusters 1, 2, or 3 in any
sequence. For example, we can switch their positions to form
a completely periodic pattern. The corresponding string of the
transfer matrices is then naturally rearranged, for example,
as

∏
n Mn = [M1]2[M2]4[M3], corresponding to Fig. 1(c).

On a linear chain, derived out of an infinitely large Koch
fractal geometry, we then have an infinitely long string of
matrices representing the ββ cluster, the isolated C site, and
the βδδβ cluster. The commutation allows us to rearrange the
corresponding matrix product as

∞∏
n=−∞

Mn =
( ∞∏

i=−∞
Mi

1

)⎛
⎝ ∞∏

j=−∞
M j

2

⎞
⎠

⎛
⎝ ∞∏

k=−∞
Mk

3

⎞
⎠. (13)

In Eq. (13) above, each of the “substrings” of M1, M2, or M3

has an infinite number of the basic matrices, which account
for the subsets of the ββ clusters, the C sites, and the βδδβ

clusters of the total infinite chain. The concentrations of each
cluster (or, equivalently, the kinds of sites) will be used in the
next section while evaluating the average density of states.

The string of matrices on the right-hand side of Eq. (13)
now represents a lattice geometry in which one has a com-
pletely periodic array of ββ clusters (the M1 string), followed
by an infinite string of C sites (M2 string) and then the βδδβ

clusters of atomic sites (M3 clusters). For a KF lattice of
infinite size, each such individual chain of clusters is infinitely
long. The commutation [Mi,M j] = 0 for i, j = 1, 2, 3. The
commutator bracket vanishes independent of the energy E
of the incoming electron. As a consequence, the individual
blocks ββ, C, and βδδβ can be distributed in a completely
periodic manner for all energy eigenvalues. Hence we expect
an absolutely continuous spectrum with all states extended,
Bloch like.

In this context, it should be appreciated that the existence
of the extended eigenstates, as discussed above, is a nontrivial
addition to some of the earlier fundamental works on tight-
binding formalism of hierarchical lattices in one dimension
[62,63], where the Cantor set spectrum of the Hamiltonian and
the quantum states of the propagating excitation have been
studied in great detail and the multifractal character of the
wave functions has been explained. In another illuminating
study of a hierarchical potential model [64] in one dimen-
sion and beyond, a Cantor set energy spectrum with singular
continuous character was discussed and the appearance of

a continuous distribution of eigenvalues for a certain range
of the energy spectrum was discussed when the hierarchy
parameter was chosen to have a special range of values.
However, the observation of a complete turnover of the spec-
trum from a Cantor-set character to an absolutely continuous
one, populated only by extended eigenstates, is different and
unexpected.

B. The density of states

The eigenvalue spectrum is conveniently captured in the
average density of states (AVDOS) of the system under study.
Here, exploiting the self-similarity of the KF structure, we
have adopted a real-space renormalization group (RSRG)
method [65] to obtain the average density of states of an
infinite KF. The AVDOS is given by

ρ(E ) = wAρA(E ) + wBρB(E ) + wCρC (E ) + wDρD(E ),

(14)

where ρJ ( j = A, B,C, D) is the “local” density of states at
the site of type j, and the respective concentrations w j ( j =
A, B,C, D) are obtained as wA = wB = 1/3 and wC = wD =
1/6. The details of the RSRG recursion relations to obtain
the local Green’s functions and hence the density of states are
outlined in Appendix A.

In Figs. 2(a)–2(c), we show the average density of states
(AVDOS) of an infinite Koch fractal, obtained by the RSRG
decimation scheme elaborated in Appendix A. Three proto-
type AVDOS profiles are shown. In Figs. 2(a) and 2(c), the
AVDOS is shown when the flux threading each triangular
plaquette is � = 0 and � = (1/2)�0, respectively. The spec-
trum in each case shows a rugged landscape for the AVDOS,
typical of such a fractal lattice [53,59,60]. It is noticed that
there are some patches where the AVDOS appears to be
continuous, and the corresponding end-to-end transmission
coefficient (see Sec. IV), shown in Figs. 2(d) and 2(f), also
appears to be high, i.e., close to unity. This is not unexpected,
as the Koch fractal is known to possess (at zero and nonzero
flux) extended but isolated eigenstates at some special energy
values. Such states, for an infinitely large fractal, can even be
infinite in number, as discussed before [59,60].

The remarkable change in the AVDOS profile, brought
out under the commutation condition x2 + y2 = t2, and � =
�0/4, is explicitly seen in Fig. 2(b). It can be seen that the
fragmented AVDOS profiles in Figs. 2(a) or 2(c) now col-
lapse into a single, absolutely continuous spread of energy
eigenvalues E in the range [−2, 2]. We have examined nu-
merous combinations of x and y, maintaining the condition
x2 + y2 = t2 and keeping the flux fixed at � = �0/4. In each
case, the “extent” of the band is in the range [−2, 2], with t
set equal to unity. In fact, the local densities of states (LDOS)
at all kinds of sites show the same bandwidth, though the fine
structure of the LDOS profile is usually different.

The absolutely continuous nature of the spectrum corre-
sponds to a set of completely extended eigenfunctions, a fact
that is easily confirmed from the flow of the hopping integrals
under the RSRG iterations [65] (see Appendix A). For any
energy eigenvalue, picked up at random from anywhere within
the energy spectrum in Fig. 2(b), and for any combination of
the set (x, y), satisfying x2 + y2 = t2, and with � = �0/4, the
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FIG. 2. (a)–(c) The average density of states of an infinite Koch fractal, obtained using the decimation renormalization method outlined in
Appendix A. (d)–(f) The transmission coefficient plotted against the energy; (g)–(i) the variation of the inverse participation ratio (IPR) with
energy. The transmission coefficient and the IPR have been calculated for a Koch fractal in its fifth generation. The parameters, for all the
figures, are chosen as ε = 0, t = 1, x = y = 1√

2
. The magnetic flux is (a),(d),(g) � = 0, (b),(e),(h) � = 1

4 �0, and (c),(f),(i) � = 1
2 �0. �0 has

been set equal to unity.

numerical values of the hopping integrals keep on oscillating,
without showing any sign of convergence to zero. This implies
that for any energy within the band, there is a nonzero overlap
between the wave functions at all scales of length. This is a
confirmatory test for the extendedness of the wave function, a
fact that is substantiated by the perfect two-terminal transport,
as depicted in Fig. 2(e).

To strengthen the argument regarding the extended charac-
ter of the eigenstates under the special condition referred to
above, we have evaluated the inverse participation ratio (IPR)
for increasingly larger finite-size Koch fractal lattices. IPR is
widely used to study the localization properties of disordered
lattices, and we outline the basic formula in Appendix C for
the benefit of the reader.

In Figs. 2(g)–2(i), one such case is shown, for three dif-
ferent flux values. Figure 2(g) for � = 0 and Fig. 2(i) for
� = �0/2, finite values of the IPR, indicate the existence
of localized eigenstates. There are, of course, regions in the
energy axis over which the IPR assumes quite low values,
indicating larger localization lengths or even extendedness
of the states. This is not surprising as a Koch fractal of the
type considered here is already known to possess isolated but
closely packed extended eigenstates at discrete values of the
energy E [53,59,60]. However, as one enforces the resonance

(commutation) condition, the gross IPR profile distinctly
comes down arbitrarily close to zero, implying that a long
enough Koch geometry, with x2 + y2 = t2 and � = �0/4,
will support only extended wave functions. We have cross
checked this surmise (for finite systems) by plotting the max-
imum value of the IPR, which occurs at E = 0, against the
generation number, as shown in Fig. 3. The curve clearly
shows an exponential decay in the maximum value of the

FIG. 3. Variation of zero-energy inverse participation ratio (IPR)
with the generation index for a Koch fractal network. The parameters
are chosen as ε = 0, t = 1, x = 1√

2
, y = 1√

2
, � = 1

4 �0.
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FIG. 4. The local densities of states ρA (black line) and ρB, ρC ,
and ρD (all merge in the single red line) in a Koch fractal. We have
set x = 0.6, y = 0.8 (satisfying x2 + y2 = t2). The trapped flux is set
equal to �0/4. The on-site potential is ε = 0 everywhere, and t has
been set equal to unity. Energy is measured in units of t .

IPR as the system size is increased, with an exponent equal
to 1.15431.

C. A unique band at resonance

As the conditions x2 + y2 = t2 and � = �0/4 are en-
forced, the spectrum of eigenvalues is confined between E =
ε − 2t and ε + 2t and does not spill over this range. In Fig. 4,
we show the local density of states (LDOS) at the four va-
rieties of sites A, B, C, and D. We have intentionally set
x = 0.6 and y = 0.8 just as a variation from the values used
earlier. The flux is ket at � = �0/4. The red curve, represent-
ing ρC , exactly resembles the LDOS of a perfectly periodic
chain of identical atomic sites with on-site potential ε = 0
and nearest-neighbor hopping integral t = 1. Interestingly, the
LDOS at two other sites B and D, viz., ρB and ρD, exactly
match the profile of ρC both qualitatively and quantitatively,
and hence merge completely with ρC . In Appendix B, we give
an analytical proof that this is indeed the case. The black curve
shows the variation of the LDOS at the site of type A, that is,
ρA. The band width shown by ρA matches those shown by ρB,
ρC , or ρD, as seen in Fig. 4. The bulk of the ρA differs from
the others, but the spectrum of ρA is absolutely continuous.

IV. TRANSMISSION CHARACTERISTICS

We have calculated the two-terminal transmission coeffi-
cient of finite Koch fractals and present the results here for
a fifth-generation fractal having a total of 1025 atomic sites.
The “sample” is clamped between two semi-infinite periodic
“leads” (red atoms) and is schematically shown in Fig. 5. We
adopt the standard Green’s function technique. The Green’s
function of the whole system is defined as G = (E − H )−1.
The full Hamiltonian H of the combined system consisting
of the finite-size fractal network and semi-infinite leads is
symbolically expressed as

H = HS + H1 + H2 + HS1 + HS2 + H†
S1 + H†

S2, (15)

FIG. 5. Schematic diagram of the system under study coupled to
the perfectly ordered semi-infinite leads at the two ends.

where HS is the tight-binding Hamiltonian of the fractal
system.

The Hamiltonian of the semi-infinite lead systems is de-
scribed by H1(H2). The terms HS1(H†

S1) and HS2(H†
S2) account

for the coupling between the first and second leads and the
fractal system, respectively. The effective Green’s function of
the fractal system can be defined as [66,67]

G = (E − HS − �1 − �2)−1, (16)

where �1(2) = HS1(2)G1(2)H
†
S1(2) are the self-energy correc-

tion terms that arise due to the attachment of the leads to
the system. G1(2) = [E − H1(2)]−1 corresponds to the Green’s
functions of the two leads. Once the self-energy is calculated,
it is straightforward to obtain the coupling function, �1(2)(E ),
viz.,

�1(2)(E ) = i
[
�ret

1(2)(E ) − �adv
1(2)(E )

]
, (17)

where the advanced self-energy �adv
1(2)(E ) and the retarded

self-energy �ret
1(2)(E ) are Hermitian conjugates of each other.

Equation (17), therefore, can then be written as

�1(2)(E ) = 2Im
[
�ret

1(2)(E )
]
. (18)

The expression for the transmission coefficient between
the first and second lead, as a function of the system-lead
coupling, can be written as [67]

T (E ) = Tr[�1(E )Gret�2(E )Gadv]. (19)

The transmission coefficient as a function of energy for
a Koch fractal of 1025 sites is displayed in Figs. 2(d)–2(f).
Away from the resonance condition, T (E ) exhibits a rugged
landscape, occasionally hitting the value unity (or close to
unity) and remaining low, or even becoming zero, at energies
at which either one encounters localized states or no states at
all. Figure 2(e) corresponds to the resonance condition, viz.,
x2 + y2 = t2 and � = �0/4, and shows that the entire fractal
is completely transparent to an incoming electron with any
energy within E = −2 and E = 2.

To evaluate the transmission coefficient numerically, one
has to take a reasonable size of the KF lattice (the 1025-site-
long chain taken here seems enough for the purpose) and set
the imaginary part of energy E while evaluating the Green’s
functions [67] to a low value (the imaginary part in energy
is needed to lift the poles of the Green’s function off the real
axis, and should tend to zero). For numerics, we choose the
imaginary part in energy as 10−6. The result is in exact cor-
respondence with the absolutely continuous AVDOS shown
in Fig. 2(b). In fact, all of the transmission spectra shown are
in exact correspondence with the AVDOS diagrams, as they
should be.

The perfect transmission under the resonance condition is
not unexpected. For example, in the extreme case of y = 0, the
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resonance condition boils down to x = t , and one has a per-
fectly periodic one-dimensional lattice for which the density
of states is the red curve in Fig. 4. The transmission should
be perfect. The addition of y and imposing the resonance
condition change the profile of the AVDOS, but the absolute
continuity of the spectrum is not affected. Therefore, we still
expect a perfect transmission and that is precisely what we see
here.

V. A SUBTLE UNIVERSALITY

The commutation of the transfer matrices corresponding to
the three basic building blocks of the Koch fractal shown in
Fig. 1 gives rise to a few interesting observations.

First, let us point out that essentially, the geometry consid-
ered here is a linear one. That is, one can stretch the Koch
fractal and get a line punctuated with single triangles (block
1), isolated “dots” (block 2), and a three-triangle cluster (block
3). The condition x2 + y2 = t2 implies that one can play
around with an infinite variety of combinations (x, y) which
lie on the perimeter of a circle centered at (x = 0, y = 0) and
having a radius equal to t . For a given value of t , all such
different (x, y) combinations actually refer to Koch fractals
with different microscopic details. Even within a single Koch
fractal geometry, one can assign different combinations of x,
y, and t , yet maintain the sacred equality x2 + y2 = t2, and
setting � = �0/4. The eigenvalue spectra and transmission
properties will definitely look different. Yet, the implemen-
tation of the resonance condition makes the local density of
states at the B or the D sites completely identical, and both
resemble the LDOS of a perfectly periodic array of atoms,
with a constant on-site potential ε and a constant nearest-
neighbor hopping integral t . The transmission spectrum at
the resonance will be the same for all such lattices. Making
x and y different from t , in a sense, defines a kind of local
distortion in the lattice. Hence, the above arguments hint to
the existence of a kind of universality among microscopically
different Koch fractal lattice models of such kind.

Second, it is to be appreciated that once the commutation is
achieved at the onset of the resonance condition, the arrange-
ment of blocks 1, 2, and 3 becomes completely irrelevant and
one can even arrange these in a completely disordered fashion.
However, the qualitative or the quantitative characteristics
of the LDOS, as well as the bandwidth, will not change at
all. The quantities ρB or ρD will look identical as long as
x2 + y2 = t2, with � = �0/4.

These observations indeed call for a deeper analysis in
regard to a possible universality class among such decorated
lattices, a task that will be undertaken later.

VI. CONCLUDING REMARKS

In this work, we have analytically worked out the criteria
under which a flux-threaded Koch fractal lattice becomes
completely transparent to an incoming electron having any
energy lying within the eigenvalue spectrum. The results
bring out a nontrivial variation over the conventional cases
of disorder-driven localization phenomena. The results differ
completely from the previous pioneering works related to the
random dimer model or its variants in randomly disordered

FIG. 6. Decimation renormalization of a portion of an infinitely
large Koch fractal. The undecimated sites are encircled and they
have the renormalized on-site potentials, as explained in the text.
The energy-dependent nearest-neighbor hopping integrals are along
the double bonds in the figure. They are x′

F (B), y′
F (B), and t ′

F (B), and are
shown by the red, black dotted, and black double lines, respectively.

or quasiperiodically ordered lattices. Studies of the inverse
participation ratio and the two-terminal transport corroborate
the first results obtained from transfer matrix calculations in
every respect. We also point out that any variation in the
system parameters, especially the hopping amplitudes around
local atomic plaquettes, that are consistent with the resonance
condition leads to the same bandwidth and local densities of
states at a subset of sites. This opens up a different kind of
universality class for an entire group of lattices, including
geometrically randomized arrangements, comprising similar
triangular plaquettes and dots.
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APPENDIX A: THE RSRG DECIMATION SCHEME

Here we explain the RSRG scheme used to determine the
average density of states of an infinite Koch fractal lattice.
Let us refer to Fig. 6, which explains the scaling of a KF in
a certain generation [Fig. 6(a)] to its previous generation. The
nomenclature of the sites and the hopping integrals remain the
same as that in the main text. A subset of the vertices A, B, C,
and D are decimated using the difference equations (2) and
(5). This results in the renormalized version of the lattice, as
shown in Fig. 6(b), where the renormalized on-site potentials
and the hopping integrals are given by

ε′
A = εA +

[
xF (p∗

2 + p∗
3 p2) + xB(p2 + p∗

2 p3)

1 − p∗
3 p3

]
,

ε′
B = εC + tF tB(E − ε1)

δ1
+ tF tB

E − ε1 − q1τF
,

ε′
C = εC + 2tF tB(E − ε1)

δ1
,
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ε′
D = εC + tF tB

E − ε1 − q∗
1τB

+ tF tB
E − ε1 − q1τF

,

x′
F = q∗

2tBτB

E − ε1 − q∗
1τB

,

y′
F = q3tF τF

E − ε1 − q1τF
,

t ′
F = t2

F τF

δ1
. (A1)

The symbols used in the recursion relations given in
Eqs. (A1), when written elaborately, read

ε1 = εB + xF xB

E − εA
, ε2 = εD + xF xB

E − εA
,

τF = yF + x2
B

E − εA
, τB = yB + x2

F

E − εA
,

δ1 = (E − ε1)2 − τF τB,

δ2 = (E − ε1)(E − ε2) − τF τB,

p1 = tF τF

δ2
, p2 = (E − ε1)xF

δ2
,

p3 = (E − ε1)yB

δ2
, q1 = τB

E − ε2 − p3yF
,

q2 = xB + p2yF

E − ε2 − p3yF
, q3 = p1yF

E − ε2 − p3yF
. (A2)

The complex conjugates of the above quantities are easily
obtained. It should be appreciated that though the hopping
integral t along the backbone is real initially, on renormal-
ization it picks up a phase and hence we have to deal with
its complex versions, viz., the “forward” (F) and the “back-
ward” (B). The initial values of the other hopping integrals are
xF = x exp(iθx ) and yF = y exp(iθy). The complex conjugates
xB and yB are easily obtained.

The set of Eqs. (A1) is iterated with a small imaginary part
η added to the energy E , until the effective nearest-neighbor
hopping integrals vanish and one is left with the fixed point
values of the on-site potentials, viz., ε̃ j , with j = A, B,C, and
D. The local Green’s function at any vertex is then obtained
from the standard expression Gj j = (E − ε̃ j )−1, and the local
density of states at the jth vertex is obtained as

ρ j = Limη→0

[
− 1

π
ImGj j (E + iη)

]
. (A3)

APPENDIX B: THE DENSITY OF STATES

As the transfer matrices commute, independent of energy
E , when we set the resonance condition, each substring of
the transfer matrices given in the parentheses of Eq. (13)
represents a perfectly periodic arrangement of the blocks 1,
2, and 3, respectively. Each such arrangement is actually an
infinitely large ordered one-dimensional crystal, with designer
unit cells, as shown in Figs. 7(a)–7(c). Therefore, under the
resonance condition, one needs a careful analysis of the LDOS
or the AVDOS of each such chain to understand the global
band of the parent Koch fractal.

For example, Fig. 7(b) is just an ordinary infinite array of
identical atomic sites with constant on-site potential ε and the

FIG. 7. Ordered equivalents of the Koch fractal geometry when
the commutation conditions are imposed. The three basic building
blocks, namely, “block 1,” “block 2,” and “block 3” in Fig. 1(c), are
shown to form three different infinitely periodic lattices themselves.
The counterclockwise arrows in the triangles show the convention
chosen to define the “forward” or the “backward” hopping, as before.
The fine structure of block 3 is shown in (c).

nearest-neighbor hopping integral t . The energy bands extend
from E = ε − 2t to E = ε + 2t , and all the eigenfunctions
are extended, Bloch functions. The local (or average) density
of states for this chain can be analytically obtained, and is
given by

ρC = 1

π

1√
4t2 − (E − ε)2

. (B1)

The van Hove singularity is obvious at the band edges, viz., at
E = ε ± 2t .

The remaining arrays depicted in Figs. 7(a) and 7(c)
can easily be renormalized into effective chains of identical
atomic sites by decimating out a subset of the vertices of
the triangles. The A sites (yellow) and half of the B sites
(blue) in Fig. 7(a) are decimated. The “surviving” B sites
are encircled in both figures and they form an effectively
one-dimensional periodic chain. Both the on-site potential ε1

and the nearest-neighbor hopping integral t1, connecting the
neighboring encircled sites on this effective one-dimensional
array of renormalized B sites, are energy dependent. t1 is
complex because of the flux trapped in the triangle. A sim-
ilar decimation process executed on Fig. 7(c) results in an
effectively linear lattice of a subset of the B sites, which now
have renormalized, energy-dependent on-site potentials ε3 and
complex nearest-neighbor hopping integral t3.

The densities of states at the encircled sites in both
Figs. 7(a) and 7(c) can now be obtained analytically. An easy
but cumbersome algebra leads to the following results:

ρ1(3)(E ) = 1

π

1√
4t1(3)

2 − (E − ε1(3))2
, (B2)

where

ε1 = εβ + t2 + λ2

E − εβ

, t2
1 = t2λ2

(E − εβ )2
,

ε3 = εβ + λ2(E − εδ )

(E − εδ )2 − λ2
+

t2 + λ6

[(E−εδ )2−λ2]2

E − εβ − λ2(E−εδ )
(E−εδ )2−λ2

,
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t2
3 =

t2 λ6

[(E−εδ )2−λ2]2

[E − εβ − λ2(E−εδ )
(E−εδ )2−λ2 ]2

,

λ2 = y2(E − ε)2 + x4 + 2x2y(E − ε) cos 2π�
�0

(E − ε)2
. (B3)

The above expressions become enormously simplified as
we set the resonance conditions x2 + y2 = t2 and � = 1

4�0,
and it is seen that under these conditions, both ρ1 and ρ3

become identical to ρC given above. This establishes the fact
that the bands of the individual chains depicted in Figs. 7(a)–
7(c) merge under the conditions for which the block-transfer
matrices commute.

APPENDIX C: THE INVERSE PARTICIPATION RATIO

The inverse participation ratio (IPR) is used to understand
the localization properties of the eigenstates. It is defined as
the fourth power of the normalized wave function [68,69],

IPR =
∑

n

|ψn|4, (C1)

where n runs over all atomic sites. It gives us an under-
standing related to the distribution of the amplitudes of the
wave function over a number of lattice sites. For example,
for a completely localized eigenstate, the IPR tends to unity,
whereas it is very close to zero for a perfectly extended eigen-
state.
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