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Higher-order topological superconductors characterized by Fermi level crossings
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We demonstrate that level crossings at the Fermi energy serve as robust indicators for higher-order topology
in two-dimensional superconductors of symmetry class D. These crossings occur when the boundary condition
in one direction is continuously varied from periodic to open, revealing the topological distinction between
opposite edges. The associated Majorana numbers acquire nontrivial values whenever the system supports
two Majorana zero modes distributed at its corners. Owing to their immunity to perturbations that break
crystalline symmetries, Fermi level crossings are able to characterize a wide range of higher-order topological
superconductors. By directly identifying the level-crossing points from the bulk Hamiltonian, we establish the
correspondence between gapped bulk and Majorana corner states in higher-order phases. In the end, we illustrate
this correspondence using two toy models. Our findings suggest that Fermi level crossings offer a possible avenue
for characterizing higher-order topological superconductors in a unifying framework.
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I. INTRODUCTION

Topological states of matter are usually endowed with a
bulk-boundary correspondence, which facilitates the identi-
fications of topologically protected gapless boundary modes
without going into the details of the energy spectrum at open
boundaries [1–3]. Recent advancements in higher-order topo-
logical systems have extended this correspondence to include
gapped boundaries [4–13], with gapless corner (hinge) modes
appearing at the intersections of adjacent edges (surfaces).
Tremendous efforts have been devoted to classifying and
characterizing these topological states, mostly in crystalline-
symmetry-protected systems [14–34]. However, it is well
known that gapless corner or hinge states persist when crys-
talline symmetries are broken. This is especially evident
in higher-order topological superconductors [35–40], where
Majorana zero modes [41–46] remain stable as midgap states
unless the bulk or boundary gap closes. Hence it would
be desirable to characterize higher-order states regardless of
whether crystalline symmetries are present.

Higher-order topology can be understood from a boundary
perspective, as different parts of the whole boundary, such
as the four edges of a square lattice, may exhibit a distinct
topology in higher-order phases. For intrinsic higher-order
states, the relevant crystalline symmetry requires symmetry-
related edges or surfaces to be topologically inequivalent
[14–16]. A topology change is only possible through bulk-
gap closing. Consequently, bulk invariants, such as symmetry
indicators related to the crystalline symmetry, can be defined
[17–20]. This stands in contrast with boundary-obstructed
topological states, which fall within an extrinsic higher-order
classification [11,40]. Without the protections of crystalline
symmetries, the boundary topology in these states could
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change while the bulk gap remains open. One may charac-
terize the topology by Wilson loop eigenvalues of Wannier
bands that are obtained from Wilson loops of energy bands,
the so-called nested Wilson loop approach [4,5]. However,
the quantization of such topological invariants still requires
the presence of crystalline symmetries, such as mirror symme-
try [11,38]. Establishing bulk-boundary correspondence under
broken crystalline symmetries remains an open question. Con-
sidering that boundary topology is ultimately determined by
the bulk properties for both intrinsic and boundary-obstructed
phases, it should be possible to associate a topological invari-
ant with it based on bulk information, which applies in both
phases.

In this paper, we focus on two-dimensional (2D) super-
conductors of symmetry class D [3] and higher-order phases
featuring two Majorana corner states. The higher-order topol-
ogy can be characterized by a pair of Majorana numbers,
which are intimately related to Fermi level crossings that
emerge during the continuous variation of the boundary condi-
tion along one direction, as illustrated in Fig. 1(a). We further
introduce a generic method for locating these crossings from
the bulk Hamiltonian. As a result, bulk-boundary correspon-
dence is established in both higher-order phases discussed
earlier, due to the robustness of the Fermi level crossings
against crystalline-symmetry-breaking perturbations.

II. GENERAL THEORY

To demonstrate how Fermi level crossings determine the
higher-order topology of D-class superconductors, we start
from a 2D periodic lattice and modulate its boundary con-
dition in one direction. The resulting Bogoliubov–de Gennes
(BdG) Hamiltonian can be expressed as

H̃λa =
∑

kā

Hλa (kā) = H̃1 − (1 − λa)
∑

kā

Ba(kā), (1)
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FIG. 1. (a) Higher-order topology characterized by Fermi level
crossings in the D symmetry class. Crossings occur at high-
symmetry momenta K = 0, π , when the system on a torus (λa = 1)
is continuously deformed into a cylinder (λa = 0). (b) Topology of
edges determined by Majorana numbers. When Mx(y) = −1, two
opposite edges along the y(x) direction exhibit a distinct topology,
indicated by different colors. (c) Schematic plots of the BdG spec-
trum at K = 0(π ) with or without level crossings. The fermion parity
of the ground state (“+” for even, “−” for odd) switches at each
crossing. The crossing may disappear when the bulk or boundary
gap closes.

where ā = y(x) when a = x(y), and the real parameter λa

controls the boundary condition in the a direction, with λa =
1,−1, 0 corresponding to the periodic (PBC), antiperiodic
(APBC), and open boundary condition (OBC), respectively.
In Eq. (1), Hλa (kā) represents the 1D boundary-modulated
Hamiltonian at wave vector kā, and Ba(kā) involves all terms
that cross its boundary. The lattice terminations we consider
are compatible with unit cells, thus allowing the specific form
of B to be directly read off from the bulk Hamiltonian H̃1. The
process of varying λa from 1 to 0 is akin to gradually cutting
a torus along the ā direction until it eventually becomes a
cylinder, as illustrated in Fig. 1(b) for the case of a = x.

Here, we consider a gapped bulk with trivial first-order
topology, which means the cylindrical system described by
H̃λa=0 is fully gapped. Treating it as a quasi-1D system along
the ā direction, we may characterize the higher-order topology
with the Majorana number [47–49]

Ma = sgn
∏

K

Pf
[ − iHλa=0(K )

]
, (2)

where “Pf” is shorthand for Pfaffian, K = 0, π represents the
high-symmetry momentum, and H refers to the matrix rep-
resentation of H in the Majorana basis. In 1D, the Majorana
number being −1 implies the presence of a single Majorana
zero mode at each end. If either Mx or My, or both of them,
take the value of −1, we will instead have two Majorana zero
modes at the corners of a 2D sheet. To elaborate this let us
consider the cylindrical system in the lower left-hand panel
of Fig. 1(b) with Mx = −1. If we cut it along the axis, the

resulting two edges along the x direction will each harbor one
Majorana mode. Due to the trivial first-order topology, these
localized modes cannot propagate along the edges and must
be confined to their respective ends, i.e., the corners. If, in
addition My = −1, the two modes would also appear at the
two edges in the y direction. As a result, they can only reside at
opposite corners, as depicted in the upper right-hand panel of
Fig. 1(b). If My = 1, however, they would appear at adjacent
corners along the y direction, as shown in the lower right-hand
panel of Fig. 1(b).

The Majorana number defined in Eq. (2) is closely re-
lated to level crossings at the Fermi energy ε = 0 that appear
while λa varies in the range [0,1]. Notably, Eq. (2) only
involves the 1D Hamiltonian at high-symmetry momenta K .
Therefore, we only need to consider Fermi level crossings in
these subsystems, as shown in Fig. 1(a). At each crossing,
the fermion parity of the ground state switches, indicated by
the sign change of Pf[−iHλa (K )]. We can then characterize
the fermion-parity difference between PBC and OBC by the
number of crossings in between, denoted by ηa,K , as Fig. 1(c)
demonstrates. This is formally expressed as

(−1)ηa,K = sgn Pf
[ − iHλa=0(K )

]

sgn Pf
[ − iHλa=1(K )

] . (3)

We may also define a Majorana number for the toroidal system
H̃λa=1 (H̃1) similar to Eq. (2), which due to trivial first-order
topology must be positive, i.e.,

sgn
∏

K

Pf
[ − iHλa=1(K )

] = 1. (4)

Combining Eqs. (2)–(4), we arrive at

Ma =
∏

K

(−1)ηa,K = (−1)ηa , (5)

where ηa denotes the total number of crossings at K = 0, π .
An odd value of ηx or ηy implies the system resides in
a higher-order phase. Fermi level crossings are protected
by fermion-parity conservation and particle-hole symme-
try, making them immune to crystalline-symmetry-breaking
perturbations [50].

Intuitively, we may understand the relation between Fermi
level crossings and higher-order topology from the view-
point of boundary topology. As shown in Fig. 1(b), an odd
value of ηa (Ma = −1) reveals that opposite edges along
ā are topologically inequivalent (shown in different colors).
This explains the possible locations of Majorana zero modes,
which appear at the intersections of topologically distinct
edges. In some simple models, as we demonstrate later, the
edge topology can be characterized by the sign of the mass gap
in the edge Hamiltonian, allowing us to validate this argument.

To establish the bulk-boundary correspondence, we will
demonstrate how the Fermi level crossings of the 1D subsys-
tems are identified from the bulk Hamiltonian. For brevity, we
use Hλ to replace Hλa (K ), where

Hλ = H1 − (1 − λ)B (6)

represents a generic 1D Hamiltonian of D class. Following
the prescription given by Ref. [51], we first define a retarded
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Green’s function

Gλ(ε) = (ε − Hλ + iδ̃)−1 = A−1
λ (ε)G1(ε), (7)

where δ̃ is a positive infinitesimal, G1(ε) is the Green’s func-
tion corresponding to the bulk Hamiltonian H1, and Aλ(ε) =
1 + (1 − λ)G1(ε)B. Since we focus on the parameter regime
in which the bulk is fully gapped, in-gap states of Hλ are
solely determined by the poles of A−1

λ (ε). Consequently,
level-crossing points are identified as roots of

det[Aλ(ε = 0)] = 0, (8)

where Aλ is the matrix representation of Aλ. As B only in-
cludes intracell terms crossing the boundary, we then have
[Aλ]IJ = δIJ if J does not appear in these terms. This enables
us to calculate det(A) using a much smaller matrix D, which is
obtained by projecting A into the eigenspace of B and satisfies
det(D) = det(A). The entries of D are given by

[Dλ(ε)]i j = δi j + (1 − λ)
∑
n,k

〈i|n, k〉〈n, k|B| j〉
ε − εn,k

, (9)

where εn,k denotes the energy spectrum of the bulk Hamil-
tonian H1 in the Brillouin zone, with |n, k〉 being the
corresponding eigenstate, and |i〉, | j〉 represent the eigenvec-
tors of B. The dimension of Dλ is equal to the rank of B,
denoted by Nb. We then obtain the characteristic equation

det[Dλ(ε = 0)] = 0, (10)

which has Nb roots in total. The number of Fermi level cross-
ings η is half the number of real roots in the interval [0,1],
from which we can readily obtain Majorana numbers accord-
ing to Eq. (5).

Compared to Eq. (2), where Majorana numbers are de-
termined by calculating the Pfaffian of finite systems with
open boundaries [52], i.e., Pf[−iHλa=0(K )], and the accuracy
crucially depends on system size, identifying the Fermi level
crossings is computationally more accurate and efficient for a
translation-invariant system. It does not suffer from finite-size
effects, and the computational cost is similar to Wilson loop
calculations. Moreover, it provides a potential path to char-
acterizing higher-order topological superconductors in other
symmetry classes such as the DIII or BDI classes, where
Fermi level crossings might be protected by their topological
charges. Additionally, by pinpointing the crossings directly
from the bulk Hamiltonian, we establish the correspondence
between gapped bulk and gapless corner states in higher-order
phases. In the following, we shall illustrate this in specific
models.

III. TOY MODELS

First, we consider a two-leg Kitaev ladder [53–56] as
schematically shown in Fig. 2(a), and demonstrate how level
crossings are identified from the bulk Hamiltonian. Each unit
cell contains four Majorana fermions denoted by αs, j and
βs, j , with s = 1, 2 being the chain index and j referring to
the cell index. The boundary-modulated Hamiltonian with
N unit cells has the form Hλ = 	T Hλ	 in the Majorana
basis 	 = ⊕N

j=1 	 j , where 	 j = {α1, j, α2, j, β1, j, β2, j}T /
√

2

N 1

(a)

(b)

OBCAPBC PBC

FIG. 2. (a) Geometry of the two-leg Kitaev ladder. λ controls the
boundary condition. (b) The fermion-parity switch in a dimerized
lattice (t1 = 0). For the case of |m| > |δm|, the ground state switches
from the even-parity sector (Ee,1, solid lines) to the odd-parity sector
(Eo,1, dashed lines) while the boundary condition varies from PBC
(APBC) to OBC. Level crossings are indicated by black arrows.

and the Hamiltonian matrix is given by

Hλ =
∑

r=0,±1

T r ⊗ hr + λ(T N−1 ⊗ h†
1 + H.c.). (11)

Here, T denotes the translation operator that moves each
cell by one site to the left, with T | j〉 = | j − 1〉 and T | j =
1〉 = 0 [57]. Hamiltonian (11) includes the intracell term
h0 = −t1τy − mσy − δmτzσy, and intercell term h1 = h†

−1 =
t2(τy + iτx )/2, with τ and σ being Pauli matrices that act
in the chain and rung space separately. t1 and t2 represent
couplings of Majorana fermions along the chain, while m and
δm are those along the rung. For brevity, we assume t1 and t2
to be non-negative.

In this model, m and δm determine whether level crossings
occur when λ varies in the range [0,1]. This is readily seen
in a perfectly dimerized lattice (t1 = 0), in which case only
the boundary block shown in Fig. 2(b) depends on λ, and its
Hamiltonian has the form

Hb = − 2λt2(ψ†
1 ψ1 + ψ

†
2 ψ2 − 1)

+ 2i(mψ
†
1 ψ2 + δmψ

†
1 ψ

†
2 − H.c.), (12)

where ψs = (αs,1 + iβs,N )/2 are fermionic operators. The
conservation of fermion number parity enables us to study the
lowest-energy levels in the even- and odd-parity sectors sepa-

rately, with Ee,1 = −2
√

λ2t2
2 + δm2 and Eo,1 = −2|m|. While

the boundary condition goes from PBC to OBC, the two levels
would cross if 0 < m2 − δm2 < t2

2 , signaling a switch in the
ground-state fermion parity, as demonstrated in Fig. 2(b). This
parity switch could be observed from the zero-bias peak in an
experimental setup that consists of two quantum dots coupled
by a nanowire-superconductor heterojunction [58,59]. The pa-
rameters m and δm are related to the electrochemical potential
of quantum dots, and t2 or λ is controlled by tuning cross the
Andreev reflection and elastic cotunnelling.

For generic t1, we have H1 = ∑
k 	T

−kHk	k in k space,
with the basis 	k = {α1,k, α2,k, β1,k, β2,k}T /

√
2, and the Bloch
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FIG. 3. (a)–(c) Fermi level crossings in a BdG spectrum. The
fermion parity switches at each crossing. The crossing appears when
|m| > |δm|. Blue dashed lines indicate signs of the Pfaffian of a
1D Hamiltonian. (d) The variation of crossing points λ with m.
δm = 0.5, t1 = 1, and t2 = 2.

Hamiltonian

Hk = (−t1 + t2 cos k)τy − t2 sin kτx − mσy − δmτzσy. (13)

The energy spectrum is given by

εn,k = ±(√
t2
1 + t2

2 − 2t1t2 cos k + δm2 ± m
)
, (14)

with n being the band index. Substituting εn,k and B =
	T

N h1	1 + H.c. into Eqs. (9) and (10), we obtain

λ2 = 1 − 2

 − a + 2t2
2

, (15)

with  = √
a2 − b2, a = t2

1 + t2
2 + δm2 − m2, and b = 2t1t2.

From Eq. (15), we find that the number of crossings η = 1
when 0 < m2 − δm2 < (t2 − t1)2 and t1 < t2, as shown in
Fig. 3. This indicates that the boundary phase transition occurs
at |m| = |δm| as in the dimerized case, which is verified by the
exact boundary spectrum (see Supplemental Material [60] and
Ref. [61] therein). In the special case where δm = 0, Hamilto-
nian (13) is invariant under inversion, with the corresponding
operator being τy, up to a gauge factor. The inversion sym-
metry facilitates the direct determination of the Fermi level
crossings from the differences of the ground-state inversion
eigenvalues between PBC and APBC [60]. With the knowl-
edge of η in a 1D system, we can proceed to determine the
higher-order topology in a 2D system, according to Eq. (5).

The 2D Hamiltonian we consider takes the form

H2D
k = [t2(cos kx + cos ky) − t1 − t2]τy − δmτzσy

− t2(sin kxτx + sin kyτzσz ) − m(cos θσy + sin θτyσx ),

(16)

when written in the Majorana basis as in Eq. (13), and re-
duces to the 1D Hamiltonian at ky = 0, θ = 0. This model
is equivalent to the p ± ip superconductor under an in-plane
Zeeman field [62,63]. According to Eq. (5), Majorana num-
bers (Mx,My) are determined by Fermi level crossings of
four 1D Hamiltonians, Hλa (K ). In Fig. 4(a), we draw the
(θ, δm) phase diagram. Here, the crossings only occur at

(a)

0 �/2

0

0.4

-0.4

�

(-1,-1)

(1,-1)(-1,1)
(1,1)

(-1,-1)(-1,1) (1,-1)

0

0.5

0

0.5

(b)

(c)

FIG. 4. (a) Phase diagram of the 2D model in (θ, δm) space. Four
different phases are characterized by Majorana numbers (Mx,My ).
(b) Evolutions of crossing points with θ . No crossings appear at
K = π in this case and hence only those at K = 0 are displayed.
(c) Distributions of Majorana zero modes in three nontrivial phases
that are separated by boundary phase transitions. Majorana zero
modes appear either at two adjacent corners (θ = 0, π/2), or at
opposite corners (θ = π/4). The symbols “+” and “−” indicate the
signs of the edge gaps. t1 = 0.5, t2 = 1, and m = 0.4.

K = 0 as Fig. 4(b) shows, although it is possible they emerge
at K = π for t1 and t2 taking other values. Two Majorana
corner states emerge when at least one Majorana number takes
−1, as illustrated in Fig. 4(c).

To corroborate previous arguments concerning the relation
between level crossings and boundary topology, we obtain the
mass gap for an arbitrary edge [60], given by

�(φ) = δm − m cos(φ − θ ), (17)

where φ indicates the normal direction of the edge (φ =
0, π/2 for right and top edges, respectively). The topology of
the edges in D-class systems can be characterized by the sign
of the mass gap. As seen from the three representative cases
in Fig. 4(c), gaps of opposite edges along y(x) indeed take
different signs when ηx(y) is an odd number, or equivalently,
Mx(y) = −1. This can be guaranteed when inversion sym-
metry is enforced, by noting that �(φ) = −�(φ + π ) in the
absence of δm. In this intrinsic higher-order phase, we always
have Mx = My = −1. Turning on δm breaks inversion sym-
metry and drives the system into a boundary-obstructed phase,
in which process the gap signs do not change immediately, so
is the number of Fermi level crossings. We can therefore use
Fermi level crossings to characterize the higher-order topol-
ogy in both phases.

The robustness of Fermi level crossings is also reflected in
their persistence under weak disorder or boundary impurities
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[60]. While Eqs. (5) and (10) may not be directly applicable
due to potential broken translation symmetry, the number
of Fermi level crossings remains unchanged. This reinforces
their role as a reliable tool to characterize higher-order topo-
logical superconductors.

IV. CONCLUSION

In conclusion, Fermi level crossings can serve as useful
indicators for higher-order topology in the D symmetry class
when the nontrivial phase accommodates two Majorana cor-
ner states. The applicability of this approach extends beyond
the toy models introduced above, as demonstrated in the Sup-
plemental Material [60] for a Rashba bilayer system. The level
crossings we consider emerge while the boundary condition
continuously varies from PBC to OBC, during which two

opposite edges gradually decouple. An odd number of cross-
ings signals a topological distinction between the two edges.
From this point of view, one may consider Fermi level cross-
ings emerging under variations of other twisted boundary
conditions [64] when dealing with higher-order phases with
four or more Majorana corner states, where one needs to
associate the crossings with topological distinctions between
neighboring edges.

ACKNOWLEDGMENTS

This work was supported by National Science Founda-
tion of China (NSFC) under Grant No. 11704305 and the
Innovation Program for Quantum Science and Technology
(2021ZD0302400).

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[4] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes,
Quantized electric multipole insulators, Science 357, 61
(2017).

[5] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[6] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Reflection-Symmetric Second-Order Topological In-
sulators and Superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[7] Z. Song, Z. Fang, and C. Fang, (d − 2)-Dimensional Edge
States of Rotation Symmetry Protected Topological States,
Phys. Rev. Lett. 119, 246402 (2017).

[8] M. Ezawa, Higher-Order Topological Insulators and Semimet-
als on the Breathing Kagome and Pyrochlore Lattices, Phys.
Rev. Lett. 120, 026801 (2018).

[9] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

[10] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.
Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I.
Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig,
and T. Neupert, Higher-order topology in bismuth, Nat. Phys.
14, 918 (2018).

[11] E. Khalaf, W. A. Benalcazar, T. L. Hughes, and R. Queiroz,
Boundary-obstructed topological phases, Phys. Rev. Res. 3,
013239 (2021).

[12] Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, High-Temperature
Majorana Corner States, Phys. Rev. Lett. 121, 186801
(2018).

[13] R.-X. Zhang, W. S. Cole, and S. Das Sarma, Helical Hinge
Majorana Modes in Iron-Based Superconductors, Phys. Rev.
Lett. 122, 187001 (2019).

[14] E. Khalaf, Higher-order topological insulators and supercon-
ductors protected by inversion symmetry, Phys. Rev. B 97,
205136 (2018).

[15] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Second-order topological insulators and superconductors with
an order-two crystalline symmetry, Phys. Rev. B 97, 205135
(2018).

[16] L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-Boundary
Correspondence for Topological Crystalline Phases, Phys. Rev.
X 9, 011012 (2019).

[17] A. Skurativska, T. Neupert, and M. H. Fischer, Atomic limit and
inversion-symmetry indicators for topological superconductors,
Phys. Rev. Res. 2, 013064 (2020).

[18] S. Ono, H. C. Po, and H. Watanabe, Refined symmetry indi-
cators for topological superconductors in all space groups, Sci.
Adv. 6, eaaz8367 (2020).

[19] R. Takahashi, Y. Tanaka, and S. Murakami, Bulk-edge and bulk-
hinge correspondence in inversion-symmetric insulators, Phys.
Rev. Res. 2, 013300 (2020).

[20] Y.-T. Hsu, W. S. Cole, R.-X. Zhang, and J. D. Sau,
Inversion-protected Higher-order Topological Superconductiv-
ity in Monolayer WTe2, Phys. Rev. Lett. 125, 097001 (2020).

[21] F. Tang, S. Ono, X. Wan, and H. Watanabe, High-Throughput
Investigations of Topological and Nodal Superconductors,
Phys. Rev. Lett. 129, 027001 (2022).

[22] Z. Yan, Higher-Order Topological Odd-Parity Superconductors,
Phys. Rev. Lett. 123, 177001 (2019).

[23] Z. Zhang, J. Ren, Y. Qi, and C. Fang, Topological classification
of intrinsic three-dimensional superconductors using anoma-
lous surface construction, Phys. Rev. B 106, L121108 (2022).

[24] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, Wilson loop
approach to fragile topology of split elementary band represen-
tations and topological crystalline insulators with time-reversal
symmetry, Phys. Rev. B 100, 195135 (2019).

[25] Y. Hwang, J. Ahn, and B.-J. Yang, Fragile topology protected
by inversion symmetry: Diagnosis, bulk-boundary correspon-
dence, and Wilson loop, Phys. Rev. B 100, 205126 (2019).

[26] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-
J. Slager, Topological Classification of Crystalline Insulators
through Band Structure Combinatorics, Phys. Rev. X 7, 041069
(2017).

125426-5

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1103/PhysRevResearch.3.013239
https://doi.org/10.1103/PhysRevLett.121.186801
https://doi.org/10.1103/PhysRevLett.122.187001
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevX.9.011012
https://doi.org/10.1103/PhysRevResearch.2.013064
https://doi.org/10.1126/sciadv.aaz8367
https://doi.org/10.1103/PhysRevResearch.2.013300
https://doi.org/10.1103/PhysRevLett.125.097001
https://doi.org/10.1103/PhysRevLett.129.027001
https://doi.org/10.1103/PhysRevLett.123.177001
https://doi.org/10.1103/PhysRevB.106.L121108
https://doi.org/10.1103/PhysRevB.100.195135
https://doi.org/10.1103/PhysRevB.100.205126
https://doi.org/10.1103/PhysRevX.7.041069


HONG WANG AND XIAOYU ZHU PHYSICAL REVIEW B 108, 125426 (2023)

[27] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehen-
sive search for topological materials using symmetry indicators,
Nature (London) 566, 486 (2019).

[28] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng,
and C. Fang, Catalogue of topological electronic materials,
Nature (London) 566, 475 (2019).

[29] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A.
Bernevig, and Z. Wang, A complete catalogue of high-quality
topological materials, Nature (London) 566, 480 (2019).

[30] R.-X. Zhang, Bulk-Vortex Correspondence of Higher-Order
Topological Superconductors, arXiv:2208.01652.

[31] M. Jung, Y. Yu, and G. Shvets, Exact higher-order bulk-
boundary correspondence of corner-localized states, Phys. Rev.
B 104, 195437 (2021).

[32] E. Roberts, J. Behrends, and B. Béri, Second-order bulk-
boundary correspondence in rotationally symmetric topological
superconductors from stacked Dirac Hamiltonians, Phys. Rev.
B 101, 155133 (2020).

[33] S. Kooi, G. van Miert, and C. Ortix, The bulk-corner corre-
spondence of time-reversal symmetric insulators, npj Quantum
Mater. 6, 1 (2021).

[34] S.-J. Huang and Y.-T. Hsu, Faithful derivation of symmetry
indicators: A case study for topological superconductors with
time-reversal and inversion symmetries, Phys. Rev. Res. 3,
013243 (2021).

[35] X. Zhu, Second-Order Topological Superconductors with
Mixed Pairing, Phys. Rev. Lett. 122, 236401 (2019).

[36] Z. Yan, F. Song, and Z. Wang, Majorana Corner Modes in
a High-Temperature Platform, Phys. Rev. Lett. 121, 096803
(2018).

[37] T. Liu, J. J. He, and F. Nori, Majorana corner states in a
two-dimensional magnetic topological insulator on a high-
temperature superconductor, Phys. Rev. B 98, 245413 (2018).

[38] A. Tiwari, A. Jahin, and Y. Wang, Chiral Dirac superconduc-
tors: Second-order and boundary-obstructed topology, Phys.
Rev. Res. 2, 043300 (2020).

[39] Y. Volpez, D. Loss, and J. Klinovaja, Second-Order Topological
Superconductivity in π -Junction Rashba Layers, Phys. Rev.
Lett. 122, 126402 (2019).

[40] X. Wu, W. A. Benalcazar, Y. Li, R. Thomale, C.-X. Liu, and
J. Hu, Boundary-Obstructed Topological High-Tc Superconduc-
tivity in Iron Pnictides, Phys. Rev. X 10, 041014 (2020).

[41] N. Read and D. Green, Paired states of fermions in two di-
mensions with breaking of parity and time-reversal symmetries
and the fractional quantum Hall effect, Phys. Rev. B 61, 10267
(2000).

[42] F. Wilczek, Majorana returns, Nat. Phys. 5, 614 (2009).
[43] J. Alicea, New directions in the pursuit of Majorana fermions in

solid state systems, Rep. Prog. Phys. 75, 076501 (2012).
[44] T. D. Stanescu and S. Tewari, Majorana fermions in semicon-

ductor nanowires: Fundamentals, modeling, and experiment,
J. Phys.: Condens. Matter 25, 233201 (2013).

[45] S. R. Elliott and M. Franz, Colloquium: Majorana fermions in
nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87,
137 (2015).

[46] R. Aguado, Majorana quasiparticles in condensed matter, Riv.
Nuovo Cimento 40, 523 (2017).

[47] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[48] M. Kheirkhah, Z. Yan, and F. Marsiglio, Vortex-line topology
in iron-based superconductors with and without second-order
topology, Phys. Rev. B 103, L140502 (2021).

[49] P. P. Poduval, T. L. Schmidt, and A. Haller, Perfectly localized
Majorana corner modes in fermionic lattices, Phys. Rev. B 108,
035124 (2023).

[50] C. W. J. Beenakker, J. M. Edge, J. P. Dahlhaus, D. I. Pikulin,
S. Mi, and M. Wimmer, Wigner-Poisson Statistics of Topolog-
ical Transitions in a Josephson Junction, Phys. Rev. Lett. 111,
037001 (2013).

[51] J.-W. Rhim, J. H. Bardarson, and R.-J. Slager, Unified bulk-
boundary correspondence for band insulators, Phys. Rev. B 97,
115143 (2018).

[52] M. Wimmer, Algorithm 923: Efficient numerical computation
of the Pfaffian for dense and banded skew-symmetric matrices,
ACM Trans. Math. Softw. 38, 1 (2012).

[53] N. Wu, Topological phases of the two-leg Kitaev ladder, Phys.
Lett. A 376, 3530 (2012).

[54] G. Y. Chitov, Local and nonlocal order parameters in the Kitaev
chain, Phys. Rev. B 97, 085131 (2018).

[55] R. Wakatsuki, M. Ezawa, and N. Nagaosa, Majorana fermions
and multiple topological phase transition in Kitaev ladder topo-
logical superconductors, Phys. Rev. B 89, 174514 (2014).

[56] Y. Yan, L. Qi, D.-Y. Wang, Y. Xing, H.-F. Wang, and S. Zhang,
Topological phase transition and phase diagrams in a two-leg
Kitaev ladder system, Ann. Phys. 532, 1900479 (2020).

[57] A. Alase, E. Cobanera, G. Ortiz, and L. Viola, Exact Solution
of Quadratic Fermionic Hamiltonians for Arbitrary Boundary
Conditions, Phys. Rev. Lett. 117, 076804 (2016).

[58] T. Dvir, G. Wang, N. van Loo, C.-X. Liu, G. P. Mazur, A.
Bordin, S. L. D. ten Haaf, J.-Y. Wang, D. van Driel, F. Zatelli, X.
Li, F. K. Malinowski, S. Gazibegovic, G. Badawy, E. P. A. M.
Bakkers, M. Wimmer, and L. P. Kouwenhoven, Realization
of a minimal Kitaev chain in coupled quantum dots, Nature
(London) 614, 445 (2023).

[59] A. Bordin, X. Li, D. van Driel, J. C. Wolff, Q. Wang, S. L. D.
ten Haaf, G. Wang, N. van Loo, L. P. Kouwenhoven, and T.
Dvir, Crossed Andreev reflection and elastic co-tunneling in a
three-site Kitaev chain nanowire device, arXiv:2306.07696.

[60] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.125426 for detailed derivations of the
boundary spectrum of the two-leg Kitaev ladder; the role of
inversion symmetry in determining Fermi level crossings; the
effective Hamiltonian for an arbitrary edge in the 2D model; the
influence of bulk disorder and boundary impurities on Fermi
level crossings; and Fermi level crossings in a Rashba bilayer
superconducting system.

[61] S. S. Pershoguba and V. M. Yakovenko, Shockley model de-
scription of surface states in topological insulators, Phys. Rev.
B 86, 075304 (2012).

[62] V. T. Phong, N. R. Walet, and F. Guinea, Majorana zero modes
in a two-dimensional p-wave superconductor, Phys. Rev. B 96,
060505(R) (2017).

[63] X. Zhu, Tunable Majorana corner states in a two-dimensional
second-order topological superconductor induced by magnetic
fields, Phys. Rev. B 97, 205134 (2018).

[64] Z.-D. Song, L. Elcoro, and B. A. Bernevig, Twisted bulk-
boundary correspondence of fragile topology, Science 367, 794
(2020).

125426-6

https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0954-4
http://arxiv.org/abs/arXiv:2208.01652
https://doi.org/10.1103/PhysRevB.104.195437
https://doi.org/10.1103/PhysRevB.101.155133
https://doi.org/10.1038/s41535-020-00300-7
https://doi.org/10.1103/PhysRevResearch.3.013243
https://doi.org/10.1103/PhysRevLett.122.236401
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevB.98.245413
https://doi.org/10.1103/PhysRevResearch.2.043300
https://doi.org/10.1103/PhysRevLett.122.126402
https://doi.org/10.1103/PhysRevX.10.041014
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1038/nphys1380
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.103.L140502
https://doi.org/10.1103/PhysRevB.108.035124
https://doi.org/10.1103/PhysRevLett.111.037001
https://doi.org/10.1103/PhysRevB.97.115143
https://doi.org/10.1145/2331130.2331138
https://doi.org/10.1016/j.physleta.2012.10.016
https://doi.org/10.1103/PhysRevB.97.085131
https://doi.org/10.1103/PhysRevB.89.174514
https://doi.org/10.1002/andp.201900479
https://doi.org/10.1103/PhysRevLett.117.076804
https://doi.org/10.1038/s41586-022-05585-1
http://arxiv.org/abs/arXiv:2306.07696
http://link.aps.org/supplemental/10.1103/PhysRevB.108.125426
https://doi.org/10.1103/PhysRevB.86.075304
https://doi.org/10.1103/PhysRevB.96.060505
https://doi.org/10.1103/PhysRevB.97.205134
https://doi.org/10.1126/science.aaz7650

