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Kerr, Faraday, and magnetoelectric effects in MnBi2Te4 thin films
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The topological magnetoelectric effect (TME) is a characteristic property of topological insulators. In this
paper, we use a simplified coupled-Dirac-cone electronic structure model to theoretically evaluate the THz and
far infrared Kerr and Faraday responses of thin films of MnBi2Te4 with up to N = 10 septuple layers with the
goal of clarifying the relationship between these convenient magnetooptical observables and the TME. We find
that for even N , the linear Kerr and Faraday responses to an electric field vanish in the low-frequency limit, even
though the magnetoelectric response is large and approximately quantized.
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I. INTRODUCTION

Three-dimensional topological insulators (TIs) [1,2] have
protected surface states with Dirac band crossings located at
time-reversal invariant two-dimensional momenta and char-
acteristic topological magnetoelectric (TME) response [3–8]
properties. The TME effect occurs only when the Dirac cones
are gapped by introducing magnetic dopants at the surface or
by using magnetic TIs like MnBi2Te4, and has been proven to
be difficult to measure directly [9,10]. In the thin-film limit,
Kerr and Faraday’s optical response coefficients and orbital
magnetization, all of which require broken time-reversal sym-
metry, are closely related quantities that are normally present
or absent together. Partly for this reason there has been inter-
est [11–21] in using magneto-optical Kerr or Faraday effects
as a proxy for magnetization since Kerr and Faraday effect
measurements are routinely used as a proxy for magnetization
measurements.

The Kerr and Faraday effects of TIs are easily measured
[22–26] when external fields are applied or the magnetization
orientations on top and bottom surfaces are parallel, in which
case the device Hall conductivity is quantized [27–29] at a
nonzero value and the magnetization is nonzero even in the
absence of an electric field. MnBi2Te4 films with an odd num-
ber of septuple layers N in which the surface magnetizations
are parallel provide one example of this quantum Hall case.
In this paper, we exclude the quantum Hall devices from
consideration and focus on the case of even N magnetic TIs
(and on even-layer MnBi2Te4, in particular) instead of surface
magnetized nonmagnetic TIs, since these seem at present to
have more reproducible magnetic properties, although our
conclusions apply to both cases.

Our interest here is thus in the magnetization response to
electric field in MnBi2Te4 films with an even number of septu-
ple layers, in which the TME coefficient is quantized and the
total Hall conductivity in the absence of electric and magnetic
field is zero. We point out that in this case both the Kerr and
the Faraday responses to an electric field differ qualitatively
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from the magnetization response. Specifically for even N , the
Kerr and Faraday angle response to an electric field vanishes
at low frequencies under circumstances where the TME is
robust. We explain this difference using a simplified coupled
Dirac-cone model [30] of magnetic TI MnBi2Te4. Below we
first explain the origin of this difference, and then explore it
quantitatively using a simplified model of magnetic TI thin
films.

II. FARADAY, KERR, AND MAGNETOELECTRIC
RESPONSE

Hall effects in two-dimensional insulators can be viewed
[31] as measurements of the chemical potential dependence of
equilibrium edge currents, dIedge/dμ = σe/h or, equivalently,
of the orbital magnetizations that they produce dMedge/dμ =
σAe2/h, where e is the magnitude of the electron charge,
h is Plank’s constant, σ is an integer and A is the film
area. In topological insulator thin films, σ can be nonzero
only when time-reversal symmetry is broken, either at the
top and bottom surfaces or, as in the case of a magnetic
topological insulator [32], throughout the bulk. In a system
with A-type bulk antiferromagnetism, the TME occurs when
opposite surfaces have opposite magnetizations, e.g., for an
even number of magnetic layers. The magnetic configuration
with opposite magnetization orientations on opposite surfaces
is often referred to in the literature as the axion insulator
configuration. Since the edge current at a surface depends only
on the value of the chemical potential relative to the midgap
energies of the local Dirac cones, or some other reference
energy, it follows that dMedge/dVedge = −dMedge/dμ. When
an electric field is applied across the bulk of the topological
insulator with thickness t , the local electrical potentials on the
top and bottom surfaces differ by eEzt , moving the local Dirac
bands relative to the chemical potential, as illustrated in Fig. 1.
This difference yields a net magnetization that is linear in Ez

and proportional to the system volume—the topological mag-
netoelectric effect. The total Hall conductivity of the axion
insulator state, summing over top and bottom surfaces, still
vanishes, however, provided that the chemical potential stays
inside the surface state gap.
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FIG. 1. Magnetization due to current circulating around the top
(red) and bottom (blue) surfaces of a magnetic TI. At each surface,
the magnetization depends linearly on the local chemical potential
relative to the local electric potential. When an electric field Ez

is applied across the bulk of the thin film, it produces a relative
energetic shift between the gapped Dirac cones. The total equilibrium
orbital magnetization is then proportional to Ez and the film volume.

The TME effect refers to the dc response properties of
TIs, but is also approximately manifested at finite frequencies
provided they are well below the TI bulk energy gap. Since the
gaps of MnBi2Te4 thin films are usually less than 100 meV,
typical film thicknesses d are very small compared to the
relevant light wavelength λ. (For example, d ∼ 150 nm for a
N = 10 septuple layer MnBi2Te4 thin film is small compared
to the vacuum wavelength λ ∼ 25 µm of 50 meV light.) In the
thin film (d � λ) limit, we can calculate the Kerr and Faraday
responses simply by treating the entire film as an arbitrar-
ily thin two-dimensional interface. The response of light to
currents in the 2D film is determined by the electromagnetic
boundary condition:

n × (Ht − Hb) = js. (1)

Here n is a unit vector oriented from top to bottom and js is
the two-dimensional current density, which is related to the
two-dimensional conductivity of the film by

jαs =
∑

β

σαβEβ. (2)

When Eq. (1) is combined with the source-free Maxwell’s
equations applied outside of the thin film, the in-plane trans-
mitted and reflected fields produced by an incident em wave
with an unit electric field are [11](

Et
x

Et
y

)
= 1

N

(
2n1(n1 + n2 + 2ασxx )

−4αn1σxy

)
,

(
Er

x
Er

y

)
= 1

N

(
n2

1 − (n2 + 2ασxx )2 − (2ασxy)2

−4αn1σxy

)
, (3)

where σxx and σxy are the total longitudinal and Hall con-
ductivities of the film in units of e2/h, α ≈ 1/137 is the fine
structure constant, N ≡ (n1 + n2 + 2ασxx )2 + (2ασxy)2, and
n2

i = εi are the relative dielectric constants of the materials

above and below the interface. The 2D film conductivities
should be evaluated by integrating across the film and include
contributions from both dissipative and reactive responses of
the TI film both at its surfaces and in the interior of the film.
The 2D approximation, which has the advantage of allowing
us to reach simple conclusions, is strictly speaking valid only
in the limit d/λ → 0, as discussed further below.

The Faraday and Kerr angles are defined, respectively, as
the rotation angles of linearly polarized incoming light upon
transmission and reflection,

θF = (arg Et
+ − arg Et

−)/2,

θK = (arg Er
+ − arg Er

−)/2, (4)

where Er/t
± ≡ Er/t

x ± iEr/t
y . Here the values of incoming in-

plane polarization can be read from Eq. (3).
For even N films, both the Hall conductivity and the

magnetization vanish by symmetry [33,34] in the absence of
external out-of-plane electric field Ez = 0 at all frequencies.
Because of quantization, the dc Hall conductivity vanishes
identically at finite Ez until the field is strong enough to close
the gap. The linear response of the Hall conductivity to Ez

is therefore zero in the dc limit. Under the same conditions,
the linear response of the magnetization is quantized at the
topologically protected value. We anticipate that the linear
response of the Kerr and Faraday effects to external electric
field Ez is strongly suppressed when h̄ω is well below the
band gap of MnBi2Te4 thin films. In the following, we use
a simplified model to test this expectation quantitatively.

III. OPTICAL CONDUCTIVITY OF MBT THIN FILMS

We evaluate the frequency-dependent conductivity tensor
of MnBi2Te4 [30,35–49] thin films using a coupled-Dirac-
cone model [30] that retains two Dirac cones in each
MnBi2Te4 septuple layer as low-energy degrees of freedom.
The full Hamiltonian in the presence of external out-of-plane
electric field reads [50]

H =
∑
k⊥,i j

[((−)i h̄vD (ẑ × σ ) · k⊥ + miσz + Vi )δi j

+ 
i j (1 − δi j )]c
†
k⊥ick⊥ j . (5)

Here the Dirac cone labels i and j are, respectively, odd
and even on the top and bottom surface of each septuple
layer, h̄ is the reduced Planck’s constant, vD is the Dirac-cone
velocity, and Vi = Vi−1 + Ei(zi − zi−1) is the self-consistent
Hartree potential on surface i, with zi the designed position
of the ith Dirac cone. The external electric field is calculated
with discrete Poisson equation as ε̃Ei = ε̃Ei−1 + δρi, here ε̃

is the dielectric constant, and δρi are the net surface charge
densities at surface i; more details for the calculations of
δρi and related parameters can be found in Ref. [50]. In the
following discussion, when the electric field is present, we
will always consider the case when the Fermi level lies in
the gap, i.e., we will keep the system neutral. The Dirac-cone
model describes a TI when the hybridization 
D across the
gap between different septuple layers is stronger than the
hybridization 
S between top and bottom Dirac cones in the
same septuple layer. Each Dirac cone has an exchange split-
ting m that is the sum of contributions from the near-neighbor
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Mn magnetic layers within the same (JS) septuple layer and in
the adjacent septuple layer (JD). An N-septuple layer thin film
is reduced by this model to a quasi-2D system with 4N bands.
For the calculations we report on below, we use the numerical
model parameters that provide a minimal description [30] of
MnBi2Te4 thin films: Dirac velocity vD = 5×105 m/s, 
S =
84 meV, 
D = −127 meV, JS = 36 meV, and JD = 29 meV.

The optical conductivity of the Dirac cone model is calcu-
lated by using the Kubo-Greenwood formula [51,52],

σαβ (ω) = ie2

h̄

∫
dk

(2π )2

∑
nm

fnk − fmk

Enk − Emk

× 〈mk|∂αHk|nk〉 〈nk|∂βHk|mk〉
Enk − Emk − (h̄ω + iη)

, (6)

where ∂αHk ≡ ∂kα
Hk, ω is the optical frequency, h̄ is the

reduced Planck’s constant, α, β = x, y are Cartesian tensor
labels, n, m are band indices, |nk〉 is a Bloch state, Enk is
a band energy, fnk is Fermi-Dirac band occupation proba-
bility, and η is a disorder broadening parameter that is set
to 0.5 meV. In the Dirac cone model [30], ∂xHk = h̄vDσyτz,
∂yHk = −h̄vDσxτz, where σα is a Pauli matrix acting on spin.
The band energies in Eq. (6) depend only on the magnitude
of wave vector k, and the velocity matrix elements have a
simple angle dependence that allows angular integrals to be
performed analytically. Our calculations are therefore per-
formed by integrating numerically over the radial direction of
2D k-space after performing the angular integrals analytically.
Because we employ continuum Dirac models for the x̂ − ŷ
planes, the numerical integrals require a k-space cutoff. In our
numerical calculations, we used an adaptive k-mesh with a
higher density over the range of k with a large Berry curvature,
and a sparse mesh where the Berry curvature is small. In this
specific model, the Berry curvatures are mainly contributed
around k = 0 and our k-mesh samplings are set as follows:

k ∈
{

[0, 2n]π
a n = 0

[2n−1, 2n]π
a n = 1, 2, 3, . . . , M.

(7)

Here a is selected so the Berry curvature is concentrated in
the range of [0, π/a] and therefore depends on the band gap
where band inversion appears. M determines the cutoff of
the wave vector. We normally set M = 12, which places any
anomalies associated with the cutoffs outside of the range of
frequencies that we plot.

In Fig. 2, we illustrate the main features of Ez = 0 systems
by plotting the band structure and frequency-dependent longi-
tudinal and Hall optical conductivities [σxx(ω) and σxy(ω)] of
antiferromagnetic (AFM) MnBi2Te4 thin films with septuple-
layer numbers N = 4 and N = 5 (The optical conductivities
for other AFM thin films as shown in Fig. 8 of Appendix A).
The ground states for N = 4 and other even-N films are re-
ferred to as axion insulators in the literature and have similar
conductivities. The N = 5 case is an example of an odd N
magnetic configuration that supports a quantum anomalous
Hall effect and therefore does not have axion electrodynam-
ics. The electronic structure of N = 4 thin film is invariant
under combined time-reversal (T ) and inversion (I) symme-
try, which leads, via a generalized Kramer’s theorem, to the
doubly degenerate 2D bands [33] shown in Fig. 2(a). In this
case, as shown in Fig. 2(b), both real (red solid curve) and

FIG. 2. Band structure and optical conductivity for antiferro-
magnetic MnBi2Te4 thin films with septuple layer numbers N =
4, 5. (a) Band structure of N = 4 MnBi2Te4 along x direction of
the momentum, with ky to be zero since the Hamiltonian is rota-
tional invariant. Even-N bands are doubly degenerate due to the
T I symmetry discussed in the text. (b) Two-dimensional optical
conductivity versus frequency of N = 4 MnBi2Te4. The Hall con-
ductivity vanishes identically due to T I symmetry. (c), (d) Band
structure and conductivity plots for N = 5 MnBi2Te4, which has a
quantum anomalous Hall effect. The dc limit of the Hall conductivity
is therefore quantized. Longitudinal conductivities (σxx) are plotted
in red and Hall conductivities (σxy) in blue. In each case, the real and
imaginary parts are plotted as solid and dashed lines. All conductiv-
ities are expressed in units of e2/h.

imaginary (dashed red curve) parts of longitudinal conduc-
tivity (σxx) approach 0 in the low-frequency limit and have
interband features at ≈50 meV. The Hall conductivity (σxy),
and therefore both Kerr and Faraday angles, vanish identically
over the entire range of frequencies due to T I symmetry.
For thin films with an odd number of layers, there is no
T I symmetry and the band degeneracy is lifted as shown in
Fig. 2(c). AFM MnBi2Te4 thin films with thickness N > 3 are
Chern insulators with Chern number C = 1 and therefore have
quantized dc Hall conductivities as shown in Fig. 2(d). The
gap of the N = 5 Chern insulator is small (∼20 meV) because
the minimum thickness necessary for Hall quantization is
only modestly exceeded [50]. In Fig. 9 of Appendix A, we
summarize the properties of the conductivity tensor in thin
films with spin-aligned magnetic configurations, which can be
induced in MnBi2Te4 by applying magnetic fields exceeding
∼5 Tesla [37,41,42]. Based on these optical conductivities,
the corresponding Kerr and Faraday rotations versus optical
frequencies of MnBi2Te4 thin films are estimated as shown in
Fig. 3; here we estimate the magneto-optical rotation angles
in the 2D limit. The Faraday and Kerr rotations for AFM thin
films are shown in Figs. 3(a) and 3(c), from which we see that
for thin films with even-number layers (corresponds to dashed
curves), there is no Faraday and Kerr signals as σxy(ω) = 0.
For odd-N thin films, however, there is a large Faraday and
Kerr rotation angle (θF/K ) at finite frequencies even though
the MnBi2Te4 thin films are trivial insulators; see N = 1 or
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FIG. 3. Kerr and Faraday rotation angle versus optical frequency.
(a), (b) Plots of Faraday rotation angles of MnBi2Te4 thin films in
AFM and FM states. (b) Faraday rotation angles of MnBi2Te4 thin
films in FM state. (c), (d) Plots of Kerr rotation angles of MnBi2Te4

thin films in AFM state; (d) Kerr rotation angles of MnBi2Te4 thin
films in FM state. In these plots, the same color labels the same
thickness of MnBi2Te4 thin films in all four panels.

N = 3 thin films, for example, although θF/K is still 0 in the
dc limit. When the thin films are in Chern insulator states,
the Faraday and Kerr rotation angles in the dc limit approach
the quantized value, i.e., −tan−1(1/4πReσxy) ≈ −π/2 for the
Kerr rotation angle; and tan−1(4πReσxy) = Ctan−1α for the
Faraday rotation angle. Here C is the Chern number and α is
the fine structure constant.

IV. ELECTRIC-FIELD DEPENDENCE OF THE FARADAY
AND KERR ANGLES

The T I symmetry that causes the Kerr, Faraday, and
orbital magnetization responses to simultaneously vanish in
axion insulator states is broken by an electric field Ez applied
across the film. Based on the Schrödinger-Poisson equation,
we calculate the orbital magnetoelectric response for MBT
thin films with the modern theory of orbital magnetization,
which leads to the following expression [53–56]:

Morb = e

2h̄

∫
1

(2π )2
dk

∑
n

fnkIm〈∂kunk|

× (Hk + Enk − 2μ)|∂kunk〉, (8)

where fnk is the Fermi-Dirac distribution function, Hk is the
Hamiltonian introduced in Eq. (5), Enk is the eigenvalue of the
nth subbands, μ is the chemical potential, and the wave-vector
integrals are over two-dimensional momentum space. The
orbital magnetism response to Ez (denoted as E in the plots
since we consider the electric field only in the z direction),
plotted as blue curves in Figs. 4(a) and 4(b), is initially linear
with small finite thickness corrections [57] to the quantized
response coefficient, which is common to all TIs. This topo-
logical response is strong, at least compared to that of typical
magnetoelectric materials like Cr2O3.

FIG. 4. Comparison of the electric field (E , corresponding to
Ez in the main text) dependence of the orbital magnetization, and
the Kerr (a) and Faraday (b) rotation angles for antiferromagnetic
MnBi2Te4 thin films with a thickness of N = 4 septuple layers. In
this figure, the Kerr and Faraday angles are calculated in 2D limit
in which the film thickness is very small compared to the light
wavelength.

We now combine the simplified coupled Dirac cone model
and self-consistent Schrödinger-Possion equations [50] to
model the effect of Ez on the magneto-optical response. In
Figs. 4(a) and 4(b), we show typical 2D limit Kerr and
Faraday rotation angles for even-layer thin films calculated
from the conductivity tensor of an N = 4 axion insulator
thin film using a substrate dielectric constant ns = 1. We see
that the Kerr and Faraday angles have extremely small linear
response coefficients and that they remain small even when
the vertical electric field Ez [50] is near the critical value at
which the film gap vanishes. We attribute these very small
values to the approximate locality of the Hall response at
top and bottom surfaces. Because the surface magnetizations
are opposite, the total Hall conductivities nearly vanish at all
frequencies even for Ez �= 0. The Kerr and Faraday angles in
Fig. 4 (∼10−11 rad) lie below current Kerr angle detection
limits [58,59] to the best of our knowledge. The frequency
and electric field dependence of the underlying conductivities
is presented in Figs. 10–12 of Appendix B. Because these
response coefficients calculated in the 2D limit are practically
zero even at Ez �= 0, the finite thickness corrections we exam-
ine next are actually dominant.

V. THICKNESS DEPENDENCE

Because the Kerr response is so weak in the 2D limit, finite
thickness corrections can easily be important. To assess the
film thickness dependence of the Kerr and Faraday response,
we first model the thin film as two Dirac surfaces that support
half-quantized Hall effects of opposite signs and are separated
by a dielectric bulk. The electromagnetic wave then scatters
at both interfaces. Denote the incoming field as [Ẽ t i ˜Er j]T

and outgoing field as [Ẽ ri Ẽ t j]T , at the interface the incoming
and outgoing fields are connected with the scattering matrix S
which reads

S =
(

r̄ t̄ ′

t̄ r̄′

)
, (9)
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FIG. 5. Dependence of magneto-optical Faraday and Kerr rota-
tion angles versus the relative dielectric constant of the substrate. (a),
(b) Dependence of Faraday/Kerr rotation angles on relative dielectric
constant of substrate for AFM states; (c), (d) plots for FM state.

Here r̄′ and t̄ ′, the reflection and transmission tensors for
incidence from the right, are obtained from r̄ and (t̄) by revers-
ing the wave-vector direction and interchanging the dielectric
constants on opposite sides of the interface [11]. r̄, t̄ are
defined as

r̄ =
(

rxx rxy

−rxy ryy

)
, t̄ =

(
txx txy

−txy tyy

)
.

This total reflection and transmission tensors r̄ and t̄ can be
composed from the top (T ) and bottom (B) single-interface
scattering matrices:

r̄ = r̄T + t̄ ′
T r̄B(1 − r̄′

T r̄B)−1t̄T , t̄ = t̄B(1 − r̄′
T r̄B)−1t̄T . (10)

The resulting Kerr and Faraday rotations depend strongly on
the dielectric constants experienced by incoming and outgoing
light. If we assume that light is incoming from vacuum with
relative dielectric constant (n0 = 1) and is outgoing to an infi-
nite substrate with relative dielectric constant ns, the Faraday
rotation angle for an AFM thin film is nonzero only when
ns �= 1. In contrast, the Kerr rotation angle is nonzero when
ns = n0, as illustrated in Figs. 5(a) and 5(b). In Figs. 5(c) and
5(d), the Kerr and Faraday rotation angles for thin films with
a ferromagnetic (FM) state are plotted.

When the thickness of substrates is considered to be finite,
i.e., with substrate thickness ds, We can account for both the
thickness and the index of refraction (ns) of the substrate by
replacing t̄B and r̄B by t̄S and r̄S , which can be calculated by
composing two single-interface scattering matrices—in this
case, the interfaces between substrate and sample and between
substrate and vacuum,

r̄ = r̄T + t̄ ′
T r̄SB(1 − r̄′

T r̄SB)−1t̄T , t̄ = t̄SB(1 − r̄′
T r̄SB)−1t̄T ,

(11)

n=1
n=1n=3 n

SubstrateSample

(b)(a)

(c) (d)

=3.0
=5.0
=10

FIG. 6. (a) Illustration of light reflection and transmission for a
finite-thickness film with a substrate. (b) Kerr rotation versus sub-
strate thickness ds for various substrate dielectric constants. These
results were calculated for a light frequency of 25 meV, which is
below the gap at Ez = 0, an electric field Ez = 25 meV/nm, which is
close to but smaller than the critical electric field for gap closure, and
a N = 4 septuple layer sample thickness. (c), (d) Dependence of Kerr
and Faraday angles on sample thickness at Ez = 0 with the substrate
thickness set to d = 200λ. The range of thickness to wavelength ratio
corresponds to photon energies ∼10 meV and films with fewer than
∼10 septuple layers.

where rSB and tSB are calculated as

r̄SB = r̄B + t̄ ′
Br̄S (1 − r̄′

Br̄S )−1t̄B, t̄SB = t̄S (1 − r̄′
Br̄S )−1t̄B.

(12)
Here rB/tB is the scattering matrix in the interfaces between
substrate and sample and rS/tS is the one between substrate
and vacuum.

The Kerr signal can thus also depend on the substrate
thickness ds when accounting for both the thickness and index
of refraction (ns) of the substrate, as illustrated in Fig. 6(a).
The dependence of the Kerr and Faraday rotation angles on
ds and ns are illustrated in Fig. 6(b) for the case of an optical
frequency close to the gap (25 meV) and an electric field of
25 meV/nm. This Ez is smaller than the critical electric field,
The substrate index of refractions in Fig. 6(b) are ns = 3 a typ-
ical value for hexagonal boron nitride, ns = 5 a typical value
for silicon dioxide, and ns = 10 a typical value of aluminum
oxide. These results demonstrate explicitly that reflection off
the substrate-vacuum interface is important whenever the light
is not absorbed in the substrate. With the substrate thickness
ds = 200λ as an example, the dependence of Kerr and Faraday
rotations on the thickness of sample is plotted in Figs. 6(c)
and 6(d), which is linearly proportional with the thickness
of sample, and the slopes depend on the substrate index of
refractions.

Finally, we examine the role of imperfect compensation
between the half-quantized Hall conductivities on the top and
bottom surfaces by fixing the difference of Hall conductivity
between the two surfaces at σT − σB = e2/h and allowing
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(a) (b)
/ =5×10-6/ 5 10
/ =1×10-5

= 3

= 10 = 10

/ =5×10-6/ 5 10
/ =1×10-5

= 3

FIG. 7. Dependence of Kerr and Faraday angles on total Hall
conductivity with substrate thickness set to ds = 0.56λ. These results
demonstrate additive linear dependence on σ T

xy and sample thickness
d that are distinctly different for substrate index of refraction ns = 3
(red) and ns = 10 (green).

the total to be nonzero. Our explicit calculations discussed
previously have shown that the total Hall conductivity σ T

xy
remains extremely small (as illustrated in Fig. 11) even for
Ez �= 0 as long as the 2D system is an insulator. We do expect
sizable conductivities to arise, however, when the Fermi level
is in the local gap on one side of the film and not on the other.
In Figs. 7(a) and 7(b), we plot the Kerr and Faraday angles
versus σ T

xy for substrate thickness ds = 200λ for both ns = 3
and ns = 10. In each case, we plot results obtained using the
2D approximation and for the thicknesses of N = 4 and 8
septuple layer films. These calculations demonstrate that the
Kerr and Faraday angles have additive linear contributions
from both finite thickness and from a finite value of the total
Hall conductivity of the film, and that both angles are sensitive
to substrate properties.

VI. DISCUSSION

MnBi2Te4 thin films with an odd number N of septuple
layers are two-dimensional insulating ferromagnets that ex-
hibit the quantum anomalous Hall effect. Because they are
ferromagnets with strong spin-orbit coupling, they have non-
zero spin and orbital magnetizations in the absence of any
external fields. Because they exhibit the quantum anomalous
Hall effect, the films have large total optical Hall conduc-
tivities at frequencies below the gap that lead to substantial
Kerr and Faraday effects that are readily observable and are
indirectly related to the TME effect. In this paper, we focus on
the magnetoelectric and magneto-optical response properties
of even N thin films, which are axion insulators. We find
that although the dc magnetization response to electric field
is quantized, the response of the magnetooptical Faraday and
Kerr and angles to an electric field is extremely weak, and
what survives might be difficult to disentangle. We predict
that at frequencies below the gap, the Kerr and Faraday angles
of realistic thin films will have additive small contributions
from the finite thicknesses of the MnBi2Te4 samples, and
from imperfect compensation between contributions to the
total Hall conductivity from the top and bottom of the thin
films. The best way to identify the TME, we believe, is to
do it thermodynamically by measuring the temperature and

magnetic-field dependent capacitance of hBN-encapsulated
MnBi2Te4 thin films.
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APPENDIX A: OPTICAL CONDUCTIVITIES

The optical conductivities of AFM MnBi2Te4 thin films
from N = 1 septuple layer to N = 10 septuple layers are il-
lustrated in Fig. 8. The real and imaginary parts of σxx(ω) and
σxy(ω) are plotted separately in Figs. 8(a)–8(d). In Figs. 8(a)
and 8(b), we see that both the real and imaginary parts of
σxx(ω) have typical interband absorption edge features at the
N-dependent gap energy. The real and imaginary parts of
σxy(ω) vanish identically for all even N films, as shown in
Figs. 8(a) and 8(b), due to the combined time-reversal times
spacial inversion symmetry. The quantum anomalous Hall and
trivial insulators are clearly distinguished by the Hall conduc-
tivities at frequencies well below the band gap.

For MnBi2Te4 thin films in the FM state, the frequency de-
pendence of longitudinal optical conductivity σxx(ω) is similar
to the ones in the AFM state. In Figs. 9(a) and 9(b), we show
the plots of real and imaginary parts of σxx(ω) for MnBi2Te4

thin films with thickness from five SLs to ten SLs, the steplike
behaviors of Reσxx(ω) origin from the accumulated exited
subbands when the frequency increases. The Hall conductiv-
ities, shown in Figs. 9(c) and 9(d), where we use the same
color to label the same thickness as in Figs. 9(a) and 9(b),
have different dependencies on optical conductivity compared
with the AFM state. In the dc limit, a topological phase tran-
sition happens when the thickness increases to N � 9; above
the critical thickness the Chern number increases from 1 to
2. Imσxy(ω) shown in Fig. 9(d) indicates that the frequency

FIG. 8. Optical conductivity tensors of antiferromagnetic thin
film with septuple layer numbers N varying from 1 to 10. (a) Real
parts of σxx (ω). (b) Imaginary parts of σxx (ω). (c) Real parts of
σxy(ω). (d) Imaginary parts of σxy(ω). The same colors are used to
label the MnBi2Te4 thickness in (b)–(d) as in (a).
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FIG. 9. Optical conductivities for ferromagnetic thin films with
the number of layers from five to ten. (a) Real parts of σxx (ω).
(b) Imaginary parts of σxx (ω). (c) Real parts of σxy(ω). (d) Imaginary
parts of σxy(ω). In (c) and (d), the same colors as (a) are used to label
the thickness of MnBi2Te4 thin films.

dependence differs between N � 9 and N < 9 thin films. Note
that Imσxy(ω) < 0 at low frequencies for N < 9 thin films;
this is due to the negative Berry curvature close to � point
in 2D bands. The negative Berry curvature also leads to a
decrease of Reσxy(ω) shown in Fig. 9(c).

APPENDIX B: ELECTRIC FIELD DEPENDENCE
OF OPTICAL CONDUCTIVITY

In Fig. 10, the dependence of optical conductivities σxx on
electric field and frequency for four-layer AFM thin films are
plotted.

FIG. 10. Optical conductivities σxx for four-layer antiferromag-
netic thin film. (a) Real parts of versus electric field. (b) Real parts
of σxx versus optical frequencies ω. (c) Imaginary parts of versus
electric field. (d) Imaginary parts of versus optical frequencies ω.

FIG. 11. Optical Hall conductivities σxy for four-layer antiferro-
magnetic thin film. (a) Real and imaginary parts of σxy versus optical
frequencies ω. (b) Real and imaginary parts of σxy versus electric
field.

The dependence of optical conductivities σxy electric field
and frequency are shown in Fig. 11.

In Figs. 12(a) and 12(b), we show a typical example of
Faraday and Kerr rotation angles calculated in 2D limit for
a typical even-layer thin films, i.e., N = 4 thin film in AFM
state. From the plots, we see there is a maximized optical
response around the critical electric field that drives the ax-
ion insulator state to a semimetal state, which is around 25
meV/nm for four-layer thin film, and when the frequencies
exceed the band gap of MnBi2Te4 thin film, which is around
50 meV.

As a comparison, the Faraday and Kerr rotation angles in
the 2D limit for N = 5 MnBi2Te4 thin film as an example
of odd-layer case are shown in Figs. 12(c) and 12(d). We see
that the Faraday rotation angles maximize at the dc limit in
the absence of electric fields. In the presence of external field,
the Faraday rotation angles decrease and minimize when the

FIG. 12. Electric field dependence of Kerr and Faraday rotation
for antiferromagnetic MnBi2Te4 thin films with thickness of four
and five septuple layers. (a), (b) Plots of Faraday and Kerr rotation
angles versus optical frequencies and external electric fields for N =
4 MnBi2Te4 thin film. (c), (d) Plots for N = 5 MnBi2Te4 thin film.
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thin film is driven to a semimetal phase, i.e., at the electric
field of around 20 meV/nm for five-layer thin film. Note
that this critical field depends on the optical frequencies, that
is, a positive dependence at low frequencies. Kerr rotation

angles have similar dependence on electric field compared
with Faraday rotation angles. The Faraday and Kerr rotation
signals can thus be used as a detection of the topological phase
transition induced by external electric fields.
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