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Many-body coherence in quantum transport
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In this study, we propose the concept of harnessing quantum coherence to control electron transport in a
many-body system. Combining an open quantum system technique based on Hubbard operators, we show that
many-body coherence can eliminate the well-known Coulomb staircase and cause strong negative differential
resistance. To explore the mechanism, we analytically derive the current-coherence relationship in the zero
electron-phonon coupling limit. Furthermore, by incorporating a gate field, we demonstrate the possibility of
constructing a coherence-controlled transistor. This development opens up a new direction for exploring quantum
electronic devices based on many-body coherence.
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I. INTRODUCTION

Quantum coherence is a fundamental concept in quan-
tum mechanics that sets it apart from classical physics. The
unique properties of quantum coherence have been applied
in a diverse range of fields across various disciplines. For
instance, quantum coherence has been utilized to enhance the
energy transfer efficiency in quantum biology [1–4] and the
performance of nanoscale heat engines in quantum thermody-
namics [5–9]. Moreover, quantum coherence can be exploited
to store and transfer information for quantum communication
[10–13]. In nanoelectronics, the importance of quantum co-
herence is manifested in the interference of an single electron
passing through a junction with multiple tunneling pathways,
e.g., a quantum interference transistor [14–19]. Despite ex-
tensive studies on quantum interference in quantum transport,
how to directly connect quantum coherence and transport
properties, particularly a current-coherence relationship in
many-body systems, remains an open question.

Many-body effects in quantum transport have attracted
considerable attention due to their critical significance in open
quantum systems and their potential applications in nanoelec-
tronics [20–26]. Numerous intriguing many-body quantum
transport phenomena, including Coulomb blockade [27,28],
Kondo resonance [29,30], Franck-Condon blockade [31–33],
and current hysteresis [34,35], have been extensively ex-
plored in semiconductor nanostructures, 2D materials, and
single-molecule junctions. However, the concept of many-
body coherence, which refers to quantum coherence between
two many-body states, has not received enough attention in
the field of quantum transport.

In this paper, inspired by the Bloch-Redfield formalism
[36–42], we introduce quantum coherence from a Redfield-
type fermionic quantum master equation and study quantum
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transport in a minimal model that incorporates many-body
effects such as electron-electron interactions. Based on the
minimal model, we aim to clarify the role of many-body
coherence in quantum transport, thus shedding light on how
to harness many-body coherence to design quantum electronic
devices.

II. MODEL HAMILTONIAN

To demonstrate the effect of many-body coherence on
quantum transport, we consider a quantum electronic device
shown in Fig. 1. The device is described by the total Hamilto-
nian

Ĥ = Ĥsys + Ĥlead + Ĥsys-lead + Ĥgate, (1)

which is composed of the system Hamiltonian Ĥsys, the lead
Hamiltonian Ĥlead, the system-lead coupling term Ĥsys-lead,
and the gate Hamiltonian Ĥgate. Furthermore, to simplify the
complexity of a many-body system while retaining electron-
electron interactions, we consider the two-site Hubbard model
to be the system, including on-site energy ε, on-site Coulomb
repulsion U , and intersite electron hopping t . The system
Hamiltonian has the form

Ĥsys = ε
∑
i,σ

ĉ†
iσ ĉiσ + U

∑
i

ĉ†
i↑ĉi↑ĉ†

i↓ĉi↓

− t
∑

σ

(ĉ†
2σ ĉ1σ + H.c.), (2)

where ĉ†
iσ (ĉiσ ) is the fermionic operator which creates (an-

nihilates) an electron on site i = 1, 2 with spin σ =↑,↓. The
model can accommodate at most 4 electrons and generate 16
different many-body electronic states in total [43]. To properly
describe many-body states, we denote the many-body states of
the system as |Na, a〉 with energy εa as shown in Table I, where
Na represents the number of electrons of state a. According
to the previous study [44], we believe that a two-site system,
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FIG. 1. (a) Illustration of a quantum electronic device in a many-
body system. The system coupled with one gate and two leads L
and R contains on-site Coulomb repulsion U and intersite electron
hopping t .

such as thiolated arylethynylene with 9,10-dihydroanthracene
core (AH), is experimentally feasible for the demonstration of
the effect of many-body coherence on quantum transport.

The two leads and the gate are modeled as follows. For the
gate, we model its Hamiltonian as

Ĥgate = −eVg

∑
i,σ

ĉ†
iσ ĉiσ , (3)

where the gate voltage Vg shifts the on-site energy ε by −eVg.
The two leads are described by a noninteracting electron gas
model,

Ĥlead =
∑
l,k,σ

ξkσ d̂†
lkσ

d̂lkσ , (4)

where d̂†
lkσ

(d̂lkσ ) creates (annihilates) an electron in the state
|lkσ 〉 with energy ξlkσ in the lead l , and l = L and R repre-
sents the left and the right leads. Assuming that the electrons
in the leads stay at equilibrium, we express the average oc-
cupation number as 〈d̂†

lkσ
d̂l ′k′σ ′ 〉 = δl,l ′δk,k′δσ,σ ′ fl (ξkσ ), where

fl (ξkσ ) = (1 + e(ξkσ −μl )/kBT )−1 is the Fermi function of lead
l with chemical potential μl at temperature T . In this work,
we consider the symmetric bias condition μl = μ0 + ζleVsd/2
with ζL = 1 and ζR = −1, where Vsd is the bias voltage, and
μ0 is the equilibrium chemical potential for the electrodes.
The system-lead coupling is modeled as

Ĥsys-lead =
∑
k,σ

(TLk,1ĉ†
1σ d̂Lkσ + TRk,2ĉ†

2σ d̂Rkσ + H.c.), (5)

TABLE I. The 16 eigenstates of the system Hamiltonian and their
corresponding energies [48], x ≡ √

U 2 + 16t2.

Hilbert space Energy εa Eigenstate |Na, a〉
Zero-electron 0 |0, S0〉
One-electron ε − t |1, D1

+,↑〉, |1, D1
+,↓〉

ε + t |1, D1
−,↑〉, |1, D1

−,↓〉
Two-electron 2ε − (x − U )/2 |2, S2

+〉
2ε |2, T 2

0 〉, |2, T 2
+1〉, |2, T 2

−1〉
2ε + U |2, S2

CS〉
2ε + (x + U )/2 |2, S2

−〉
Three-electron 3ε + U − t |3, D3

−,↑〉, |3, D3
−,↓〉

3ε + U + t |3, D3
+,↑〉, |3, D3

+,↓〉
Four-electron 4ε + 2U |4, S4〉

where we assume the left (right) lead is only coupled to the
first (second) site of the system. Furthermore, we specify the
transitions between many-body states using Hubbard opera-
tors X̂ a,b ≡ |Na, a〉〈Nb, b|; see Appendix A for more details.
The advantage of using Hubbard operators is to provide a
convenient way to describe many-body state transitions and
incorporate characteristics of fermions in the coefficient of
each operator [43,45]. As a result, we rewrite the coupling
Hamiltonian as

Ĥsys-lead =
∑

ab,k,σ

(V ∗
Lkσ,abX̂ b,ad̂Lkσ + V ∗

Rkσ,abX̂ b,ad̂Rkσ + H.c.)

(6)
based on the Hubbard operator techniques, where the trans-
formed coupling becomes Vlkσ,ab = T ∗

lk,i · 〈Na, a|ĉiσ |Nb, b〉.
The index i is neglected in Vlkσ,ab because i is uniquely de-
termined by l , i.e., i = 1 (2) when l = L (R). Here we do not
consider the effect of the external potential exerted by the bias,
i.e., the on-site energy ε does not vary with the source-drain
voltage Vsd. This effect can lead to level renormalization and
slightly modify the pattern of Coulomb staircase [46,47].

III. QUANTUM MASTER EQUATION ANALYSIS

To incorporate the effect of many-body coherence into
quantum transport, instead of using the Pauli master equa-
tion (PME) or the Lindblad quantum master equation, we
adopt the Redfield formalism, which has been used exten-
sively to describe electronic bath in the electrodes [36–38] or
phonon effects on quantum transport [39–42]. We start from
the quantum Liouville equation, treat the two leads Ĥlead as
bath, make the Born-Markov approximation, and finally de-
rive a Redfield-type fermionic quantum master equation based
on Hubbard operators. A detailed derivation and discussion
may be found in Appendix B and the final result is as follows:

d ρ̂sys(t )

dt
= − i

h̄
[Ĥsys, ρ̂sys(t )] + Rleadρ̂sys(t ), (7)

where ρ̂sys(t ) is the electronic density matrix and Rlead is
the lead Redfield superoperator, which describes the electron
transport processes between the system and electrodes. It is
well-known that the phonon bath can lead to electronic state
relaxation and decoherence in the electronic density matrix
[49–51], but the effect of the electronic bath (associated with
the lead Redfield superoperator Rlead) on electron transport
is quite vague. In order to focus on many-body electronic
coherence due to electronic bath, we neglect the effect of the
phonon bath on coherence in the main text.

The operation of the lead Redfield superoperator on the
electronic density matrix can be expressed as

〈Na, a|Rleadρ̂sys(t )|Nb, b〉 =
∑
cd

Rab,cdρcd , (8)

where states (a, b, c, d ) serve as the eigenstates of Ĥsys.
Several remarks are listed below. Rab,cd in Eq. (8) can
be decomposed into four mechanisms RI , RII , RIII , and
RIV . The first mechanism RI and the second mechanism
RII correspond to the two-path quantum inference formed
of state-to-state transitions caused by electron and hole in-
jections, respectively. The third mechanism RIII and the
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fourth mechanism RIV correspond to the indirect interference
caused by electron and hole injections, respectively. For ex-
ample, RI

ab,cdρcd = − i
h̄

∑
l [�

(l ),<
db,ca(εdb) − (�(l ),<

ca,db(εca))∗]ρcd

represents the two-path quantum interference formed of |N −
1, c〉 → |N, a〉 and |N − 1, d〉 → |N, b〉 caused by electron
injections, where lesser self-energy �

(l ),<
db,ca(εdb) describes the

state-to-state transition accompanied by a single-electron in-
jection with energy εdb ≡ εb − εd (see Appendix B for more
details).

For simplicity, we consider the wideband approximation
[52], and the lesser self-energy can be expressed in terms of
Hubbard operator X̂ a,b as

�
(l ),<
db,ca(εdb) = i

	

2
fl (εdb)

∑
σ

Tr[ĉ†
iσ X̂ d,b]∗Tr[ĉ†

iσ X̂ c,a], (9)

which is composed of a coupling constant 	, the occupation
of electrons fl (εdb), and the transition amplitude between
many-body states of the system due to an injected electron.
Similarly, the greater self-energy in the wideband approxima-
tion comprises a coupling constant 	, the occupation of holes
1 − fl (εdb), and the transition amplitude between many-body
states of the system due to a hole entering the system.

To explore the correlation between the steady-state electric
current and many-body coherence, we compute the electric
current [53] from the steady-state density matrix ρ̂sys(t ) as
(see Appendix C)

I = 2e

h̄

∑
acd

Im
{[

�
(L),<
da,ca (εda) − (

�
(L),>
ac,ad (εad )

)∗]
ρcd
}
, (10)

where �
(L),<
da,ca (εda) corresponds to a transition from N-electron

to (N + 1)-electron state due to an injected electron from the
left electrode, while �

(L),>
ac,ad (εad ) corresponds to a transition

from N-electron to (N − 1)-electron state caused by an in-
jected hole.

IV. MANY-BODY COHERENCE AND CURRENT
BLOCKADE

To demonstrate that the effect of many-body coherence on
quantum transport can be experimentally observed in a real-
istic system, we consider AH with experimental parameters
[44]. As shown in Fig. 2(a), the electric current (the black
solid line) decreases as many-body coherence between eigen-
states |2, S2

CS〉 and |2, S2
−〉 (the blue dashed line) increases

with bias. Furthermore, we find that, for a model system
with large Coulomb repulsion and weak intersite electron
hopping, many-body coherence can reach a maximum, and
the electric current can be completely blocked to zero, as
shown in Fig. 2(b). It is worth mentioning that the current
blockade phenomenon in Figs. 2(a) and 2(b) is completely dif-
ferent from the well-known “Coulomb blockade.” In Coulomb
blockade, the electric current exhibits “Coulomb staircase”
with the increasing bias voltage [the orange solid lines in
Figs. 2(a) and 2(b)], whereas Figs. 2(a) and 2(b) show that
the electric current decreases with the increasing bias voltage,
similar to the behavior of a negative difference resistance.
Here, we would like to emphasize that Coulomb staircase can
be fully understood by the PME approach, and this approach
is extensively employed to study nanodevices [48,54,55].

(a) (b)

FIG. 2. Current blockade induced by many-body coherence in an
AH system [44] for (a) ε = 0.1 eV, t = 0.01 eV, U = 0.08 eV, 	 =
0.005 eV and in a model system for (b) ε = −0.25 eV, t = 0.005 eV,
U = 0.8 eV, 	 = 0.001 eV. Other parameters are T = 300 K, and
Vg = 0 V. The orange, black, green, and red solid lines correspond
to steady-state currents derived from PME, Eqs. (10), (11), and
(12), respectively. The dashed blue line describes the magnitude of
coherence ρS2

CS,S2− .

However, the PME approach does not account for the effect of
“coherence” induced by the interaction between many-body
states and electron baths. Note that the current suppression
is found to be robust against electron-phonon couplings (see
Appendix D). Our numerical simulations clearly demonstrate
that coherence between many-body states cannot be neglected
and is directly associated with electric current.

To quantitatively understand the current blockade in
Figs. 2(a) and 2(b), we derive a current-coherence relation-
ship for a system with weak hopping and strong Coulomb
repulsion. The relationship is established based on two as-
sumptions. First, to include the effect of Coulomb repulsion
U on currents, we consider that eVsd > U in the zero temper-
ature limit. Furthermore, for the simplicity of derivation, we
neglect the influence of ε and t on the Fermi function. In this
condition, we can approximate fL(εca) = 1 and fR(εca) = 0 in
Eq. (9). Second, we only keep many-body coherence ρS2+,T 2

0
,

ρS2+,T 2
+1

, ρS2+,T 2
−1

and ρS2
CS,S2− when solving Eq. (7). It is well-

known that coherence can be neglected while there is a large
energy gap between two states, i.e., the secular approximation
for the derivation of the PME approach. When t/U is small,
the energy gap between |2, S2

CS〉 and |2, S2
−〉 and the energy

gap between |2, S2
+〉 and triplet states |2, T 2

0 〉, |2, T 2
+1〉, |2, T 2

−1〉
are the smallest. As a result, we consider these coherence
terms when solving Eq. (7) and find that only ρS2

CS,S2− is as-
sociated with current. Finally, we obtain a current-coherence
relationship as (see Appendix E)

I = e	

h̄

{
1 − 2

[
1 + 1

4

(
4t2

U	

)2]−1/2

|ρS2
CS,S2−|

}
, (11)

showing that the electric current can be expressed in terms
of many-body coherence ρS2

CS,S2− and the kinetic exchange
4t2/U in the unit of system-lead coupling 	. In Figs. 2(a)
and 2(b), the green lines almost coincide with the black lines
when current blockade occurs, which reveals that Eq. (11) has
successfully captured the physics behind the current block-
ade and elucidated the influence of many-body coherence
on quantum transport. Furthermore, the kinetic exchange
4t2/U , resulting from the interplay between hopping and
many-body interactions, describes the intersite delocalization
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(a) (b)

FIG. 3. Coherence-controlled current blockade of a model sys-
tem tuned by (a) the Hamiltonian design t/U for ε = −0.1 eV, t =
0.002 to 0.18 eV, U = 0.2 eV, 	 = 0.01 eV under bias Vsd = 0.8 V,
gate Vg = 0 V and (b) the gate voltage Vg for t = 0.005 eV, U =
0.8 eV, 	 = 0.001 eV under bias Vsd = 1.0 V, gate Vg = 0 to 0.25 V.
The black, green, and red solid lines in (a) correspond to currents
from Eqs. (10), (11), and (12), and the dashed blue line denotes the
magnitude of coherence ρS2

CS,S2− . The red, blue, and green lines in
(b) correspond to ε = −0.2, −0.15, −0.1 eV, and the solid and
dashed lines denote currents and the magnitude of coherence ρS2

CS,S2− ,
respectively. Other parameters used here are T = 300 K for (a) and
77 K for (b).

of electrons. Therefore, when the kinetic exchange is small,
electrons accumulate on a single site, and the current is
blockaded. Note that 4t2/U corresponds to the energy gap

ES2

CS,S2− = (
√

U 2 + 16t2 − U )/2 when t/U � 1. If the en-
ergy gap 
ES2

CS,S2− is small enough, i.e, 4t2/U	 is negligible,
then Eq. (11) can be further simplified as

I = e	

h̄

{
1 − 2|ρS2

CS,S2−|}, (12)

indicating that many-body coherence ρS2
CS,S2− becomes a dom-

inant factor in current blockade. When t/U is not small
enough, e.g., t/U = 0.125 in Fig. 2(a), Eq. (12) (the red
line) slightly underestimates the electric current in the current
blockade region due to the neglect of the kinetic exchange ef-
fect. On the other hand, when t/U � 1, e.g., t/U = 0.00625
in Fig. 2(b), the red line matches the black line in the current
blockade region, testifying that many-body coherence pre-
dominates the current suppression.

V. CONTROL OF CURRENT BLOCKADE

Control of electric current is a key issue in quantum trans-
port [16,56–59]. Here, we demonstrate that it is feasible to
operate many-body coherence and current blockade via inter-
nal Hamiltonian design and an external gate voltage.

First, for Hamiltonian design, the relative magnitudes of
intersite coupling t and Coulomb repulsion U are directly
related to many-body coherence and current blockade. As
shown in Fig. 3(a), when t/U � 0.1, the current decreases to
almost zero, and many-body coherence ρS2

CS,S2− approaches its
maximum 0.5. In brief, the maximum value of coherence can
be understood by the fact that small t/U reduces the energy
gap between |2, S2

CS〉 and |2, S2
−〉 to almost zero and thus

leads to the maximum of ρS2
CS,S2− = 0.5. The origin of strong

current blockade results mainly from many-body coherence
ρS2

CS,S2− , i.e., when t/U � 0.1, the current calculated from
Eq. (12) (the red line), which neglects the kinetic exchange
effect, coincides with the current calculated from Eq. (11)

(the green line). The small deviation between the green line
and the red line in the region t/U ≈ 0.1 ∼ 0.7 indicates that
the kinetic exchange 4t2/U can affect the electric current,
but many-body coherence is still the main mechanism for
the current blockade. When t/U � 0.7, many-body coher-
ence ρS2

CS,S2− reaches zero, so current blockade disappears.
Figure 3(a) clearly shows that one can control electric current
and many-body coherence via the modification of t/U .

Second, we find that many-body coherence of a system
can be significantly influenced by an external gate field.
Figure 3(b) shows that, with an increasing gate voltage Vg,
many-body coherence ρS2

CS,S2− transitions from zero to its max-
imum and the current drops to zero. Moreover, the transition
gate voltage increases with the increasing on-site energy ε,
where the red, blue, and green line correspond to ε = −0.2,
−0.15, and −0.1 eV, respectively. Control of the gate volt-
age Vg and the Hamiltonian design correspond to different
mechanisms of forming the current blockade because con-
trol of Vg does not change the kinetic exchange 4t2/U .
To explain the gate dependence of many-body coherence
ρS2

CS,S2− , we derive an analytical expression for the coherence-
gate relationship, |ρS2

CS,S2−| = 1/2 × [2 − �(μL − ε − U +
eVg)]/[8 − 7�(μL − ε − U + eVg)], by making the approx-
imation fL(ε + U − eVg) = �(μL − ε − U + eVg) and t ≈ 0
(see Appendix E), where �(μL − ε − U + eVg) is the Heav-
iside step function. According to the coherence-gate relation,
when ε = −0.2 eV, U = 0.8 eV, and Vsd = 1.0 V, many-
body coherence ρS2

CS,S2− has a maximum value 0.5 while Vg

exceeds 0.1 V, which is consistent with our simulation result
(the red line). Figure 3(b) also indicates that, with lower on-
site energies, the electric current and many-body coherence
can be operated with smaller gate voltages, showing potential
as transistors.

VI. CONCLUSIONS

We have demonstrated the significance of many-body
coherence in quantum transport and established a current-
coherence relationship Eq. (11) for a model system using the
Redfield-type fermionic quantum master equation. The results
imply that many-body coherence can eliminate the well-
known Coulomb staircase and lead to the negative differential
resistance, which cannot be described by the PME approach
[48,54,55] due to the lack of coherence. Furthermore, it is
shown that many-body coherence can be manipulated through
modifying the internal system Hamiltonian or applying an
external gate voltage. Finally, we find that the electric current
can be switched based on many-body coherence at a low gate
voltage, indicating potential as coherence-controlled transis-
tors. The results here open a new class of electronic devices in
quantum electronics, which will motive further experimental
and theoretical investigations on the effects of many-body co-
herence in condensed matter physics and quantum technology.
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APPENDIX A: EXPRESSION FOR SINGLE-ELECTRON
OPERATORS BY HUBBARD OPERATORS

In this section, we show how to adopt Hubbard opera-
tors to express the single-electron creation and annihilation
operators. First, we introduce the occupation number (ON)
vector representation |n1↑n↓n2↑n2↓〉 to denote states spanned
on the site basis depicting the distribution of electrons.

These states are arranged as {|0〉, |1〉 . . . |15〉}, with each state
|p〉, p = (n1↑)p · 20 + (n1↓)p · 21 + (n2↑)p · 22 + (n2↓)p · 23,
and (niσ )p represents the occupation of an electron on site
i with spin σ in state |p〉. Note that the definition of |0〉 to
|15〉 that we adopt is slightly different from the definition
in the previous study [43]. The Hubbard operators defined
as X̂ p,p′ ≡ |p〉〈p′| can be used to describe the transition
from state |p′〉 to state |p〉 [43,45], and the single-electron
creation (annihilation) operators spanned on the site basis
can be expressed by the aforementioned Hubbard operators.
Take ĉ†

2↑, for instance. The operations of ĉ†
2↑ on states |0〉

to |15〉:

ĉ†
2↑|0〉 = ĉ†

2↑|0000〉 = |0010〉 = |4〉 → X̂ 4,0,

ĉ†
2↑|1〉 = ĉ†

2↑|1000〉 = −|1010〉 = −|5〉 → −X̂ 5,1,

ĉ†
2↑|2〉 = ĉ†

2↑|0100〉 = −|0110〉 = −|6〉 → −X̂ 6,2,

ĉ†
2↑|8〉 = ĉ†

2↑|0001〉 = |0011〉 = |12〉 → X̂ 12,8,

ĉ†
2↑|3〉 = ĉ†

2↑|1100〉 = |1110〉 = |7〉 → X̂ 7,3,

ĉ†
2↑|9〉 = ĉ†

2↑|1001〉 = −|1011〉 = −|13〉 → −X̂ 13,9,

ĉ†
2↑|10〉 = ĉ†

2↑|0101〉 = −|0111〉 = −|14〉 → −X̂ 14,10,

ĉ†
2↑|11〉 = ĉ†

2↑|1101〉 = |1111〉 = |15〉 → X̂ 15,11.

The operation of ĉ†
2↑ on any of the other many-body states equals 0. Thus

ĉ†
2↑ = X̂ 4,0 − X̂ 5,1 − X̂ 6,2 + X̂ 7,3 + X̂ 12,8 − X̂ 13,9 − X̂ 14,10 + X̂ 15,11.

Following the similar procedures, other single-electron operators can also be expressed in terms of the Hubbard operators
spanned on the site basis as

ĉ†
1↑ = X̂ 1,0 + X̂ 3,2 + X̂ 5,4 + X̂ 7,6 + X̂ 9,8 + X̂ 11,10 + X̂ 13,12 + X̂ 15,14,

ĉ†
1↓ = X̂ 2,0 − X̂ 3,1 + X̂ 6,4 − X̂ 7,5 + X̂ 10,8 − X̂ 11,9 + X̂ 14,12 − X̂ 15,13,

ĉ†
2↑ = X̂ 4,0 − X̂ 5,1 − X̂ 6,2 + X̂ 7,3 + X̂ 12,8 − X̂ 13,9 − X̂ 14,10 + X̂ 15,11,

ĉ†
2↓ = X̂ 8,0 − X̂ 9,1 − X̂ 10,2 + X̂ 11,3 − X̂ 12,4 + X̂ 13,5 + X̂ 14,6 − X̂ 15,7,

ĉ1↑ = X̂ 0,1 + X̂ 2,3 + X̂ 4,5 + X̂ 6,7 + X̂ 8,9 + X̂ 10,11 + X̂ 12,13 + X̂ 14,15,

ĉ1↓ = X̂ 0,2 − X̂ 1,3 + X̂ 4,6 − X̂ 5,7 + X̂ 8,10 − X̂ 9,11 + X̂ 12,14 − X̂ 13,15,

ĉ2↑ = X̂ 0,4 − X̂ 1,5 − X̂ 2,6 + X̂ 3,7 + X̂ 8,12 − X̂ 9,13 − X̂ 10,14 + X̂ 11,15,

ĉ2↓ = X̂ 0,8 − X̂ 1,9 − X̂ 2,10 + X̂ 3,11 − X̂ 4,12 + X̂ 5,13 + X̂ 6,14 − X̂ 7,15.

In Appendix B, we will apply a shorthand notation ĉiσ = ∑
p<q(riσ )p,qX̂ p,q, (riσ )p,q ∈ {±1, 0}, (riσ )p,q = (riσ )q,p to denote

the above operators [see Eqs. (B13) to (B18)]. The nonzero elements of (riσ )p,q are listed below.

(r1↑)0,1 = (r1↑)2,3 = (r1↑)4,5 = (r1↑)6,7 = 1,

(r1↑)8,9 = (r1↑)10,11 = (r1↑)12,13 = (r1↑)14,15 = 1,

(r1↓)0,2 = (r1↓)4,6 = (r1↓)8,10 = (r1↓)12,14 = 1,

(r1↓)1,3 = (r1↓)5,7 = (r1↓)9,11 = (r1↓)13,15 = −1,

(r2↑)0,4 = (r2↑)3,7 = (r2↑)8,12 = (r2↑)11,15 = 1,

(r2↑)1,5 = (r2↑)2,6 = (r2↑)9,13 = (r2↑)10,14 = −1,

(r2↓)0,8 = (r2↓)3,11 = (r2↓)5,13 = (r2↓)6,14 = 1,

(r2↓)1,9 = (r2↓)2,10 = (r2↓)4,12 = (r2↓)7,15 = −1.
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APPENDIX B: DERIVATION OF REDFIELD-TYPE
FERMIONIC QUANTUM MASTER EQUATION

In this section, we outline the derivation of Eq. (2) in the
main text. We start from the quantum Liouville equation,

d ρ̂(t )

dt
= − i

h̄
[Ĥ , ρ̂(t )], (B1)

where Ĥ and ρ̂ denote the total Hamiltonian and density
matrix. In the interaction picture, the quantum Liouville equa-
tion can be written as an integro-differential equation as
follows:

d ˆ̃ρ(t )

dt
= − i

h̄
[ ˆ̃Hsys-lead(t ), ˆ̃ρ(t0)]

− 1

h̄2

∫ t

t0

dt1[ ˆ̃Hsys-lead(t ), [ ˆ̃Hsys-lead(t1), ˆ̃ρ(t1)]],

(B2)

in which Ĥ = Ĥsys + Ĥlead + Ĥsys-lead, with ˆ̃H and ˆ̃ρ as the
total Hamiltonian and the total density matrix in the interac-
tion picture respectively. Due to weak coupling between the
system and the leads, the dynamics of the system and the
dynamics of the bath occur at different time scales, and we
apply the Born approximation. Under the Born approxima-
tion, the density matrix of the total system is approximated
as the direct product of the electronic density matrix of the
system ρ̂sys(t ) and the density matrix of the lead ρ̂lead(t ), i.e.,
ρ̂(t ) = ρ̂sys(t ) ⊗ ρ̂lead(t ). In the interaction picture, one can
derive

ˆ̃ρ(t ) = ˆ̃ρsys(t ) ⊗ ˆ̃ρlead(t ), (B3)

with ˆ̃ρsys(t ) = eiĤsyst/h̄ρ̂sys(t )e−iĤsyst/h̄ and ˆ̃ρlead(t ) =
eiĤleadt/h̄ρ̂lead(t )e−iĤleadt/h̄. Since the leads are weakly coupled
to the system and relax rapidly, we assume that the leads do
not change with time and always stay in thermal equilibrium.
As a result, we have the relation

ρ̂lead(t ) = ρ̂lead(t0) = ˆ̄σlead = e−βleadĤlead

Trlead(e−βleadĤlead )
, (B4)

where βlead = 1/kTlead represents the reciprocal of the ther-
modynamic temperature of the leads. By [ρ̂lead(t ), Ĥlead] =
0, the density matrix in the interaction picture can be
obtained as

ˆ̃ρlead(t ) = ˆ̄σlead. (B5)

The system degrees of freedom and lead degrees of
freedom can be further separated in the coupling terms.
The system-lead coupling Ĥsys-lead = ∑

k,σ (TLk,1ĉ†
1σ d̂Lk,σ +

TRk,2ĉ†
2σ d̂Rk,σ + H.c.) can be rewritten as

Ĥsys-lead = ĉ†
1↑ ⊗

∑
k

TLk,1d̂Lk↑ + ĉ†
2↑ ⊗

∑
k

TRk,2d̂Rk↑

+ ĉ†
1↓ ⊗

∑
k

TLk,1d̂Lk↓ + ĉ†
2↓ ⊗

∑
k

TRk,2d̂Rk↓

+ H.c., (B6)

in which each coupling element is expressed as the direct
product of operators acting on the system and the bath. One

can verify that the average of each lead operator is zero, e.g.,
〈d̂Lk↑〉 = 0; therefore, the non-Markovian master equation can
be derived as

d ˆ̃ρsys(t )

dt
= Trlead

{
d ˆ̃ρ(t )

dt

}
(B7)

= − 1

h̄2

∫ t−t0

0
dτTrlead{[ ˆ̃Hsys-lead(t ),

[ ˆ̃Hsys-lead(t − τ ), ˆ̃ρsys(t − τ ) ⊗ ˆ̄σlead]]}. (B8)

Next, we assume that the density matrix varies slower than
the decay time of the bath (lead) correlation. Therefore, we
apply the first Markov approximation, which assumes that
ˆ̃ρsys(t − τ ) = ˆ̃ρsys(t ) in Eq. (B7), and the second Markov
approximation, which considers the long-time limit t − t0 →
∞. After applying the Markov approximations to Eq. (B7),
we obtain the Redfield equation in the Schrödinger picture:

d ρ̂sys(t )

dt
= − i

h̄
[Ĥsys, ρ̂sys(t )] + Rleadρ̂sys(t ) (B9)

Rleadρ̂sys(t ) = − 1

h̄2

∫ ∞

0
dτTrlead{[Ĥsys-lead(0),

[Ĥsys-lead(−τ ), ρ̂sys(t ) ⊗ ˆ̄σlead]]}. (B10)

We further simplify Eq. (B10) by tracing out the lead
degrees of freedom because both the system-lead cou-
pling Ĥsys-lead and the density matrix ρ̂(t ) can be di-
vided into the system part and the lead part. Take the
term Ĥsys-lead(0)Ĥsys-lead(−τ )ρ̂sys ⊗ ˆ̄σlead in Eq. (B10) and

TABLE II. Basis transformation between site basis and eigenba-

sis, with c1 = 1
2

√
1 + U

x , c2 = 1
2

√
1 − U

x , and x = √
U 2 + 16t2.

One-electron states

|1000〉 |0100〉 |0010〉 |0001〉
|1, D1

+,↑〉 1√
2

0 1√
2

0
|1, D1

+,↓〉 0 1√
2

0 1√
2

|1, D1
−,↑〉 1√

2
0 − 1√

2
0

|1, D1
−,↓〉 0 1√

2
0 − 1√

2

Two-electron states

|1100〉 |1001〉 |0110〉 |0011〉
|2, S2

+〉 c2 c1 −c1 c2

|2, T 2
0 〉 0 1√

2
1√
2

0
|2, S2

CS〉 − 1√
2

0 0 1√
2

|2, S2
−〉 c1 −c2 c2 c1

Three-electron states

|1110〉 |1101〉 |1011〉 |0111〉
|3, D3

−,↑〉 1√
2

0 − 1√
2

0
|3, D3

−,↓〉 0 1√
2

0 − 1√
2

|3, D3
+,↑〉 1√

2
0 1√

2
0

|3, D3
+,↓〉 0 1√

2
0 1√

2
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ĉ†
1↑ ⊗∑

k TLk,1d̂Lk↑ in Ĥsys-lead as an example,

Trlead

{
ĉ†

1↑(0) ⊗
∑

k

TLk,1d̂Lk↑(0)

× ĉ†
1↑(−τ ) ⊗

∑
k′

TLk′,1d̂Lk′↑(−τ ) × ρ̂sys(t ) ⊗ ˆ̄σlead

}

= ĉ†
1↑(0)ĉ†

1↑(−τ )ρ̂sys(t )

⊗
∑

k

∑
k′

TLk,1TLk′,1 × Trlead{d̂Lk↑(0)d̂Lk′↑(−τ ) ˆ̄σlead}.

Following the similar procedures, we can obtain bath
correlation functions and then classify them into four
types, i.e.,

Trlead{d̂†
l1k1σ1

(0)d̂†
l2k2σ2

(−τ ) ˆ̄σlead}, (B11a)

Trlead{d̂†
l1k1σ1

(0)d̂l2k2σ2 (−τ ) ˆ̄σlead}, (B11b)

Trlead{d̂l1k1σ1 (0)d̂†
l2k2σ2

(−τ ) ˆ̄σlead}, (B11c)

Trlead{d̂l1k1σ1 (0)d̂l2k2σ2 (−τ ) ˆ̄σlead} (B11d)

in Eq. (B10). Two of the correlation functions are nonzero and
can be calculated as

Trlead{d̂†
l1k1σ1

(0)d̂l2k2σ2 (−τ ) ˆ̄σlead}
= −ih̄g<

l1k1σ1
(−τ )δl1,l2δk1,k2δσ1,σ2 , (B12a)

Trlead{d̂l1k1σ1 (0)d̂†
l2k2σ2

(−τ ) ˆ̄σlead}
= ih̄g>

l1k1σ1
(τ )δl1,l2δk1,k2δσ1,σ2 , (B12b)

with the lesser Green’s function of free electrons g<
lkσ (t ) ≡

(i/h̄) fl (ξkσ )e−iξkσ t/h̄ and the greater Green’s function of free
electrons g>

lkσ (t ) ≡ −(i/h̄)[1 − fl (ξkσ )]e−iξkσ t/h̄ [45], where
fl (ξkσ ) = (1 + eβlead (ξkσ −μl ) )−1 is the Fermi function of lead
l with chemical potential μl at temperature Tlead. By
means of Hubbard operators introduced in Appendix A,
the Redfield tensor for electrons spanned on the site basis
becomes

Rleadρ̂sys(t ) = i

h̄

∑
p<q

∑
p′<q′

∑
(l,i)

∑
k

∑
σ

∫ ∞

0
dτ {g<

lkσ (−τ )|Tlk,i|2(riσ )p,q(riσ )p′,q′ [X̂ p,q, X̂ q′,p′
(−τ )ρ̂el(t )]

− g>
lkσ (τ )|Tlk,i|2(riσ )p,q(riσ )p′,q′ [X̂ q,p, X̂ p′,q′

(−τ )ρ̂el(t )] + H.c.}, (B13)

where (l, i) ∈ {(L, 1), (R, 2)}, and (riσ )p,q serve as the coefficients of single-electron operators spanned on the site basis ĉiσ =∑
p<q(riσ )p,qX̂ p,q, (riσ )p,q ∈ {±1, 0}, (riσ )p,q = (riσ )q,p. Using a basis transformation from the site basis to eigenbasis (Table II),

we can derive the time evolution of the Hubbard operators as

|Na, a〉 =
∑

p

Up,a|p〉 (B14)

X̂ q′,p′
(−τ ) = e−iĤsysτ/h̄

∣∣q′〉〈p′∣∣eiĤsysτ/h̄ =
∑

ab

U †
a,q′Up′,be−iεbaτ/h̄|Na, a〉〈Nb, b| =

∑
ab

U †
a,q′Up′,be−iεbaτ/h̄X̂ a,b, (B15)

where |Na, a〉 is the eigenstate for the system Hamiltonian Ĥsys. For simplicity, we use the notation X̂ a,b = |Na, a〉〈Nb, b| and
εba = εa − εb, where εa is the energy for state |Na, a〉. We derive the Redfield equation spanned on eigenbasis,

Rleadρ̂sys(t ) = i

h̄

∑
p<q

∑
p′<q′

∑
(l,i)

∑
k

∑
σ

∑
abcd

∫ ∞

0
dτ X̂ a,b

× {e−iεcd τ/h̄g<
lkσ (−τ )|Tlk,i|2(riσ )p,q(riσ )p′,q′U †

a,pUq,dU †
d,q′Up′,c × ρcb

− e−iεcaτ/h̄g<
lkσ (−τ )|Tlk,i|2(riσ )p,q(riσ )p′,q′U †

d,pUq,bU
†
a,q′Up′,c × ρcd

− e−iεcd τ/h̄g>
lkσ (τ )|Tlk,i|2(riσ )p,q(riσ )p′,q′U †

a,qUp,dU †
d,p′Uq′,c × ρcb

+ e−iεcaτ/h̄g>
lkσ (τ )|Tlk,i|2(riσ )p,q(riσ )p′,q′U †

d,qUp,bU
†
a,p′Uq′,c × ρcd} + H.c. (B16)

Next, we do the Laplace transform of the lesser (greater)
Green’s functions in Eq. (B16), i.e.,

g<
lkσ (ε) ≡

∫ ∞

0
eiετ/h̄g<

lkσ (τ )dτ

= i

h̄
fl (ξkσ )

[
ih̄P

1

ε − ξkσ

+ π h̄δ(ε − ξkσ )

]
(B17a)

g>
lkσ (ε) ≡

∫ ∞

0
eiετ/h̄g>

lkσ (τ )dτ

= − i

h̄
[1 − fl (ξkσ )]

[
ih̄P

1

ε − ξkσ

+ π h̄δ(ε − ξkσ )

]
,

(B17b)

where P represents the Cauchy principal value. The lesser
(greater) Green’s function contains both electron (hole)
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(d) Indirect interference by hole injections

Interference of direct transitions 

by electron injections

Interference of direct transitions 

by hole injections

(b)(a)

(c) Indirect interference by electron injections

FIG. 4. Illustration of four main processes in Eq. (B19). (a) Interference of direct transitions by electron injections RI
ab,cdρcd =

− i
h̄

∑
l [�

(l ),<
db,ca(εdb) − (� (l ),<

ca,db(εca ))∗]ρcd . (b) Interference of direct transitions by hole injections RII
ab,cdρcd = − i

h̄

∑
l [−�

(l ),>
bd,ac(εac ) +

(� (l ),>
ac,bd (εbd ))∗]ρcd . (c) Indirect interference by electron injections RIII

ab,cdρcd = − i
h̄

∑
l

∑
cde [� (l ),<

de,be(εde)δa,c − (� (l ),<
ce,ae (εce))∗δb,d ]ρcd . (d) Indi-

rect interference by hole injections RIV
ab,cdρcd = − i

h̄

∑
l

∑
cde [−� (l ),>

ea,ec (εec )δb,d + (� (l ),>
eb,ed (εed ))∗δa,c]ρcd .

injection and energy shift of the system due to the leads. Then,
we organize Eq. (B16) by utilizing a redefined coupling,

Vlkσ,ab ≡ T ∗
lk,i〈Na, a|ĉiσ |Nb, b〉 (B18a)

= T ∗
lk,i

∑
p<q

(riσ )p,qU †
a,pUq,b (B18b)

= T ∗
lk,i Tr[ĉiσ X̂ b,a], (B18c)

and the lesser (greater) self-energy �
(l ),≶
ca,db(εac) =∑

k,σ V ∗
lkσ,ca × g≶lkσ

(εac) × Vlkσ,db. Note that the order of
the subscript of the self-energy represents the transition from
the N-electron state to the (N + 1)-electron state. Finally, we
obtain the Redfield-type fermionic quantum master equation,

〈Na, a|Rleadρ̂el(t )|Nb, b〉 =
∑
cd

Rab,cdρcd (B19)

= − i

h̄

∑
l{∑

cd

[
�

(l ),<
db,ca(εdb) − (

�
(l ),<
ca,db(εca)

)∗]
ρcd

+
∑
cd

[−�
(l ),>
bd,ac(εac) + (

�
(l ),>
ac,bd (εbd )

)∗]
ρcd

−
∑
cde

[
�

(l ),<
de,be(εde)δa,c − (

�(l ),<
ce,ae (εce)

)∗
δb,d
]
ρcd

−
∑
cde

[−�(l ),>
ea,ec (εec)δb,d + (

�
(l ),>
eb,ed (εed )

)∗
δa,c
]
ρcd

}
. (B20)

In Fig. 4, Rab,cd in Eq. (B19) can be decomposed
into four mechanisms RI , RII , RIII , and RIV . The first
mechanism RI [Fig. 4(a)] is the quantum interference

of state-to-state transitions |Nc = N − 1, c〉 → |Na = N, a〉
and |Nd = N − 1, d〉 → |Nb = N, b〉 by one electron injec-
tion from the electrodes, and the second mechanism RII

[Fig. 4(b)] is the quantum interference of state-to-state
transitions |Nc = N + 1, c〉 → |Na = N, a〉 and |Nd = N +
1, d〉 → |Nb = N, b〉 by one hole injection. When c = d , a =
b, these processes correspond to population transfer from
Pc ≡ ρcc to Pa that causes an increase of population Pa in
PME [60]. The third mechanism RIII [Fig. 4(c)] is the indi-
rect interference of state-to-state transition |Na = N, a〉/|Nb =
N, b〉 → |Ne = N + 1, e〉 and state-to-state transition |Nc =
N, c〉/|Nd = N, d〉 → |Ne = N + 1, e〉 by one electron injec-
tion. The fourth mechanism RIV [Fig. 4(d)] is the indirect
interference of state-to-state transition |Na = N, a〉/|Nb =
N, b〉 → |Ne = N − 1, e〉 and state-to-state transition |Nc =
N, c〉/|Nd = N, d〉 → |Ne = N − 1, e〉 by one hole injection.
When a = b = d (a = b = c) on the left- (right-) hand side of
Figs. 4(c) and 4(d), these processes correspond to population
decay of Pa that decreases population Pa in PME [60].

APPENDIX C: EXPRESSION FOR STEADY-STATE
ELECTRIC CURRENT

In this section, we derive the steady-state electric current
expression, i.e., Eq. (4), in the main text. From the definition
of steady-state electric current [53],

I ≡ e ×
(

−d〈N̂L〉
dt

)

= e × d〈N̂el〉L

dt

= e × d

dt
Tr{N̂elρ̂sys}L, (C1)
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where 〈N̂L〉 denotes the average number of electrons in the
left electrode, 〈N̂el〉 denotes the average number of electrons
in the system, and the subscript L represents that we focus
on change of the system due to electron (hole) injections from
the left electrode. The second equality in Eq. (C1) comes from
the condition that all of the electrons leaving the left electrode
enter the system. Since the number operator commutes with
electronic Hamiltonian Ĥel, we derive a current expression
spanned on the eigenbasis of Ĥel,

I = e ·
∑

ab

d

dt
[〈b|N̂el|a〉〈a|ρ̂sys|b〉]L

= e ·
∑

ab

d

dt
[Na〈b|a〉〈a|ρ̂sys|b〉]L

= e ·
∑

a

Na

(
dPa

dt

)
L

, (C2)

in which Pa = ρaa denotes the population of state |Na, a〉.
From Eq. (B20), we obtain the dynamic equations of popu-
lations as

dPa

dt
= 2

h̄

∑
cd

∑
l

Im
{
�

(l ),<
da,ca(εda)ρcd + (

�
(l ),>
ac,ad (εad )

)∗
ρcd

− �
(l ),<
cd,ad (εcd )ρac − (

�
(l ),>
da,dc(εdc)

)∗
ρac
}
. (C3)

From Eqs. (C2) and (C3), we derive an expression for
steady-state electric current as

I = 2e

h̄

∑
acd

Im
{
Na�

(L),<
da,ca (εda)ρcd + Na

(
�

(L),>
ac,ad (εad )

)∗
ρcd

− Na�
(L),<
cd,ad (εcd )ρac − Na

(
�

(L),>
da,dc (εdc)

)∗
ρac
}

= 2e

h̄

∑
acd

Im
{
Na�

(L),<
da,ca (εda)ρcd + Na

(
�

(L),>
ac,ad (εad )

)∗
ρcd

− Nc�
(L),<
da,ca (εda)ρcd − Nc

(
�

(L),>
ac,ad (εad )

)∗
ρcd
}

= 2e

h̄

∑
acd

Im
{[

�
(L),<
da,ca (εda) − (

�
(L),>
ac,ad (εad )

)∗] · ρcd
}
. (C4)

APPENDIX D: EFFECT OF PHONONS ON MANY-BODY
COHERENCE

In this section, we explore phonon effects on electronic
coherence in a transport system. The two-site Hubbard model
with the phonon bath [61,62] can be written as

Ĥsys = Ĥel + Ĥph + Ĥel-ph, (D1)

which is composed of the electronic Hamiltonian Ĥel that rep-
resents the two-site Hubbard model, the phonon Hamiltonian
Ĥph, and the electron-phonon coupling Ĥel-ph. We consider the
phonon Hamiltonian and the electron-phonon coupling as

Ĥph =
∑

α

h̄ωα

(
b̂†

α b̂α + 1

2

)
, (D2a)

Ĥel-ph = g
∑
i,σ,α

ĉ†
iσ ĉiσ (b̂†

α + b̂α ), (D2b)

where ωα and b̂†
α (b̂α) stand for phonon frequency and bosonic

creation (annihilation) operators of the phonon mode α, re-
spectively.

To derive the dynamic equation for electron transport with
the effect of phonons, we begin from the quantum Liouville
equation for the system in Eq. (B9). In the interaction picture,
the dynamic equation becomes

d ˆ̃ρsys(t )

dt
= − i

h̄
[ ˆ̃Hel-ph(t ), ˆ̃ρsys(t )]

+ ei(Ĥel+Ĥph )t/h̄Rleadρ̂sys(t )e−i(Ĥel+Ĥph )t/h̄. (D3)

The system density matrix can be divided into the elec-
tronic part and phonon part, i.e., ρ̂sys(t ) = ρ̂el(t ) ⊗ ρ̂ph(t ).
Following the similar procedures in Eqs. (B2), (B3), (B5),
(B6), and (B7), we can obtain the dynamic equation as

d ˆ̃ρel(t )

dt
= Trph

{
d ˆ̃ρsys(t )

dt

}
= − 1

h̄2

∫ t−t0

0
dτ2Trph{[ ˆ̃Hel-ph(t ), [ ˆ̃Hel-ph(t − τ2), ˆ̃ρel(t − τ2) ⊗ ˆ̄σph]]}

− i

h̄

∫ t

t0

dt2Trph
{[ ˆ̃Hel-ph(t ), ei(Ĥel+Ĥph )t2/h̄Rleadρ̂el(t2) ⊗ ˆ̄σphe−i(Ĥel+Ĥph )t2/h̄

]}
+ Trph

{
ei(Ĥel+Ĥph )t/h̄Rleadρ̂el(t ) ⊗ ˆ̄σphe−i(Ĥel+Ĥph )t/h̄

}
. (D4)

The first line in Eq. (D4) is a typical term in a non-
Markovian master equation for the description of electron-
phonon coupling. By tracing out the phonon degrees of
freedom, the second line can be simplified as

Trph
{[ ˆ̃Hel-ph(t ), ei(Ĥel+Ĥph )t2/h̄Rleadρ̂el(t2) ⊗ ˆ̄σphe−i(Ĥel+Ĥph )t2/h̄

]}
= Trph{[Ĥel-ph,Rleadρ̂el(t2) ⊗ ˆ̄σph]}. (D5)

When we trace out the phonon degrees of free-
dom, the second line in Eq. (D4) becomes zero because
Trph{Ĥel-phρ̂el(t2) ⊗ ˆ̄σph} = 0 and Rlead is independent of the
phonon degrees of freedom since the system-lead coupling
does not influence the phonon degrees of freedom under
the weak coupling condition, i.e., Ĥsys-lead = ∑

σ (ĉ†
1σ ⊗ Îph ⊗∑

k TLk,1d̂Lkσ + ĉ†
2σ ⊗ Îph ⊗∑

k TRk,2d̂Rkσ + H.c.). The last
term in Eq. (D4) is equivalent to Rleadρ̂el(t ). After applying
the Markov approximations, we derive the dynamic equa-
tion in the Schrödinger picture as follows:

d ρ̂el(t )

dt
= − i

h̄
[Ĥel, ρ̂el(t )] + Rleadρ̂el(t ) + Rphρ̂el(t ), (D6)

125422-9
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Rleadρ̂el(t ) = − 1

h̄2

∫ ∞

0
dτTrlead{[Ĥsys-lead(0), [Ĥsys-lead(−τ ), ρ̂el(t ) ⊗ ˆ̄σlead]]}, (D7)

Rphρ̂el(t ) = − 1

h̄2

∫ ∞

0
dτ2Trph{[Ĥel-ph(0), [Ĥel-ph(−τ2), ρ̂el(t ) ⊗ ˆ̄σph]]}. (D8)

In the following context, we focus on the term Rphρ̂el(t ).
The electron-phonon coupling Ĥel-ph can be reformulated by
Hubbard operators,

Ĥel-ph =
∑

i

∑
σ

∑
p

(niσ )pX̂ p,p ⊗ g
∑

α

(b̂†
α + b̂α ), (D9)

where (niσ )p represents the occupation of an electron on site
i with spin σ in state |p〉, and α represents the vibrational
modes of phonons. We define the phonon correlation function
in Eq. (D8) as

C(τ2) ≡ Trph

⎧⎨
⎩g2

∑
α1

[
b̂†

α1
(0) + b̂α1 (0)]

×
∑
α2

[
b̂†

α2
(−τ2) + b̂α2 (−τ2)

]
ˆ̄σph

⎫⎬
⎭. (D10)

In this work, we adopt a phonon spectral density A+(ε)
used in the previous work [39]. The phonon spectral density
originates from the one-sided Fourier transform of the corre-
lation function C(τ2),

A+(ε) ≡ 1

h̄

∫ ∞

0
dτ2C(τ2)eiετ2/h̄

= 1

2
	De−ε2τ 2

c /4e−βph (|ε|−ε), (D11)

where 	D represents a coupling constant, which is pro-
portional to the square of electron-phonon coupling g2. In
addition, τc represents the correlation time in the phonon
baths, and βph = 1/kTph represents the reciprocal of the
thermodynamic temperature of the phonon baths. We then
transform the Hubbard operators in Eq. (D9) to eigenbasis of
the system, and the Redfield tensor for phonons in Eq. (D8)
can be written as

Rphρ̂el(t ) = − 1

h̄

∑
pp′

∑
i

∑
σσ ′

∑
abcd

X̂ a,b

× {[Up,d (niσ )pU
†
a,p][U †

d,p′ (niσ ′ )p′Up′,c]A+(εdc)ρcb

− [U †
a,p(niσ )pUp,c][Up′,b(niσ ′ )p′U †

d,p′ ]A+(εac)ρcd}
+ H.c. (D12)

The current variations with bias voltage under different
ratio of 	D/	 are plotted in Fig. 5, where 	 specifies the
system-lead coupling strength as stated in the main text. Both
Figs. 5(a) and 5(b) show evident current blockade (current
suppression) when 	D is smaller than or equal to 	. The
results support that the unique phenomenon due to many-
body coherence is robust against vibrational relaxation and
decoherence.

APPENDIX E: ANALYTICAL EXPRESSION
FOR CURRENT-COHERENCE RELATIONSHIP

AND COHERENCE-GATE RELATIONSHIP

The number of equations in Eq. (7) includes 16 × 16 =
256. It is almost impossible to get an analytical solution. In
order to obtain the analytical expression for current blockade
with weak hopping and strong Coulomb repulsion, we need to
make two key assumptions: (1) fL(εca) = 1 and fR(εca) = 0,
and (2) we only keep many-body coherence ρS2+,T 2

0
, ρS2+,T 2

+1
,

ρS2+,T 2
−1

and ρS2
CS,S2− . For the first assumption, we consider that

eVsd > U in the zero-temperature limit to include Coulomb
repulsion. Furthermore, for simplicity, we ignore the influence
of ε and t on the Fermi function. Under this condition, one
can approximate fL(εac) = 1 and fR(εac) = 0. For the second
assumption, it is well-known that coherence can be neglected
for a large energy gap between two states. In the case of
small t/U , we consider these coherence terms, i.e., ρS2+,T 2

0
,

ρS2+,T 2
+1

, ρS2+,T 2
−1

, and ρS2
CS,S2− because the energy gap between

|2, S2
CS〉 and |2, S2

−〉 and the energy gap between |2, S2
+〉 and

triplet states |2, T 2
0 〉, |2, T 2

+1〉, |2, T 2
−1〉 are the smallest. These

two assumptions will reduce 256 equations to 20 equations,
including 16 equations for the state populations and 4 equa-
tions for coherence. The 16 population terms include PS0 ,
PD1

+,↑
, PD1

+,↓
, PD1

−,↑
, PD1

−,↓
, PS2+ , PT 2

0
, PT 2

+1
, PT 2

−1
, PS2

CS
, PS2− , PD3

+,↑
,

PD3
+,↓

, PD3
−,↑

, PD3
−,↓

, and PS4 while the 4 coherence terms include
ρS2+,T 2

0
, ρS2+,T 2

+1
, ρS2+,T 2

−1
, and ρS2

CS,S2− . We do not list all 20 equa-
tions here because their expressions are so complicated.

In the following derivation, we will adopt the index τ for
time in the reduced equations of motion. First, we can easily
find that both coherence ρS2+,T 2

+1
and ρS2+,T 2

−1
are not affected by

steady-state populations,
dρS2+,T 2

+1

dτ
= i

h̄
× x − U

2
ρS2+,T 2

+1
− 2	

h̄
ρS2+,T 2

+1
, (E1)

dρS2+,T 2
−1

dτ
= i

h̄
× x − U

2
ρS2+,T 2

−1
− 2	

h̄
ρS2+,T 2

−1
, (E2)

(b)(a)

FIG. 5. Current-voltage characteristics with different ratio of
	D/	 in an AH system [44] for (a) ε = 0.1 eV, t = 0.01 eV, U =
0.08 eV, 	 = 0.005 eV and in a model system for (b) ε = −0.25 eV,
t = 0.005 eV, U = 0.8 eV, 	 = 0.001 eV. Other parameters are
T = 300 K, Vg = 0 V.
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where x = √
U 2 + 16t2. Therefore, at steady state, both co-

herence terms decay to 0 as a consequence. As for the other
coherence between singlet and triplet ρS2+,T 2

0
, the dynamic

equation can be derived as

dρS2+,T 2
0

dτ
= i

h̄
× x − U

2
ρS2+,T 2

0
− 2	

h̄
ρS2+,T 2

0
− 	

4h̄

{√
1 + 4t

x

(
PD1

+,↑
− PD1

+,↓

)+
√

1 − 4t

x

(
PD1

−,↑
− PD1

−,↓

)}

+ 	

4h̄

{√
1 + 4t

x

(
PD3

−,↑
− PD3

−,↓

)+
√

1 − 4t

x

(
PD3

+,↑
− PD3

+,↓

)}
, (E3)

in which Pa ≡ ρa,a denotes the population of state |Na, a〉. In order to solve Eq. (E3), we need several auxiliary equations related
to the difference between the time derivative of populations PD1

+,↑
, PD1

+,↓
, PD1

−,↑
, PD1

−,↓
, PD3

+,↑
, PD3

+,↓
, PD3

−,↑
, and PD3

−,↓
at steady state

in Eq. (7) in the main text. The auxiliary equations are listed as follows:

dPD1
+,↑

dτ
−

dPD1
+,↓

dτ
= −2	

h̄

(
PD1

+,↑
− PD1

+,↓

)+ 	

2h̄

(
PT 2

+1
− PT 2

−1

)+ 	

h̄

√
1 + 4t

x
ρS2+,T 2

0
, (E4a)

dPD1
−,↑

dτ
−

dPD1
−,↓

dτ
= −2	

h̄

(
PD1

−,↑
− PD1

−,↓

)+ 	

2h̄

(
PT 2

+1
− PT 2

−1

)+ 	

h̄

√
1 − 4t

x
ρS2+,T 2

0
, (E4b)

dPD3
+,↑

dτ
−

dPD3
+,↓

dτ
= −2	

h̄

(
PD3

+,↑
− PD3

+,↓

)+ 	

2h̄

(
PT 2

+1
− PT 2

−1

)− 	

h̄

√
1 − 4t

x
ρS2+,T 2

0
, (E4c)

dPD3
−,↑

dτ
−

dPD3
−,↓

dτ
= −2	

h̄

(
PD3

−,↑
− PD3

−,↓

)+ 	

2h̄

(
PT 2

+1
− PT 2

−1

)− 	

h̄

√
1 + 4t

x
ρS2+,T 2

0
. (E4d)

Under the steady-state condition, all the equations in
Eq. (E4) equal 0. Substituting Eq. (E4) into Eq. (E3), we
derive Eq. (E3) at steady state as

dρS2+,T 2
0

dτ
= i

h̄
× x − U

2
ρS2+,T 2

0
− 5	

2h̄
ρS2+,T 2

0
= 0. (E5)

Obviously, Eq. (E5) indicates that coherence ρS2+,T 2
0

= 0
under the steady-state situation. By substituting ρS2+,T 2

0
=

0 into Eq. (E4) and two additional dynamic equations in
Eq. (7) in the main text, i.e.,

dPT 2
+1

dτ
= 	

2h̄

(
PD1

+,↑
+ PD1

−,↑
+ PD3

−,↑
+ PD3

+,↑
− 4PT 2

+1

) = 0,

(E6)
dPT 2

−1

dτ
= 	

2h̄

(
PD1

+,↓
+ PD1

−,↓
+ PD3

−,↓
+ PD3

+,↓
− 4PT 2

−1

) = 0,

(E7)

we obtain that population difference in Eq. (E4) as

PD1
+,↑

− PD1
+,↓

= PD1
−,↑

− PD1
−,↓

= PD3
−,↑

− PD3
−,↓

= PD3
+,↑

− PD3
+,↓

= 1
4

(
PT 2

+1
− PT 2

−1

)
= 0. (E8)

Up to now, we have already reduced the total number of
equations from 20 to 12. Among the eight vanishing equa-
tions, three is from coherence ρS2+,T 2

0
, ρS2+,T 2

+1
, and ρS2+,T 2

−1
and

five is from Eq. (E8). For simplicity of derivation, we define
the following notations:

PD1
+,↑

= PD1
+,↓

= A, (E9a)

PD1
−,↑

= PD1
−,↓

= B, (E9b)

PD3
−,↑

= PD3
−,↓

= C, (E9c)

PD3
+,↑

= PD3
+,↓

= D, (E9d)

According to the above notations, one can reduce the total
number of equations by 1 due to Eq. (E6) and the populations
PT 2

+1
and PT 2

−1
can be expressed as

PT 2
+1

= PT 2
−1

= 1
4 (A + B + C + D). (E10)

From the dynamic equations dPS0

dτ
, dPS4

dτ
,

dPS2+
dτ

, and
dPT 2

0
dτ

in
Eq. (7) in the main text, the populations PS0 , PS4 , PS2+ , and PT 2

0

can be solved and then expressed in terms of A, B, C, and D
as

PS0 = 1

2
(A + B), (E11)

PS4 = 1

2
(C + D), (E12)

PS2+ = 1

4

[(
1 + 4t

x

)
(A + C) +

(
1 − 4t

x

)
(B + D)

]
, (E13)

PT 2
0

= 1

4
(A + B + C + D). (E14)

In other words, we have reduced the total number of equa-
tions from 11 to 7. In addition, we can obtain the relationship
among A, B, C, and D by utilizing auxiliary equations related
to the difference between the time derivative of populations
PD1

+,↑
, PD1

−,↑
, PD3

+,↑
, and PD3

−,↑
at steady state in Eq. (7) in the

main text:

dPD1
+,↑

dτ
−

dPD3
−,↑

dτ
= −7	

4h̄
(A − C) + 	

4h̄
(B − D), (E15a)

dPD1
−,↑

dτ
−

dPD3
+,↑

dτ
= 	

4h̄
(A − C) − 7	

4h̄
(B − D). (E15b)
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By applying the steady-state condition, the two equations in
Eq. (E15) provide the relations among A, B, C, and D:

A = C, (E16a)

B = D. (E16b)

Apparently, the two equality in Eq. (E16) eliminates two equa-
tions, so the total number of equations have been reduced from
seven to five. In other words, if we would like to obtain an
analytical expression for current-coherence relationship, we
need to solve a system of five equations.

To derive a current-coherence relationship, we need an
expression for PS2

CS
, PS2− , and Re[ρS2

CS,S2− ], which are defined
as

PS2
CS

= a, (E17)

PS2− = b, (E18)

Re
[
ρS2

CS,S2−

] = c. (E19)

Next, we can obtain five relations among A, B, a, b, and c

from the dynamic equations
dPD1+,↑

dτ
,

dPD1−,↑
dτ

,
dPS2

CS
dτ

,
dPS2−

dτ
,

dρS2
CS ,S2−
dτ

in Eq. (7) in the main text as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 + 8t2

x2 + 4t
x 3 − 8t2

x2 1 1 − 4t
x 2

√
1 − 4t

x

3 − 8t2

x2 −5 + 8t2

x2 − 4t
x 1 1 + 4t

x 2
√

1 + 4t
x

1 1 −2 0 −√
2
√

1 + U
x

1 − 4t
x 1 + 4t

x 0 −2 −√
2
√

1 + U
x

2
√

1 − 4t
x 2

√
1 + 4t

x

√
2 ·
√

1 + U
x

√
2 ·
√

1 + U
x

[
4 + (x−U )2

4	2

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

A
B
a
b
c

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦. (E20)

To solve Eq. (E20), the conservation of probability is re-
quired:

∑
a Pa = 1. Combining Eq. (E20) and

∑
a Pa = 1, we

obtain the solutions as follows:

a = 1

16

[
1 + 7

2λ − 3

]
, (E21a)

b = 1

16

[
1 + 7 − 4η

2λ − 3

]
, (E21b)

A = 1

16

[
1 −

(
1 − xη

t

)
· 1

2λ − 3

]
, (E21c)

B = 1

16

[
1 −

(
1 + xη

t

)
· 1

2λ − 3

]
, (E21d)

c = −
√

ζ

2
· 1

2λ − 3
, (E21e)

where ζ ≡ x/(x + U ), η ≡ (x − U )2/(3x2 + U 2), and λ ≡
(ζ + 1/2)η + ζ [4 + (x − U )2/4	2]. Under the weak hop-
ping and strong repulsion, x ≈ U , ζ ≈ 1/2, η ≈ 0, and
the populations as well as the magnitude of coherence
become

PS2
CS

= a ≈ 1

2
, (E22a)

PS2− = b ≈ 1

2
, (E22b)

∣∣ρS2
CS,S2−

∣∣ =
√

(x − U )2

16	2
+ 1 | c |≈ 1

2
, (E22c)

where we have utilized the relation from
dρS2

CS ,S2−
dτ

:

Im
[
ρS2

CS,S2−

] = x − U

4	
c. (E23)

The results in Eq. (E22) can be interpreted as an ef-
fective two-level model with states |S2

CS〉 and |S2
−〉, which

supports the argument that coherence ρS2
CS,S2− is bounded above

by 1/2. Recall that our target is to derive the analytical
expression for steady-state current. From Eq. (C2), the steady-
state current can be obtained from dynamic equations of
populations:

I = e	

h̄
·
[

1 + 1

2
· η − 2

2λ − 3

]
. (E24)

By using Eq. (E21e), Eq. (E23), and Eq. (E24), we can
derive the relation between current and the magnitude of
coherence ρS2

CS,S2− . Under the weak hopping and strong repul-
sion, x ≈ U + 8t2/U , ζ ≈ 1/2, η ≈ 0, and we can derive the
current-coherence relationship as follows:

I = e	

h̄
·
{

1 − 2 ·
[

1 + 1

4
·
(

4t2

U	

)2]−1/2

· ∣∣ρS2
CS,S2−

∣∣}.

(E25)

Under the extreme condition, 4t2/U	 ≈ 0, we can derive
another current-coherence relationship in the main text,

I = e	

h̄
· {1 − 2 · ∣∣ρS2

CS,S2−

∣∣}. (E26)

We have mentioned in the main text that the coherence can
be tuned by the gate voltage. To obtain the gate dependency
of coherence, we rewrite the aforementioned five relations
in Eq. (E20) by considering the Fermi function fl (E ) =
�(μl − E ), where �(μl − E ) denotes the Heaviside step
function (zero-temperature limit). To simplify the following
derivation, we apply the strong Coulomb repulsion and weak
hopping condition first, and the matrix in Eq. (E20) can be
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adapted as

⎡
⎢⎢⎢⎣

−4 + 1
2 K (E ) + K (E + U ) 2 − 1

2 K (E ) 1 − 1
2 K (E + U ) 1 − 1

2 K (E + U ) L(E + U )

2 − 1
2 K (E ) −4 + 1

2 K (E ) + K (E + U ) 1 − 1
2 K (E + U ) 1 − 1

2 K (E + U ) L(E + U )
2 − K (E ) + K (E + U ) 2 − K (E ) + K (E + U ) −4 + 2K (E ) − 2K (E + U ) 0 −2L(E ) − 2L(E + U )
2 − K (E ) + K (E + U ) 2 − K (E ) + K (E + U ) 0 −4 + 2K (E ) − 2K (E + U ) −2L(E ) − 2L(E + U )
−L(E ) − L(E + U ) −L(E ) − L(E + U ) −L(E ) − L(E + U ) −L(E ) − L(E + U ) −4 + 2K (E ) − 2K (E + U )

⎤
⎥⎥⎥⎦
⎡
⎢⎣

A
B
a
b
c

⎤
⎥⎦=

⎡
⎢⎣

0
0
0
0
0

⎤
⎥⎦,

(E27)

where E = ε − eVg, K (E ) = �(μL − E ) + �(μR − E ), and L(E ) = �(μL − E ) − �(μR − E ). By applying the condition∑
a Pa = 1, we derive the real part of coherence Re[ρS2

CS,S2− ] as a function of the gate voltage Vg:

c = 2 − K (E + U )

14L(E + U )

{
1 + 4L(E + U )[L(E ) + L(E + U )] + 4[2 − K (E + U )] · [2 − K (E ) + K (E + U )]

3L(E + U )[L(E ) + L(E + U )] − 4[2 − K (E + U )] · [2 − K (E ) + K (E + U )]

}
. (E28)

In Eq. (E28), the gate dependence is introduced
through step functions in K (E ) and L(E ). For sim-
plicity, we focus on the case that μL ≈ E + U , where
current suppression is significant, and make the follow-
ing simplification: �(μL − E ) = 1, �(μR − E ) = 0, and
�(μR − E − U ) = 0. Finally, we obtain the coherence-gate

relationship as

c = 1

2
× 2 − �(μL − E − U )

−8 + 7�(μL − E − U )
, (E29)

which specifies the condition eVg > ε + U − μL for the mag-
nitude of coherence | ρS2

CS,S2− |≈| c | to reach maximum 1/2.
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