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Faraday and Kerr rotation due to photoinduced orbital magnetization
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We theoretically study the Faraday and Kerr rotation of a probe field due to the orbital magnetization of a
two-dimensional electron gas induced by a circularly polarized pump. We develop a microscopic theory of these
effects in the intraband spectral range based on the analytical solution of the kinetic equation for linear and
parabolic energy dispersion of electrons and arbitrary scattering potential. We show that the spectral dependence
of rotation angles and accompanying ellipticities experiences a sharp resonance when the probe and pump
frequencies are close to each other. At the resonance, the Faraday and Kerr rotation angles are of the order
of 0.1◦ per 1 kW/cm2 of the pump intensity in monolayer and bilayer graphene samples, corresponding to a
pump-induced synthetic magnetic field of about 0.1 T. We also analyze the influence of the dielectric contrast
between dielectric media surrounding the two-dimensional electron gas on the rotation angles.
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I. INTRODUCTION

Optically induced magnetization and its manipulation
in solids have recently attracted significant attention in
solid-state physics [1–4]. Absorption of circularly polarized
photons results in efficient magnetization of electron and hole
systems in the process of optical spin orientation through
both the interband and intraband optical transitions [5–10].
Besides the spin orientation, the circularly polarized light
induces orbital currents of charge carriers and, hence, the
orbital magnetic moment, known as the inverse Faraday ef-
fect (IFE) [11,12]. The orbital magnetization due to the
IFE is being actively studied in different systems, including
metals and semiconductors [13–16], ferromagnets [17], su-
perconductors [18], metallic nanoparticles [19], and graphene
[20].

To probe the light-induced orbital magnetic moment, one
can use the pump-probe Faraday and Kerr spectroscopy—the
method, which is widely employed to study the magnitude
and dynamics of magnetization related to both spin and or-
bital magnetic moments [4,7,21–27]. In this method, one
measures the rotation of the polarization plane of a linearly
polarized probe beam, which is reflected from or transmit-
ted through the medium with pump-induced magnetization.
While the theory of the pump-probe Faraday and Kerr ef-
fects due to spin magnetization has been developed for
bulk and low-dimensional semiconductor systems [7,28–30],
consistent microscopic theory of these effects due to or-
bital magnetization is still missing. The naive mechanism
of such a Faraday rotation could involve magnetic field in-
duced by the orbital currents, however, this magnetic field
is extremely small and, hence, cannot be the major source
of rotation. The third-order contribution to ac current in-
duced by an elliptically polarized electric field in graphene
and responsible for the Faraday rotation, has been calcu-
lated in Ref. [31]. However, the calculations were based
on a simplified relaxation model, which does not fully

capture the specifics of electron scattering in two-dimensional
systems.

Here, we study the Faraday and Kerr rotation due to the
orbital magnetization induced by a circularly polarized pump
in a two-dimensional electron gas (2DEG). We show that the
circularly polarized electric field of the pump modifies the
high-frequency conductivity of 2DEG, resulting in the circular
birefringence and dichroism. This, in turn, leads to rotation
of the transmitted and reflected probe field. Moreover, the
initially linearly polarized probe becomes elliptically polar-
ized (acquires ellipticity), Fig. 1. We develop a microscopic
theory of the pump-induced high-frequency conductivity of
2DEG due to intraband optical transitions and calculate the
Faraday and Kerr angles as well as the corresponding elliptic-
ities. The theory accounts for electron scattering by impurities
and describes both nonabsorbing and absorbing regimes of
the pump and probe fields. We derive analytical expressions
for the Faraday and Kerr angles and ellipticities valid for
parabolic and linear energy dispersion of 2D electrons and
arbitrary scattering potential. We also analyze the influence of
the dielectric contrast between dielectric media surrounding
2DEG on the rotation angles.

We show that the spectral dependence of rotation angles
and ellipticities experiences a sharp resonance when probe
and pump frequencies are close to each other. The width
and magnitude of resonance are determined by a long en-
ergy relaxation time, rather than a short momentum relaxation
time. At the resonance, and at �τ1 ∼ 1, where � is the pump
frequency and τ1 is the momentum relaxation time, the Fara-
day and Kerr rotation angles are of the order of 0.1◦ per
1 kW/cm2 of the pump intensity in doped monolayer and
bilayer graphene samples. We also calculate a synthetic mag-
netic field, an effective magnetic field, which leads to the same
rotation angles as the circularly polarized pump. In monolayer
and bilayer graphene samples, this synthetic magnetic field
amounts to ∼0.1 T per 1 kW/cm2 of the pump intensity at
�τ1 ∼ 1.
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FIG. 1. Schematic picture of the pump-induced Faraday and Kerr
rotation in the two-dimensional electron gas. Electric field of the
circularly polarized pump acts as a synthetic magnetic field resulting
in the rotation of the linearly polarized probe field. θF and θK are the
Faraday and Kerr rotation angles, respectively.

II. FARADAY AND KERR ROTATION
BY A 2D CONDUCTING MEDIUM

We consider 2DEG occupying the plane z = 0 and sur-
rounded by dielectrics with refractive indices n1 at z < 0
and n2 at z > 0. The 2DEG is irradiated by normally in-
cident pump and probe beams with electric fields E�(t ) =
E�e−i�t + c.c. and Eω(t ) = Eωe−iωt + c.c., respectively, see
Fig. 1. In the absence of pump field, E� = 0, the probe field
induces electric current in 2DEG j(t ) = jωe−iωt + c.c., which
oscillates at the probe frequency and is parallel to the probe
electric field Eω. The current is related to the probe field
as jω = σEω, where σ = e2neτ1/m(1 − iωτ1) is the high-
frequency 2DEG conductivity, e and m are the electron charge
and effective mass, respectively, ne is the 2D electron concen-
tration and τ1 is the momentum relaxation time.

In the presence of the pump field, the third-order contri-
butions to the current jω appear. These contributions in the
isotropic 2DEG are described by three complex parameters γ j

yielding the total current oscillating at ω [32]:

jω = σEω+γ1|E�|2Eω + γ2[E∗
�(E� · Eω ) + E�(E∗

� · Eω )]

+ iγ3[Eω × [E� × E∗
�]] . (1)

Here, γ1 describes the change of isotropic conductivity due to
the pump radiation, whereas γ2 and γ3 give rise to the trans-
verse current in the direction perpendicular to Eω induced
by the linearly and circularly polarized pump, respectively.
In this paper, we consider the circularly polarized pump, and
therefore, the γ3 contribution [33]. For the circularly polarized
pump, Eq. (1) yields the transverse current described by the
off-diagonal conductivity σxy = −σyx = γ3|E�|2Pcirc, where
Pcirc = ±1 for right-hand and left-hand circular polarization,
respectively. Note that, when the probe field is static, i.e.,
at ω = 0, the γ3 contribution describes the appearance of a
transverse direct current in the presence of a circularly polar-
ized pump—the so-called photovoltaic or circular Hall effect
[32,34,35].

Pump-induced transverse conductivity σxy = −σyx leads to
circular birefringence and circular dichroism, i.e., different

transmission and absorption of the right-hand and left-hand
circularly polarized components of the probe field. The in-
cident linearly polarized probe field is a superposition of
circularly polarized fields E (i)

ω,± = E (i)
ω o±, where o± are cir-

cularly polarized unit vectors related to the unit vectors ex ‖ x
and ey ‖ y as o± = (ex ± iey)/

√
2. The amplitude transmis-

sion and reflection coefficients of E (i)
ω,± are given by [36]

t± = t12

1 + α±
, r± = r12 − α±

1 + α±
, (2)

where r12 = (n1 − n2)/(n1 + n2) and t12 = r12 + 1 are the
amplitude reflection and transmission coefficients for the light
incident on the boundary between two dielectrics in the ab-
sence of the 2DEG layer, α± = 2πσ±/(cn̄), σ± = σxx ± iσxy,
n̄ = (n1 + n2)/2, and c is the speed of light in vacuum.

Pump-induced anisotropy of the transmission and reflec-
tion coefficients leads to the rotation of the linear polarization
of the transmitted and reflected probe fields. We will further
consider the low-intensity regime, when the pump-induced
off-diagonal conductivity is much smaller then the diago-
nal one, i.e., |σxy| � |σxx| and σxx ≈ σ . In that case, the
differences t+ − t− and r+ − r+ are much smaller than the
corresponding sums, and the Faraday rotation angle θF and
the ellipticity εF of the transmitted probe field are [7,37,38]

εF − iθF ≈ t+ − t−
t+ + t−

. (3)

Analogously, the Kerr rotation angle θK and the accompany-
ing ellipticity εK of the reflected probe field are given by

εK − iθK ≈ r+ − r−
r+ + r−

. (4)

By substituting Eqs. (2) to Eqs. (3) and (4), we obtain

θF + iεF ≈ 2πσxy

cn̄(1 + α)
(5)

and

θK + iεK ≈ 2πt12σxy

cn̄(1 + α)(r12 − α)
, (6)

where α = 2πσ/(cn̄). Note that Eq. (6) is not valid when
the difference r12 − α is close to zero, since in this case
the condition |r+ − r−| � |r+ + r−| does not hold. When, in
addition to a small ratio |σxy/σ |, the parameter α is also small,
i.e., |α| � 1 and |α| � |r12|, it follows from Eqs. (5) and
(6) that the ratio of the Faraday and Kerr angles is constant,
θK/θF = t12/r12. On the other hand, in the absence of di-
electric contrast, when n1 = n2 = n̄, and r12 = 0, t12 = 1, the
frequency dependencies of the Faraday and Kerr angles differ,
i.e., θF ≈ 2πRe{σxy}/(cn̄), while θK ≈ −2πRe{σxy/α}/(cn̄).

In a typical pump-probe experiment, see, e.g., Ref. [39],
one measures the Faraday and Kerr rotation signals equal to
the difference between the intensities of the transmitted and
reflected beams, such as I (t )

ω,x′ − I (t )
ω,y′ and I (t )

ω,σ+ − I (t )
ω,σ−. Here,

(x′, y′) are the axes rotated by π/4 with respect to the initial
(x, y) frame, and σ± denotes right- and left-hand circular
polarization. These signals are related to the rotation angles
and ellipticities as

I (t )
ω,x′ − I (t )

ω,y′ = 2θF T Iω, I (t )
ω,σ+ − I (t )

ω,σ− = 2εF T Iω (7)
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and

I (r)
ω,x′ − I (r)

ω,y′ = 2θK RIω, I (r)
ω,σ+ − I (r)

ω,σ− = 2εK RIω, (8)

where

T = n2|t̄ |2
n1

, R = |r̄|2, (9)

t̄ = (t+ + t−)/2, r̄ = (r+ + r−)/2, and Iω is the intensity of
the incident probe field. Note that the dielectric contrast
n1 
= n2 is crucial for the experimental observation of the
Kerr rotation signal, since the reflection coefficient R for the
freestanding 2D layer is proportional to the parameter |α|2,
see Eqs. (2), which might be small [39].

III. PUMP-INDUCED TRANSVERSE CONDUCTIVITY

Now we develop a microscopic theory of the transverse
conductivity σxy(ω,�) induced by the circularly polarized
pump field. The kinetics of 2D electrons driven by the pump
and probe electric fields is described by the Boltzmann equa-
tion for the electron distribution function f (p, t ):

∂ f

∂t
+ e[E�(t ) + Eω(t )] · ∂ f

∂ p
= St f . (10)

Here, p is the electron momentum, e is the electron charge,
and St f is the collision integral. For the collision integral,
we use the relaxation time approximation with different re-
laxation rates of angular harmonics [40]. The relaxation of
the first and second angular harmonics of f (p, t ) is described
by the energy-dependent times τ1 and τ2 given by τ−1

1 =
−〈vSt f 〉/〈v f 〉 and τ−1

2 = −〈vxvySt f 〉/〈vxvy f 〉, respectively.
Here, v = ∂ε/∂ p and ε are the electron velocity and energy,
respectively, and the angular brackets denote averaging over
p directions. The fields E�(t ) and Eω(t ) in Eq. (10) are
electric fields experienced by the 2DEG, i.e., the sum of the
incident and reflected fields at z = 0. Equation (10) is valid
in the classical regime, when h̄ω and h̄� are much less than
the mean electron energy. We also consider only intraband
optical transitions assuming h̄ω, h̄� � h̄2/ma2, where a is
the thickness of the electron gas and h̄2/ma2 is the typical
energy of electron confinement in the z direction.

We solve Eq. (10) by expanding the distribution function
f (p, t ) in the series in the electric field amplitude as follows:

f (p, t ) = f0 + [ f1ω(p)e−iωt + f1�(p)e−i�t + c.c.] + f2(p)

+ [ f2,ω+�(p)e−i(ω+�)t + f2,ω−�(p)e−i(ω−�)t + c.c.]

+ [ f3,ω(p)e−iωt + c.c.]. (11)

Here, f0 is the equilibrium distribution function, whereas
the first-order corrections f1ω ∝ Eω and f1� ∝ E� determine
Drude conductivity, responsible for ac electric currents oscil-
lating at frequencies ω and �, respectively. The second-order
corrections are f2 ∝ E�E∗

�, f2,ω+� ∝ EωE� and f2,ω−� ∝
EωE∗

�. The desired transverse current oscillating at ω is de-
termined by the third-order correction f3,ω ∝ EωE�E∗

�.
Considering the term e[E�(t ) + Eω(t )] · ∂ f /∂ p in

Eq. (10) as a perturbation, we obtain the following

equations for the corrections to the distribution function:

−iω f1ω + eEω · ∂ f0

∂ p
= St f1ω, (12a)

e

(
E� · ∂ f ∗

1�

∂ p
+ E∗

� · ∂ f1�

∂ p

)
= St f2, (12b)

−i(ω + �) f2,ω+� + e

(
Eω · ∂ f1�

∂ p
+ E� · ∂ f1ω

∂ p

)

= St f2,ω+�, (12c)

−iω f3,ω + eEω · ∂ f2

∂ p
+ eE� · ∂ f2,ω−�

∂ p
+ eE∗

� · ∂ f2,ω+�

∂ p

= St f3,ω. (12d)

The equation for f1� is obtained from Eq. (12a) by replacing ω

with �, and the equation for f2,ω−� is obtained from Eq. (12c)
by replacing � with −� and making use of the relations
E−� = E∗

�, f1,−� = f ∗
1�.

To derive the σyx component of the conductivity tensor, we
calculate the transverse electric current jω,y = σyxEω,x driven
by the x component of the probe field. The current reads

jω,y = eν
∑

p

vy f3,ω, (13)

where ν is the factor of spin and valley degeneracy. Multiply-
ing Eq. (12d) by vy and averaging the result over the directions
of p, we obtain

〈vy f3,ω〉 = − eτ1ω

〈
vy

(
Eω · ∂ f2

∂ p
+ E� · ∂ f2,ω−�

∂ p

)〉

− eτ1ω

〈
vyE∗

� · ∂ f2,ω+�

∂ p

〉
, (14)

where 〈. . . 〉 denotes averaging over the directions of p, and
τ1ω = τ1/(1 − iωτ1). Summation of Eq. (14) over p and inte-
gration by parts yield

jω,y = e2ν
∑

p

( f2Eω + f2,ω−�E� + f2,ω+�E∗
�) · ∂ (vyτ1ω )

∂ p
.

(15)

We start with calculating jω,y for parabolic energy disper-
sion of electrons ε(p) = |p|2/2m. This dispersion is typical
for low-energy electrons in III–V quantum wells, bilayer
graphene, monolayers of transition metal dichalcogenides,
etc. Calculating the derivative on the right-hand side of
Eq. (15), one obtains

jω,y = e2νEω,x

∑
p

vxvyτ
′
1ω f2

+ e2ν

m

∑
p

(ετ1ω )′( f2,ω−�E�,y + f2,ω+�E∗
�,y)

+ e2ν

2

∑
p

τ ′
1ω

[
f2,ω−�

(
2vxvyE�,x − (

v2
x − v2

y

)
E�,y

)

+ f2,ω+�

(
2vxvyE∗

�,x − (
v2

x − v2
y

)
E∗

�,y

)]
. (16)

Here, (. . . )′ denotes the derivative over energy, and we took
into account that Eω ‖ x. The nature of the contributions to
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the ac current given by Eq. (16) is similar to the one dis-
cussed in Ref. [32] for a static current. The first and the
third contributions, proportional to vxvy f2, vxvy f2,ω±�, and
(v2

x − v2
y ) f2,ω±�, are related to the optical alignment of elec-

tron momenta by means of the oscillating electric field. The
second term, proportional to (ετ1ω )′, is related to the dynamic
heating and cooling of 2DEG by the oscillating fields.

The first-order corrections to the distribution function are
found from Eq. (12a) and read

f1ω = −eτ1ω(Eω · v) f ′
0, f1� = −eτ1�(E� · v) f ′

0, (17)

where τ1� = τ1/(1 − i�τ1). Calculation shows that the first
term in Eq. (16) proportional to the time-independent correc-
tion f2 vanishes for circularly polarized pump. Therefore, we
do not consider this term in the following. Other second-order
corrections are found by solving Eq. (12c) with f1ω and f1�

given by Eq. (17), which yields

f2,ω+� =〈 f2,ω+�〉 + 1
2 e2Eω,xτ2,ω+�[(τ1� + τ1ω ) f ′

0]′

× [(
v2

x − v2
y

)
E�,x + 2vxvyE�,y

]
. (18)

Here, 〈 f2,ω+�〉 is the zeroth angular harmonic of f2,ω+�, and
τ2,ω+� = τ2/[1 − i(ω + �)τ2].

We describe the relaxation of the zeroth angular harmonic
of the distribution function 〈 f (p, t )〉 by the collision integral
St〈 f 〉 = −(〈 f 〉 − f0)/τ0, where τ0 is the energy-independent
relaxation time determined by the electron-electron scattering
and energy-relaxation processes (e.g., caused by phonons).
Equation (12c) yields

〈 f2,ω+�〉 = e2τ0,ω+�

m
[ε(τ1� + τ1ω ) f ′

0]′Eω,xE�,x, (19)

where τ0,ω+� = τ0/[1 − i(ω + �)τ0]. The f2,ω−� function is
found from f2,ω+� by replacing � with −� and using the
relations τ1,−� = τ ∗

1� and E−� = E∗
�.

Finally, substituting Eqs. (18) and (19) into Eq. (16) for
the current and calculating the sums, we obtain the transverse
conductivity of the degenerate electron gas induced by the
circularly polarized pump

σxy(ω,�) = F (ω,�) − F (ω,−�), (20)

where for the parabolic spectrum

F (par)(ω,�)

= − iσe2|E�|2Pcirc[2 − i(ω + �)τ1]

2m(1 − i�τ1)

× [(εF τ ′′
1ω+ 2τ ′

1ω )τ0,ω+� − εF (τ ′
1ωτ2,ω+�)′ − 2τ ′

1ωτ2,ω+�].

(21)

Here, the relaxation times and its energy derivatives are taken
at the Fermi energy εF , σ = e2neτ1ω/m is the high-frequency
conductivity, and ne = νmεF /(2π h̄2) is the electron density.

Similar calculations can be applied to 2DEG with lin-
ear energy dispersion, e.g., in monolayer graphene or
HgTe/CdHgTe quantum wells of the critical thickness. Us-
ing ε(p) = v0|p| and performing the calculations shown in

Appendix A, one obtains σxy given by Eq. (20) with

F (lin)(ω,�)

= − iσe2v2
0 |E�|2Pcirc[2 − i(ω + �)τ1]

4εF (1 − i�τ1)

×
[(

εF τ ′′
1ω + τ ′

1ω − τ1ω

εF

)
τ0,ω+� − εF (τ ′

1ωτ2,ω+�)′

− τ ′
1ωτ2,ω+� + τ1ω

(
τ ′

2,ω+� + τ2,ω+�

εF

)]
. (22)

Here, the high-frequency conductivity and the electron density
are given by σ = e2v2

0neτ1ω/εF and ne = νε2
F /(4π h̄2v2

0 ).
Note that at ω = 0, Eqs. (20)–(22) describe the static trans-

verse photoconductivity of 2DEG and agree with the second
line of Eq. (16) in Ref. [32]. Conductivity given by Eqs. (21)
and (22) is proportional to |E�|2, which is the square of the
pump field at z = 0. |E�|2 is related to the intensity of the inci-
dent pump I� = cn1[E (i)

� ]2/2π as |E�|2 = 2πT (�)I�/(cn2),
where T is given by Eq. (9).

IV. DISCUSSION

Equations (5), (6), and (20)–(22) can be applied to calcu-
late the photoinduced Faraday and Kerr rotation and ellipticity
in different 2D systems, such as quantum wells, monolayer
and bilayer graphene, transition-metal dichalcogenide mono-
layers, and other doped 2D materials. In this section, we
present results for two illustrative examples with linear and
parabolic energy dispersion, monolayer, and bilayer graphene,
respectively. We also analyze the role of the dielectric contrast
(n2 − n1)/n̄ between the two dielectric media surrounding
2DEG on the rotation angles and ellipticities.

A. 2D layer on a substrate

First, we consider the case of the 2D layer lying on a
substrate by setting the refractive indices n1 = 1 and n2 = 3.
In the discussion below Eq. (6), we showed that in the case
of a large dielectric contrast, the Kerr angle and ellipticity are
related to the corresponding Faraday quantities as θK/θF ≈
t12/r12, and εK/εF ≈ t12/r12. Hence, for the chosen n1 and n2,
we have θK ≈ −θF and εK ≈ −εF , and in this subsection we
discuss the Faraday angle and ellipticity only [41].

1. Parabolic spectrum: Bilayer graphene

Figure 2 shows the dependence of the calculated Faraday
angle and the accompanying ellipticity for parabolic energy
dispersion and a set of parameters relevant to a doped bilayer
graphene [42]. It follows from Eq. (21) that in case of the
energy-independent relaxation times τ1 and τ2, relevant for
short-range scatterers, the transverse conductivity σxy van-
ishes. Hence, the curves in Fig. 2 are plotted for unscreened
Coulomb scatterers corresponding to τ1 = 2τ2 ∝ ε. We use
the electron density ne = 1012 cm−2 and momentum relax-
ation time τ1(εF ) = 0.1 ps, which results in εF ≈ 39 meV
and 2πσ0/(cn̄) ≈ 0.088, where σ0 = e2neτ1/m is the static
2DEG conductivity. In the studied frequency range, the trans-
mission and reflection coefficients Eq. (9) lie in the range
T = 0.63−0.7 and R = 0.27−0.29, respectively.
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FIG. 2. (a) Photoinduced Faraday rotation angle θF and (b) the
accompanying ellipticity εF of the two-dimensional electron gas
with parabolic spectrum for a large dielectric contrast between the
surrounding media. Three curves correspond to three values of the
pump frequency: �τ1 = 0.1, 0.5, 1. Sharp resonances at ω ≈ �

occur. The curves are calculated after Eqs. (5), (20), and (21) for the
following parameters: τ1(εF ) = 0.1 ps, ne = 1012 cm−2, τ0 = 5 ps,
m = 0.03m0, τ1 = 2τ2 ∝ ε (Coulomb scatterers), I� = 1 kW/cm2,
n1 = 1, n2 = 3, and Pcirc = 1.

The dependence of rotation angles and ellipticities on the
probe frequency experiences sharp resonances in the region,
where the probe frequency ω is close to the pump frequency
�. At �τ1 � 1 and pump intensity I� = 1 kW/cm2, the Fara-
day angle at the resonance is θF ∼ 0.1◦, and the corresponding
ellipticity εF ∼ 0.1 %, see Fig. 2. Note that for such intensity,
the inequality |σxy| � |σxx| still holds, so we are still in the
perturbative regime. To study the shape of the resonances
in more detail, we analyze the pump-induced conductivity,
Eqs. (20) and (21), at τ0 � τ1, relevant for 2DEG at low
temperature, and �τ0 � 1. In this case, we have a sharp reso-
nance in the conductivity, whose shape for Coulomb scatterers
is given by

σxy(ω) ≈ 2iσ0e2τ1τ0|E�|2Pcirc

mεF [1 − i(ω − �)τ0]
(
1 + �2τ 2

1

)
(1 − i�τ1)3

.

(23)

Equation (23) allows one to calculate the frequency depen-
dence of the Faraday angle near the resonance. Substituting
Eq. (23) to Eq. (5), one obtains

θF (ω) ≈ 4πσ0

cn̄

e2τ1τ0|E�|2Pcirc

mεF

×�τ1
(
�2τ 2

1 − 3
) + (ω − �)τ0

(
3�2τ 2

1 − 1
)

(
1 + �2τ 2

1

)4[
1 + (ω − �)2τ 2

0

] . (24)

It follows from Eq. (24) that, depending on �τ1, the resonance
shape varies between the Lorentzian and the Lorentzian mul-
tiplied by (ω − �), see Fig. 2(a). For example, at �τ1 = 0.1,
the term ∝ (ω − �) in the numerator of Eq. (24) prevails,
and hence the corresponding curve in Fig. 2(a) behaves ap-
proximately like (ω − �)τ0/[1 + (ω − �)2τ 2

0 ]. Interestingly,
the resonance width is given by the relaxation rate of the
zeroth angular harmonic τ−1

0 rather than the momentum re-
laxation rate. The magnitude of the resonance is determined
by the product of 4πσ0/(cn̄) and the dimensionless parameter

FIG. 3. (a) Photoinduced Faraday rotation angle θF and (b) ac-
companying ellipticity εF of the two-dimensional electron gas with
linear spectrum for a large dielectric contrast (n2 − n1)/n̄ between
the surrounding media. Three curves correspond to three values of
the pump frequency: �τ1 = 0.1, 0.5, 1. Sharp resonances at ω ≈
� occur. The curves are calculated after Eqs. (5), (20), and (22)
for the following parameters: τ1(εF ) = 0.1 ps, ne = 3×1011 cm−2,
τ0 = 5 ps, v0 = 108 cm/s, τ1 = 2τ2 ∝ ε−1 (short-range scatterers),
I� = 1 kW/cm2, n1 = 1, n2 = 3, and Pcirc = 1.

e2|E�|2τ1τ0/(mεF ) proportional to the intensity of the pump
radiation.

We note that, strictly at resonance, when ω = �, the de-
veloped theory is not applicable. In this case, one should
consider a third-order response to the monochromatic elec-
tric field, since the pump and probe fields cannot longer be
distinguished as in Eq. (1). This situation corresponds to the
self-induced rotation of electric field, when the field modifies
dielectric properties of the 2D layer and, at the same time, ex-
perience rotation due to this modification. Such a self-induced
rotation has been considered for graphene within a simplified
relaxation model in Ref. [31]. In Appendix B, we calculate the
third-order photocurrent induced by a monochromatic electric
field being a sum of large circularly polarized and small lin-
early polarized contributions, see Eq. (B8).

2. Linear spectrum: Single-layer graphene

Figure 3 shows the dependence of the calculated Fara-
day angle and the accompanying ellipticity for linear energy
dispersion and a set of parameters relevant to a doped
monolayer graphene [43]. For linear energy dispersion, the
relaxation times are τ1 = 2τ2 ∝ ε−1 for short-range scatterers
and τ1 = 3τ2 ∝ ε for Coulomb scatterers [31]. It follows from
Eq. (22) that both types of scatterers contribute to the trans-
verse conductivity. For the calculations, we use ne = 3×1011

cm−2 and τ1(εF ) = 0.1 ps, which results in εF ≈ 64 meV
and 2πσ0/(cn̄) ≈ 0.071. In that case, the transmission and
reflection coefficients of the probe beam lie in the range
T = 0.65−0.71 and R = 0.26−0.28, respectively.

As in the case of bilayer graphene, the rotation angles and
ellipticities in single-layer graphene experience sharp reso-
nances at ω ≈ �. The photoconductivity σxy in the vicinity
of resonance has the form

σxy(ω) ≈ − σ0e2v2
0 (3 − i�τ1)�τ 2

1 τ0|E�|2Pcirc

2ε2
F [1 − i(ω − �)τ0]

(
1 + �2τ 2

1

)
(1 − i�τ1)3

.

(25)
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FIG. 4. [(a),(b)] Photoinduced Faraday and Kerr rotation angles
θF and θK and [(c),(d)] the accompanying ellipticities εF and εK

of the two-dimensional electron gas in a freestanding graphene.
Three curves correspond to three values of the pump frequency:
�τ1 = 0.1, 0.5, 1. Sharp resonances at ω ≈ � occur. The curves
are calculated after Eqs. (5), (6), and (22) for the following pa-
rameters: τ1(εF ) = 0.1 ps, ne = 3×1011 cm−2, τ0 = 5 ps, v0 =
108 cm/s, τ1 = 2τ2 ∝ ε−1 (short-range scatterers), I� = 1 kW/cm2,
n1 = n2 = 1, and Pcirc = 1.

Interestingly, Eq. (25) holds both for short-range and
Coulomb scatterers. Substituting Eq. (25) to Eq. (5), we obtain
for the Faraday angle near the resonance:

θF (ω) ≈ πσ0

cn̄

e2v2
0τ1τ0|E�|2Pcirc

ε2
F

× �τ1
[
�4τ 4

1 + 6�2τ 2
1 − 3 + 8�τ1(ω − �)τ0

]
(
1 + �2τ 2

1

)4[
1 + (ω − �)2τ 2

0

] .

(26)

Similarly to the parabolic spectrum, the magnitude of
the resonance is determined by the product of πσ0/(cn̄)
and the dimensionless parameter e2|E�|2τ1τ0/(m∗εF ) with
the effective electron mass m∗ = εF /v2

0 (m∗ ≈ 0.01 m0 in our
calculations).

B. Freestanding monolayer graphene

In this section, we consider a freestanding 2D layer by set-
ting the refractive indices n1 = n2 = 1. In this case, r12 = 0,
t12 = 1, and as shown below Eq. (6), the Faraday and Kerr an-
gles have different spectral dependencies. Figure 4 shows the
results of calculations for a freestanding monolayer graphene.
The values of the rotation angles and ellipticities are larger for
the freestanding layer than for the layer on a substrate, Figs. 2
and 3, for two reasons. First, the rotation angles and elliptici-
ties are proportional to 1/n̄, see Eqs. (5) and (6). Second, the

pump field at z = 0, |E�|2 = 2πT (�)I�/(cn2), is larger at a
given pump intensity. Moreover, the values of the Kerr angle
and ellipticity are significantly larger than the corresponding
Faraday values, since θF ∝ Re{σxy}, while θK ∝ Re{σxy/α}
at |α| � 1. Note that, however, the experimentally measured
Kerr rotation signals, see Eq. (8), are still small due to the
small reflection from the freestanding layer.

The calculated Faraday rotation angles for single-layer
and bilayer graphene samples are ∼0.1◦−1◦ per 1 kW/cm2

of the pump intensity, see Figs. 2–4. Similar values of the
Faraday angles were measured in monolayer and multilayer
graphene in the terahertz and far-infrared frequency range at
external magnetic field Bz ∼ 1 T in Refs. [43,44]. The rotation
angles can be further increased in high-mobility 2DEG in
GaAs/AlGaAs quantum wells with larger values of τ1, see,
e.g., Ref. [45]. Another way to increase the rotation angles is
to place the 2DEG in a microcavity [46–48]. It provides both
the enhancement of the 2DEG transverse conductivity σxy

(due to enhancement of the pump field |E�|2 at the location
of 2DEG), and the interaction of the probe field with the 2D
layer due to multiple round-trips of the probe field between
the mirrors [49,50].

C. Synthetic magnetic field induced by pump

The action of the circularly polarized pump on 2DEG
can be described in terms of a synthetic magnetic field Bsyn.
This field equals to an external magnetic field, which rotates
the polarization plane by the same angle as the pump. The
Faraday angle in the presence of external magnetic field is
given by Eq. (5) with the Hall conductivity σxy(Bz ), which
results in θF ∼ (ωcτ1)2πσ0/(cn̄), where ωc = eBz/mc is the
cyclotron frequency. By comparison with Eqs. (24) and (26)
at �τ1 ∼ 1, one can estimate the synthetic magnetic field from
ωcτ1 ∼ e2|E�|2τ1τ0/(mεF ), which yields

Bsyn ∼ ec|E�|2τ0

εF
. (27)

Note that the value of Bsyn is quite universal, since it does not
depend on either the electron mobility or energy dispersion.
It depends, however, on the energy relaxation time τ0 and,
hence, should increase with decreasing temperature.

Synthetic magnetic field induced by the pump with in-
tensity I� = 1 kW/cm2 at εF = 50 meV and τ0 = 10 ps is
Bsyn ∼ 0.1 T. This value increases with the growth of radiation
intensity and may reach 1 T for several kW/cm2 terahertz
and far-infrared radiation, which is used for spectroscopy of
electron gas in graphene [34,35]. Note that Bsyn is significantly
(several orders of magnitude) larger than the actual magnetic
field induced by the orbital currents being the source of the
inverse-Faraday magnetization [13,42].

V. SUMMARY

To summarize, we have studied theoretically the pump-
probe Faraday and Kerr rotation due to the orbital magnetiza-
tion in the 2DEG. We have shown that the circularly polarized
electric field of the terahertz-range pump results in the trans-
verse conductivity σxy(ω,�) of 2DEG, which is proportional
to the pump intensity and depends on both the probe and
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pump frequencies ω and �, respectively. This pump-induced
anisotropy of conductivity results in the circular birefringence
and dichroism for a probe field. We have derived analytical
expressions for σxy(ω,�) and the corresponding Faraday and
Kerr rotation angles for parabolic and linear energy dispersion
of 2D electrons and arbitrary scattering potential. We have
shown that at ω ≈ �, rotation angles are resonantly enhanced,
reaching 0.1◦−1◦ for 1 kW/cm2 of the pump intensity in
single-layer and bilayer graphene samples at �τ1 ∼ 1, where
τ1 is the momentum relaxation time. Similar values of the
Faraday angles were measured in monolayer and multilayer
graphene in the terahertz and far-infrared frequency range in
an external magnetic field Bz ∼ 1 T [43,44]. The calculated
Faraday and Kerr angles are governed by the momentum
and energy relaxation of 2D electrons, and hence can eluci-
date mechanisms and rates of electron relaxation processes in
pump-probe experiments.
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APPENDIX A: TRANSVERSE PHOTOCONDUCTIVITY
OF 2DEG WITH LINEAR ENERGY SPECTRUM

Here, we calculate pump-induced transverse conductivity
for electrons with linear energy dispersion ε = v0 p. We start
with the general equation for the current Eq. (15). Calculating
the derivative on the right-hand side of Eq. (15), one obtains

jω,y = e2νEω,x

∑
p

vxvyε
(τ1ω

ε

)′
f2

+ e2v2
0ν

2

∑
p

(ετ1ω )′

ε
( f2,ω−�E�,y + f2,ω+�E∗

�,y)

+ e2ν

2

∑
p

ε
(τ1ω

ε

)′[
f2,ω−�

(
2vxvyE�,x−

(
v2

x −v2
y

)
E�,y

)

+ f2,ω+�

(
2vxvyE∗

�,x − (
v2

x − v2
y

)
E∗

�,y

)]
. (A1)

The first contribution in Eq. (A1) proportional to f2 vanishes
for the circularly polarized pump. The first-order corrections
to the distribution function coincide with the ones given by
Eq. (17), whereas the second-order correction f2,ω+� has the
form

f2,ω+� = 〈 f2,ω+�〉 + e2Eω,x

2
τ2,ω+�ε

[
(τ1� + τ1ω ) f ′

0

ε

]′

× [(
v2

x − v2
y

)
E�,x + 2vxvyE�,y

]
, (A2)

where

〈 f2,ω+�〉 = e2v2
0τ0,ω+�

2ε
[ε(τ1ω + τ1�) f ′

0]′Eω,xE�,x. (A3)

The f2,ω−� function is obtained from Eqs. (A2) and (A3) by
replacing � with −� and using the relations τ1,−� = τ ∗

1� and
E−� = E∗

�. Finally, substituting f2,ω±� given by Eqs. (A2)
and (A3) into Eq. (A1) for the current and calculating the
sums, we obtain Eqs. (20) and (22) of the main text.

APPENDIX B: TRANSVERSE PHOTOCONDUCTIVITY
AT COINCIDING PUMP AND PROBE FREQUENCIES

In this Appendix, we calculate a third-order response sim-
ilar to Eq. (1) but at coinciding pump and probe frequencies,
ω = �. The electric field at the 2DEG plane E(t ) = Ee−iωt +
c.c. is a sum of large circularly polarized (pump) and small
linearly polarized (probe) contributions:

Ex = E1√
2

+ E2, Ey = iPcircE1/
√

2, (B1)

where Pcirc = ±1 and E2 � E1.
We search the electron distribution function f (p, t ) in the

form

f (t ) = f0 + [ f1(p)e−iωt + c.c.] + f2(p)

+ [ f̃2(p)e−2iωt + c.c.] + [ f3(p)e−iωt + c.c.], (B2)
where corrections to the distribution function satisfy the fol-
lowing equations:

−iω f1 + eE · ∂ f0

∂ p
= St f1, (B3a)

e

(
E · ∂ f ∗

1

∂ p
+ E∗ · ∂ f1

∂ p

)
= St f2, (B3b)

−2iω f̃2 + eE · ∂ f1

∂ p
= St f̃2, (B3c)

−iω f3 + eE · ∂ f2

∂ p
+ eE∗ · ∂ f̃2

∂ p
= St f3. (B3d)

The transverse electric current is determined by the third-
order correction f3 and reads

jω,y = e
∑

p

vy f3 = e2
∑

p

( f2E + f̃2E∗) · ∂ (vyτ1ω )

∂ p
. (B4)

Taking the derivative on the right-hand side for the case of
linear dispersion and simplifying, we obtain

jω,y = e2v2
0

∑
p

[
τ1ω

ε
+ ε

2

(
τ1ω

ε

)′]
f2Ey

+ e2

2

∑
p

ε

(
τ1ω

ε

)′
f2

[
2vxvyEx − (

v2
x − v2

y

)
Ey

]

+ e2v2
0

∑
p

[
τ1ω

ε
+ ε

2

(
τ1ω

ε

)′]
f̃2E∗

y

+ e2

2

∑
p

ε
(τ1ω

ε

)′
f̃2

[
2vxvyE∗

x − (
v2

x − v2
y

)
E∗

y

]
. (B5)

By solving Eqs. (B3b) and (B3c) with the use of Eq. (17),
we obtain

f2 = e2τ2Re

{
ε

(
τ1ω f ′

0

ε

)′}[(
v2

x − v2
y

)
S1 + 2vxvyS2

]

+ e2v2
0τ0S0Re

{
(ετ1ω f ′

0)′

ε

}
(B6)

and

f̃2 = e2τ2,2ω

2
ε

(
τ1ω f ′

0

ε

)′[(
v2

x − v2
y

)
s1 + 2vxvys2

]

+ e2v2
0τ0,2ωs0

2ε
(ετ1ω f ′

0)′. (B7)
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Here, S0 = |E|2, S1 = |Ex|2 − |Ey|2, S2 = ExE∗
y + E∗

x Ey are
the Stokes parameters and s0 = E2

x + E2
y , s1 = E2

x − E2
y , s2 =

2ExEy. By substituting Eqs. (B6), (B7), and (B1) in Eq. (B5)
for the current, performing summation over p and simplifying,
we finally obtain

jω,y = − iσe2v2
0PcircE2

1 E2

εF

{(
2τ0

1 + iωτ1
− τ0,2ω

)
A

−τ2A + εF τ ′
2B

1 + iωτ1
+ 3

2
(τ2,2ωA + εF τ ′

2,2ωB)

}
, (B8)

where

A = εF τ ′′
1ω + τ ′

1ω − τ1ω

εF
, B = τ ′

1ω − τ1ω

εF
. (B9)

Here, we only left contributions to the current proportional to
E2

1 E2.
Note that, for a simplified relaxation model with relaxation

times τ0 = τ1 = τ2 and independent of energy, the current
given by Eq. (B8) coincides with Eq. (69) of Ref. [31].

[1] A. Kirilyuk, A. V. Kimel, and T. Rasing, Ultrafast optical ma-
nipulation of magnetic order, Rev. Mod. Phys. 82, 2731 (2010).

[2] A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and
A. V. Kimel, Ultrafast nonthermal photo-magnetic recording in
a transparent medium, Nature (London) 542, 71 (2017).

[3] Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, Ultrafast
all-optical switching, Adv. Opt. Mater. 5, 1600665 (2017).

[4] O. H.-C. Cheng, D. H. Son, and M. Sheldon, Light-induced
magnetism in plasmonic gold nanoparticles, Nat. Photon. 14,
365 (2020).

[5] Spin Physics in Semiconductors, edited by M. I. Dyakonov
(Springer-Verlag, Berlin, 2008).

[6] Y. Kusrayev and G. Landwehr, Optical orientation, Semicond.
Sci. Technol. 23, 110301 (2008).

[7] M. M. Glazov, Coherent spin dynamics of electrons and ex-
citons in nanostructures (a review), Phys. Solid State 54, 1
(2012).

[8] S. D. Ganichev, E. L. Ivchenko, V. V. Bel’kov, S. A. Tarasenko,
M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl, Spin-
galvanic effect, Nature (London) 417, 153 (2002).

[9] E. L. Ivchenko and S. A. Tarasenko, Monopolar optical
orientation of electron spins in bulk semiconductors and het-
erostructures, J. Exp. Theor. Phys. 99, 379 (2004).

[10] B. N. Murdin, K. Litvinenko, D. G. Clarke, C. R. Pidgeon,
P. Murzyn, P. J. Phillips, D. Carder, G. Berden, B. Redlich,
A. F. G. van der Meer, S. Clowes, J. J. Harris, L. F. Cohen, T.
Ashley, and L. Buckle, Spin Relaxation by Transient Monopo-
lar and Bipolar Optical Orientation, Phys. Rev. Lett. 96, 096603
(2006).

[11] L. P. Pitaevskii, Electric forces in a transparent dispersive
medium, Sov. Phys. JETP 12, 1008 (1961).

[12] J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom,
Optically-Induced Magnetization Resulting from the Inverse
Faraday Effect, Phys. Rev. Lett. 15, 190 (1965).

[13] R. Hertel, Theory of the inverse Faraday effect in metals,
J. Magn. Magn. Mater. 303, L1 (2006).

[14] M. Battiato, G. Barbalinardo, and P. M. Oppeneer, Quantum
theory of the inverse Faraday effect, Phys. Rev. B 89, 014413
(2014).

[15] M. Berritta, R. Mondal, K. Carva, and P. M. Oppeneer, Ab initio
Theory of Coherent Laser-Induced Magnetization in Metals,
Phys. Rev. Lett. 117, 137203 (2016).

[16] I. I. Ryzhov, G. G. Kozlov, D. S. Smirnov, M. M. Glazov,
Y. P. Efimov, S. A. Eliseev, V. A. Lovtcius, V. V. Petrov, K. V.
Kavokin, A. V. Kavokin, and V. S. Zapasskii, Spin noise ex-
plores local magnetic fields in a semiconductor, Sci. Rep. 6,
21062 (2016).

[17] A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev,
A. M. Balbashov, and T. Rasing, Ultrafast non-thermal con-
trol of magnetization by instantaneous photomagnetic pulses,
Nature (London) 435, 655 (2005).

[18] S. V. Mironov, A. S. Mel’nikov, I. D. Tokman, V. Vadimov, B.
Lounis, and A. I. Buzdin, Inverse Faraday Effect for Supercon-
ducting Condensates, Phys. Rev. Lett. 126, 137002 (2021).

[19] J. Hurst, P. M. Oppeneer, G. Manfredi, and P.-A. Hervieux,
Magnetic moment generation in small gold nanoparticles via
the plasmonic inverse Faraday effect, Phys. Rev. B 98, 134439
(2018).

[20] I. D. Tokman, Q. Chen, I. A. Shereshevsky, V. I. Pozdnyakova,
I. Oladyshkin, M. Tokman, and A. Belyanin, Inverse Faraday
effect in graphene and Weyl semimetals, Phys. Rev. B 101,
174429 (2020).

[21] D. D. Awschalom, J. M. Halbout, S. von Molnar, T. Siegrist, and
F. Holtzberg, Dynamic Spin Organization in Dilute Magnetic
Systems, Phys. Rev. Lett. 55, 1128 (1985).

[22] N. Zheludev, M. Brummell, R. Harley, A. Malinowski, S.
Popov, D. Ashenford, and B. Lunn, Giant specular inverse
Faraday effect in Cd0.6Mn0.4Te, Solid State Commun. 89, 823
(1994).

[23] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Observation of the spin Hall effect in semiconductors, Science
306, 1910 (2004).

[24] S. A. Crooker and D. L. Smith, Imaging Spin Flows in Semi-
conductors Subject to Electric, Magnetic, and Strain Fields,
Phys. Rev. Lett. 94, 236601 (2005).

[25] A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A.
Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and
M. Bayer, Mode locking of electron spin coherences in singly
charged quantum dots, Science 313, 341 (2006).

[26] M. M. Glazov, I. A. Yugova, S. Spatzek, A. Schwan, S. Varwig,
D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Effect
of pump-probe detuning on the Faraday rotation and ellipticity
signals of mode-locked spins in (In,Ga)As/GaAs quantum dots,
Phys. Rev. B 82, 155325 (2010).

[27] F. Passmann, S. Anghel, T. Tischler, A. V. Poshakinskiy, S. A.
Tarasenko, G. Karczewski, T. Wojtowicz, A. D. Bristow, and
M. Betz, Persistent spin helix manipulation by optical doping
of a CdTe quantum well, Phys. Rev. B 97, 201413(R) (2018).

[28] A. G. Aronov and E. L. Ivchenko, Dichroism and optical
anisotropy of media with oriented spins of free electrons,
Sov. Phys. Solid State 15, 160 (1973).

[29] Y. P. Svirko and N. I. Zheludev, Coherent and incoherent
pump–probe specular inverse Faraday effect in media with in-
stantaneous nonlinearity, J. Opt. Soc. Am. B 11, 1388 (1994).

125418-8

https://doi.org/10.1103/RevModPhys.82.2731
https://doi.org/10.1038/nature20807
https://doi.org/10.1002/adom.201600665
https://doi.org/10.1038/s41566-020-0603-3
https://doi.org/10.1088/0268-1242/23/11/110301
https://doi.org/10.1134/S1063783412010143
https://doi.org/10.1038/417153a
https://doi.org/10.1134/1.1800195
https://doi.org/10.1103/PhysRevLett.96.096603
https://doi.org/10.1103/PhysRevLett.15.190
https://doi.org/10.1016/j.jmmm.2005.10.225
https://doi.org/10.1103/PhysRevB.89.014413
https://doi.org/10.1103/PhysRevLett.117.137203
https://doi.org/10.1038/srep21062
https://doi.org/10.1038/nature03564
https://doi.org/10.1103/PhysRevLett.126.137002
https://doi.org/10.1103/PhysRevB.98.134439
https://doi.org/10.1103/PhysRevB.101.174429
https://doi.org/10.1103/PhysRevLett.55.1128
https://doi.org/10.1016/0038-1098(94)90064-7
https://doi.org/10.1126/science.1105514
https://doi.org/10.1103/PhysRevLett.94.236601
https://doi.org/10.1126/science.1128215
https://doi.org/10.1103/PhysRevB.82.155325
https://doi.org/10.1103/PhysRevB.97.201413
https://doi.org/10.1364/JOSAB.11.001388


FARADAY AND KERR ROTATION DUE TO PHOTOINDUCED … PHYSICAL REVIEW B 108, 125418 (2023)

[30] I. A. Yugova, M. M. Glazov, E. L. Ivchenko, and A. L. Efros,
Pump-probe Faraday rotation and ellipticity in an ensemble
of singly charged quantum dots, Phys. Rev. B 80, 104436
(2009).

[31] M. Glazov and S. Ganichev, High frequency electric field
induced nonlinear effects in graphene, Phys. Rep. 535, 101
(2014).

[32] M. V. Durnev, Photovoltaic Hall effect in the two-dimensional
electron gas: Kinetic theory, Phys. Rev. B 104, 085306 (2021).

[33] Linearly polarized pump causes linear birefringence and dichro-
ism of 2DEG, which manifests itself in different transmission,
reflection, and absorption of the probe field polarized parallel
and perpendicular to the pump field.

[34] J. W. McIver, B. Schulte, F. U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, Light-induced anomalous Hall
effect in graphene, Nat. Phys. 16, 38 (2020).

[35] S. Candussio, S. Bernreuter, T. Rockinger, K. Watanabe, T.
Taniguchi, J. Eroms, I. A. Dmitriev, D. Weiss, and S. D.
Ganichev, Terahertz radiation induced circular Hall effect in
graphene, Phys. Rev. B 105, 155416 (2022).

[36] K. Chiu, T. Lee, and J. Quinn, Infrared magneto-transmittance
of a two-dimensional electron gas, Surf. Sci. 58, 182 (1976).

[37] E. D. Palik and J. K. Furdyna, Infrared and microwave magne-
toplasma effects in semiconductors, Rep. Prog. Phys. 33, 1193
(1970).

[38] R. F. O’Connell and G. Wallace, Ellipticity and Faraday
rotation due to a two-dimensional electron gas in a metal-oxide-
semiconductor system, Phys. Rev. B 26, 2231 (1982).

[39] E. A. Zhukov, D. R. Yakovlev, M. Bayer, M. M. Glazov, E. L.
Ivchenko, G. Karczewski, T. Wojtowicz, and J. Kossut, Spin co-
herence of a two-dimensional electron gas induced by resonant
excitation of trions and excitons in CdTe/CdMgTe quantum
wells, Phys. Rev. B 76, 205310 (2007).

[40] V. F. Gantmakher and Y. B. Levinson, Carrier Scatter-
ing in Metals and Semiconductors. Modern Problems in

Condensed Matter Sciences (North-Holland, Amsterdam,
1987), Vol. 19.

[41] We assume that n1,2 are frequency independent in the consid-
ered frequency range.

[42] S. Candussio, M. V. Durnev, S. A. Tarasenko, J. Yin, J. Keil, Y.
Yang, S.-K. Son, A. Mishchenko, H. Plank, V. V. Bel’kov, S.
Slizovskiy, V. Fal’ko, and S. D. Ganichev, Edge photocurrent
driven by terahertz electric field in bilayer graphene, Phys. Rev.
B 102, 045406 (2020).

[43] R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H.
Hibino, T. Morimoto, and H. Aoki, Quantum Faraday and Kerr
rotations in graphene, Nat. Commun. 4, 1841 (2013).

[44] I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E.
Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko,
Giant Faraday rotation in single- and multilayer graphene,
Nat. Phys. 7, 48 (2011).

[45] V. Suresh, E. Pinsolle, C. Lupien, T. J. Martz-Oberlander, M. P.
Lilly, J. L. Reno, G. Gervais, T. Szkopek, and B. Reulet, Quan-
titative measurement of giant and quantized microwave Faraday
rotation, Phys. Rev. B 102, 085302 (2020).

[46] E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanos-
tructures (Alpha Science, Harrow, UK, 2005).

[47] A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy,
Microcavities (Oxford University Press, Oxford, 2017).

[48] H. Hu, X. Lin, and Y. Luo, Free-electron radiation engineering
via structured environments, Prog. Electromagn. Res. 171, 75
(2021).

[49] A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O.
Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, Resonant
Faraday rotation in a semiconductor microcavity, Phys. Rev. B
56, 1087 (1997).

[50] C. Arnold, J. Demory, V. Loo, A. Lemaitre, I. Sagnes, M.
Glazov, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, Macro-
scopic rotation of photon polarization induced by a single spin,
Nat. Commun. 6, 6236 (2015).

125418-9

https://doi.org/10.1103/PhysRevB.80.104436
https://doi.org/10.1016/j.physrep.2013.10.003
https://doi.org/10.1103/PhysRevB.104.085306
https://doi.org/10.1038/s41567-019-0698-y
https://doi.org/10.1103/PhysRevB.105.155416
https://doi.org/10.1016/0039-6028(76)90132-1
https://doi.org/10.1088/0034-4885/33/3/307
https://doi.org/10.1103/PhysRevB.26.2231
https://doi.org/10.1103/PhysRevB.76.205310
https://doi.org/10.1103/PhysRevB.102.045406
https://doi.org/10.1038/ncomms2866
https://doi.org/10.1038/nphys1816
https://doi.org/10.1103/PhysRevB.102.085302
https://doi.org/10.2528/PIER21081303
https://doi.org/10.1103/PhysRevB.56.1087
https://doi.org/10.1038/ncomms7236

