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Strong interactions between charges and light-matter coupled quasiparticles offer an intriguing prospect with
applications from optoelectronics to light-induced superconductivity. Here, we investigate how the interactions
between electrons and exciton-polaritons in a two-dimensional semiconductor microcavity can be resonantly
enhanced due to a strong coupling to a trion, i.e., an electron-exciton bound state. We develop a microscopic
theory that uses a strongly screened interaction between charges to enable the summation of all possible diagrams
in the polariton-electron scattering process, and we find that the polariton-electron interaction strength can be
strongly varied and enhanced in the vicinity of the resonance. We furthermore derive an analytic approximation
of the interaction strength based on universal low-energy scattering theory. This is found to match extremely well
with our full calculation, indicating that the trion resonance is near universal, depending more on the strength
of the light-matter coupling relative to the trion binding energy than on the details of the electronic interactions.
Thus we expect the trion resonance in polariton-electron scattering to appear in a broad range of microcavity
systems with few semiconductor layers such as doped monolayer MoSe,, where such resonances have recently

been observed experimentally [Sidler et al., Nat. Phys. 13, 255 (2017)].
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I. INTRODUCTION

Exciton-polaritons are hybrid light-matter quasiparticles
composed of a photon mode and an exciton (a bound electron-
hole pair) in a semiconductor. Such quasiparticles can be
created by placing a two-dimensional (2D) semiconductor
layer in a microcavity, thereby enhancing the coupling be-
tween matter and light [1,2]. Due to their hybrid nature,
polaritons have a very low mass inherited from their photon
component, as well as the capability to interact with each
other and other particles due to their matter component, which
allows them to achieve condensation and superfluidity at ele-
vated temperatures [3—6]. The ability of polaritons to interact
compared with ordinary photons leads to many applications
such as ultrafast polariton spin switching [7] and the emer-
gence of photon correlations [8,9] with the potential prospect
of realizing polariton blockade in a semiconductor device
[10].

In the past decade, a new class of 2D semiconductors
has gained prominence, namely the monolayer transition
metal dichalcogenides (TMDs). These have strong coupling
to light, they can be externally tuned via electrostatic gat-
ing and doping techniques [11], and, in addition to excitons,
they feature trions (bound states of two electrons in distinct
momentum-space valleys and a hole) that are potentially sta-
ble at room temperature [12,13]. These properties combine
to make TMDs ideally suited for a broad range of appli-
cations in electronics and optoelectronics. Recently, it was
demonstrated that TMDs can feature resonantly enhanced in-
teractions between electrons and polaritons [14], as evidenced
by a strongly doping-dependent optical response near the trion
energy. The basic mechanism is illustrated in Fig. 1: The
coupling of light and matter allows the tuning of the energy
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of a polariton such that the total energy of a polariton and
an electron matches that of the trion. The resulting coupling
between these two configurations in a polariton-electron scat-
tering process greatly enhances the interaction strength. Note
that the same physics applies to polaritons and holes, but we
focus on polariton-electron scattering to be concrete in the
following.

In this paper, we develop a diagrammatic description of
polariton-electron scattering in a 2D semiconductor microcav-
ity, taking into account both the strong coupling to light and
the composite nature of the exciton and trion bound states.

NEANY

Polariton

PV VaaV

FIG. 1. Schematic illustration of the trion resonance in interval-
ley polariton-electron scattering, using the band structure of MoSe,
as an example. (a) shows the charges involved in the negatively
charged trion (encircled by the green line), with the trion energy
drawn with a dashed green line. In (b), the exciton-polariton formed
by the photon and electron-hole pair in the K valley is encircled in
yellow. The corresponding energy (dashed yellow line) is tunable,
allowing one to achieve a resonance condition with the trion. The
electrons (holes) are represented by filled (empty) circles, and their
spins are shown with red (¢ = 1) and blue (¢ = |), corresponding
to the K and K’ valleys.
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Our approach allows us to determine the sum of all diagrams
contributing to the scattering process. We find a strong en-
hancement of the polariton-electron interaction strength for
parameters corresponding to typical TMD monolayers, with
the resonance occurring at slightly negative detuning. For
systems with larger light-matter (Rabi) coupling relative to
the trion binding energy, such as GaAs semiconductor micro-
cavities with multiple quantum wells, the resonance shifts to
large positive detuning, making it inaccessible in typical ex-
periments. This likely explains why the resonant enhancement
has not previously been observed in III-V semiconductors.

The electron-exciton scattering problem is challenging to
solve even in the absence of a strong coupling to light [15-17].
Therefore, to make the calculation tractable, we use a highly
screened interaction between charges, as done previously for
intravalley polariton-polariton and polariton-electron scatter-
ing [18-20]. However, we argue that our results are dominated
by the strong light-matter coupling, rather than the pre-
cise form of the electronic interactions. Indeed, inspired by
Ref. [21], we derive an analytic expression for the polariton-
electron scattering which is based on only two assumptions:
(i) that the polariton-electron scattering can be viewed as
off-shell exciton-electron scattering, where the collision en-
ergy is determined by the light-matter coupling; and (ii) that
the exciton-electron scattering is given by the universal low-
energy scattering formula of short-range systems [22]. With
these two assumptions, we arrive at the expression for the
polariton-electron interaction strength:

o = x2 2% ! , (1)
= ex In[(Ex + ex)/ (E— + ex)]

where ex is the exciton binding energy, mex = (m;!+
m;(' )~! is the reduced mass of electrons and excitons (mass e
and my, respectively), E_ and X_ are the lower polariton en-
ergy and exciton amplitude at zero momentum, Et is the trion
energy, and energies are measured from that of the electron-
hole continuum. Equation (1) illustrates the tunability of the
interactions, since the polariton energy E_ depends on the
cavity mode frequency and thus the cavity length. Crucially, it
provides a near-perfect agreement with our numerical results
for TMD monolayers, thus highlighting the universal nature of
our results. This is all the more remarkable, since the system
of three charges features both a direct (bright) and an indirect
(dark) exciton, with both of these configurations contributing
to the trion wave function in our full theory. Yet, the analytic
approximation equation (1) only considers the direct exciton.
The key feature that underlies this universal behavior is the
separation of energy scales between the exciton and the trion
binding energies, with ex > |Et1 + ex|.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian and two-body theory of exciton-polaritons
which forms the basis of the three-body problem. In Sec. III,
we develop the intervalley polariton-electron scattering equa-
tion by iterating the irreducible three-body exchange process,
and we show our results for parameters corresponding to a
microcavity containing a TMD monolayer or a GaAs quantum
well. In Sec. IV, we summarize and provide a brief outlook.
Technical details are given in the Appendixes.

II. THEORETICAL FRAMEWORK
A. Hamiltonian

To describe polariton-electron scattering and its connection
to the trion resonance, we consider a minimal microscopic
model that encompasses all the necessary ingredients. That is,
it features exciton binding, trion binding, and strong coupling
to light. Specifically, we characterize the 2D semiconductor
microcavity by an effective Hamiltonian that includes light,
matter, and light-matter coupling:

ﬁ = I:jph + ﬁmat + th-mat- 2

The matter part of the Hamiltonian Hpnae describes the
single-particle energies and interactions of the electrons and
holes and is given by

Hopa = Z(era Keox + ekh' hy )
ko

VoY 8 g oo ko k. 3)

kk'q

oo’
Here, the creation (annihilation) operators of electrons and
holes with momentum k and spin o are é;k (é,x) and

fz;k (hgx), with corresponding dispersions ef(/ h_ g2 /2men
in terms of their effective masses m. and my. The single-
particle energies are measured with respect to the band gap.
Here, and in the following, we work in units where the area
A=1land i = 1.

To describe the attractive interactions between electrons
and holes, we use a highly screened contact interaction of
strength V) > 0, which is related to the exciton binding energy
ex via

A
Zk: ex +€ + € “®
Here, A is an ultraviolet cutoff of the order of the inverse
lattice spacing such that Aay > 1, where we have defined
the effective Bohr radius ax via ex = 1/2m.ax, with m, =
(mg 14 my -1 being the reduced mass of the electron-hole
pair. Since our Hamiltonian does not describe the high-
energy physics of the system such as the details of the band
structure, we will eventually take A to infinity to obtain
cutoff-independent results [23]. In this limiting renormal-
ization process, the interaction strength V; approaches 0 as
1/1In A according to Eq. (4). Note that we do not explicitly
include the electron-electron and hole-hole repulsion, since
highly screened repulsive interactions generally yield a much
smaller scattering cross section than their attractive counter-
part and can thus be neglected. However, given that these are
not required to obtain the exciton and trion bound states, this
does not strongly impact our results. As we discuss below, the
important consequence of electron-electron repulsion is that
it impacts the ratio of the exciton binding energy to the trion
binding energy (since the trion features two electrons), which
we instead adjust using a method borrowed from nuclear
physics.
The photon part of the Hamiltonian consists of the cavity
mode, which acquires an effective mass in the microcavity. It
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is given by

Ao =Y (0 + )8 (o 5)
ko

Here, the operators é;k and ¢, create and annihilate,
respectively, a microcavity photon with momentum k and po-
larization o, with corresponding kinetic energy €f = k?/2m,.
Throughout, we take the effective mass of the cavity photon
to be me = 2 x 10~*m;, [1]. For simplicity, we write the zero-
momentum bare cavity photon energy w separately, noting
that this is also measured from the electronic band gap.

Lastly, the light-matter component of the Hamiltonian
ﬁph_mal describes the transformation of a microcavity photon
to an intravalley electron-hole pair, and vice versa. Impor-
tantly, due to the optical selection rules in TMDs [24,25], the
spin of the optically excited electron-hole pair (and hence the
photon polarization) is linked to the valley index. Therefore
we define

Hph-mar = gzé;%_,rkh;g_kémq +H.c, (6)
kqo -

with g being the bare light-matter coupling constant. Since
this also corresponds to a contact interaction, it requires renor-
malization [26]. For simplicity, we take the ultraviolet cutoff
(on the relative electron-hole momentum) to be the same as
for the electron-hole interactions, since it is governed by the
same length scale, i.e., the lattice spacing. Note that, in writing
Eq. (6), we have applied the rotating wave approximation
which is justified since we are working with cavity photon
energies which are comparable to the band gap, which in turn
greatly exceeds all other relevant energy scales in the problem.

B. Foundations of the diagrammatic approach

To describe the intervalley polariton-electron scattering
and trion resonance, we use a microscopic description of
the exciton-polariton [19,27]. Here, we briefly review results
which are important for the diagrammatic formulation of scat-
tering involving polaritons. For further details, we refer the
reader to Appendixes A and B.

We start by considering the bare electron or hole Green’s
function. This is also called the propagator and takes the form

1

GMP.E)= ——F——.
E—¢"+i0

(N

This describes the free motion of an electron or hole with
momentum p and spin o in the absence of interactions and
light-matter coupling. The energy pole corresponds to the
dispersion. The imaginary infinitesimal 40 shifts the poles
of the Green’s function slightly into the lower half plane
such that G corresponds to a retarded Green’s function, as
appropriate for a few-body scattering problem. In the follow-
ing, we will always be assuming that the energy carries a
positive imaginary part, that is, all Green’s functions will be
understood to be retarded.

The sum of all possible processes featuring the repeated
scattering of an electron and a hole leads to the electron-hole
T matrix. In the absence of coupling to light, the 7" matrix at

total momentum p and energy E takes the form
=271 [my;
(55
[5'¢

where el)f = p?/2myx is the exciton kinetic energy with exciton
mass my = me + my. The renormalization of the electron-
hole contact interaction is carried out in detail in Appendix A.

To obtain the polariton properties within our model (3),
we first consider the propagator of the cavity photon in the

presence of the semiconductor. The fully renormalized photon
propagator is given by [19]

To(p. E) = ®)

1

X -1
E—w—e+ Q—2[ln ("—E)]
EX EX

For details, see Appendix B. Here, the cavity photon fre-
quency is shifted from its bare value @ due to the interaction
with the semiconductor medium. As a result, it can be related
to the physical photon-exciton detuning é via w = § — ex +
% [19]. The polariton dispersion is found by solving for the
poles of the propagator, and thus satisfies the transcendental

equation
Q2 eff —FE -
E:a)+el°)—— In . (10)
EX EX

Aslong as Q, § < ey, there are two solutions of this equation,
corresponding to the lower (—) and upper (+) polariton dis-
persions E. (p). Furthermore, the matter part of the polariton
is responsible for mediating the interaction in polariton-
electron scattering. The exciton fraction, or squared exciton
Hopfield coefficient, is given by

D, (p, E) = ®

1
X_ 2 :
. % In <€p SE;(P)) (El)f _ E:t(p))

Finally, we note that, in the presence of coupling to light,
the electron-hole T matrix is modified to [19]

X:(p) = (11)

—2m /m;
In <ﬂ> +2(E-w-— eg)_l

X &X

Pe(p. E) =

12)

This can be thought of as a polariton propagator, and indeed
it has the same pole structure as the photon propagator in
Eq. (9). As discussed in Appendix B, it includes all the poten-
tial scattering processes between the electron and hole, along
with the repeated transformation of the electron-hole pair into
a photon and vice versa.

III. POLARITON-ELECTRON SCATTERING

‘We now consider the intervalley polariton-electron scatter-
ing and associated trion resonance, as illustrated in Fig. 1.
We use a diagrammatic technique that allows us to straight-
forwardly include all contributions to the interaction. Our
formulation is similar to the celebrated Skorniakov and
Ter-Martirosian equation, first introduced in the context of
neutron-deuteron scattering in nuclear physics [28], and since
adopted to the description of the scattering of an atom and
a diatomic molecule in the context of ultracold atomic gases
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FIG. 2. Diagrammatic representation of the three-body equation (13), from which we obtain the polariton-electron scattering 7' matrix
(shaded square) as a function of incoming and outgoing momenta £p and £q. The polariton formed by the optically active electron-hole pair
and cavity photon is drawn as a double line, the electron propagator is drawn as a single line, the hole propagator is drawn as a dashed line,
and the exciton propagator is drawn as a solid bar. Note that the incoming and outgoing polariton and electron propagators factor out in the

three-body equation.

[29-33]. Formally, our calculation is also closely related to the
case of intravalley polariton-electron scattering [18,19], where
the electron occupies the same valley as the electron inside the
polariton. The primary difference is that in our case the two
electrons are distinguishable, which enables them to bind to a
hole to form a trion, while the Pauli principle suppresses trion
formation for indistinguishable electrons (see, e.g., Ref. [34]
for a detailed discussion of this point). We remind the reader
that while we refer specifically to polariton-electron scattering
in the following, our results also apply trivially to polariton-
hole scattering, of relevance in hole-doped semiconductor
microcavities.

The central object of the polariton-electron scattering is
the T matrix, which is the (appropriately normalized) sum of
all diagrams contributing to the scattering process. Since all
terms are of the same order of magnitude, it is not possible to
simply calculate each term in the sum individually and then
sum them all. Instead, Fig. 2 shows how the (un-normalized)
sum can be related to itself via the integral equation

t(p,q, E) = B(p, q, E)
+ Y B(p. k. E)P; (k. E — €)t(k. q. E),
k
(13)

similar to the Lippmann-Schwinger equation of two-body
scattering. Here, the first term on the right-hand side is the
sum of all diagrams which have the polariton and electron as
external legs but never inside the diagram: We refer to this
term as the irreducible exchange process B. As indicated in
the figure, we will be working in the center-of-mass frame
where the incoming (outgoing) polariton and electron have
momenta £p (£q). The associated energies of the incoming
and outgoing electrons are taken to be €, and €4, while that of
the polaritons is E' — €, and E — €g with the total energy E. In
the continuum limit, Eq. (13) constitutes a Fredholm integral
equation in the first argument of ¢, which we solve numerically
by projecting onto the different partial waves and discretizing
the integrals using the Gauss-Legendre quadrature [35]. More
details are in Appendix C.

The irreducible exchange process B is represented by
the first diagram on the right-hand side of the three-body
equation shown in Fig. 2. This shows how the hole is first
transferred from the incoming spin-up polariton to the op-
tically inactive electron, where it interacts and propagates
internally as a dark exciton. Following this, the hole is then
transferred back to the spin-up polariton, completing the hole-

exchange process. Specifically, we have

B(p,q,E) = Zx(p+§>G‘}(p+s,E—e§—e§)
S

X X<s+ g)To(s,E —e:)x(s+ g)

x Gh(s+q,E — € — eg)x(q+ %) (14)
This irreducible exchange process is then iterated an arbitrary
number of times to obtain the 7 matrix, interspersed with
propagation of the polariton and electron.

In Eq. (14), x is a form factor that we have introduced
to tune the ratio between the exciton and the trion binding
energies. In the absence of coupling to light and for x =1,
the three-body equation (13) features a trion bound state with
energy Et = —2.39¢x [36,37] (obtained as a pole of ¢ at
E < —e&x and zero momentum). This corresponds to a binding
energy of |Et + ex| = 1.39, which is much larger than that
expected in 2D semiconductors, where Er >~ —1.1ex [38—40].
The discrepancy is primarily due to how we have neglected
the electron-electron repulsion. To effectively introduce this
repulsion, we note that the exchange of a hole between the
polariton and exciton physically requires the two electrons to
come into close proximity. We can thus mimic the repulsion
through the use of form factors in the three-body exchange di-
agrams, which amounts to suppressing their large-momentum
(short-range) contribution, while leaving the original two-
body theory in Sec. II unchanged. Such an approach has
previously proven successful in nuclear theory [41-43], cold
atoms [44—46], and light-matter coupled systems [47].

Specifically, we take the form factor x to act on the relative
motion between the two interacting charges at the four inter-
action vertices of B. For the results presented in the main text,
we utilize a Gaussian form factor

_2A2
x(P) = e P/,

with the parameter Az = 0.8234ax tuned to fix Er >~ —1.1¢x.
In Appendix D we present results for several different func-
tional forms of the form factor, with the results being almost
completely independent of the precise choice. This high-
lights the universality of our results, with the features of
the polariton-electron scattering dominated by the interplay
between strong coupling to light and the existence of a trion,
rather than by the precise form of the electronic interactions.
We now turn from the trion bound states to quantifying
the strength of scattering between electrons and polaritons.

15)
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FIG. 3. The polariton-electron coupling constant g.p = 7;(0) as a function of detuning for equal masses (m. = my) and Q2/ex = 0.01 (a),
0.025 (b), and 0.05 (c). The value of Q2/ex in (a) and (b) corresponds approximately to monolayer MoSe,, MoS,, and WSe,, and that in
(c) corresponds approximately to monolayer WS,. We show both the results of our full numerical calculation (solid blue line) and the analytic
approximation in Eq. (18) (dashed black line). Note that the scale of g.p increases from (a) to (c).

At momenta characteristic of polaritons, i.e., up to around
the polariton inflection point, the scattering is dominated by
the rotationally symmetric s-wave channel, and we therefore
consider only this. Conservation of energy requires that the
incoming and outgoing relative momenta of the particles are
equal. Furthermore, the energy E of a physical scattering
process must be on-shell, implying that it equals the total
energy of the polariton and electron, E = E_(p) + €,. Thus,
similarly to the case of intravalley polariton-electron scatter-
ing [19], the normalized on-shell 7" matrix takes the form

T,(p) = Z-(P)IX- (@) *ts(p. p. E-(p) + €5,

where the overall normalization Z.(p)X_(p)|* =
Qr/m)|EL(p) — e:ﬂ |X_(p)|? is the residue of the polariton
propagator at its energy pole. From the 7 matrix, we obtain
the long-wavelength polariton-electron coupling constant

gep = T5(0).

This is the coupling constant that one would use as a starting
point for a mean-field description of a many-body system of
polaritons and electrons.

Figure 3 shows the polariton-electron coupling constant as
a function of photon-exciton detuning. The results are calcu-
lated for three different strengths of the Rabi coupling, with
the results for Q = 0.025¢x (2 = 0.05¢x) corresponding ap-
proximately to the monolayers MoSe,, MoS,, and WSe;
(WS,). In Fig. 3, the trion pole can be seen for each light-
matter coupling: As the detuning is changed from negative
to positive we cross a critical detuning where the collision
energy equals the trion energy, i.e., E_(0) = Et, and where
consequently the on-shell 7 matrix diverges. For detunings
where the polariton energy is below the trion, the resulting
gep 18 negative, indicating a strong attraction between the po-
lariton and electron. Conversely, as we increase the detuning
past the critical point, we see positive values of g.p, indicating
a strong repulsion. At positive detuning, another resonance-
like structure is seen for the weaker Rabi couplings. This is
also present in same valley polariton-electron scattering [19],
and originates from an interplay between the strong energy
dependence of the underlying exciton-electron scattering and
the strong detuning dependence of the excitonic Hopfield co-
efficient. Generically, we see that the trion resonance broadens
as the light-matter coupling increases, and that the resulting

(16)

a7

coupling constant is very large around zero detuning where
most experiments are performed.

To better understand the behavior of polariton-electron
scattering, we can consider an analytic approximation of
the T matrix. This is based on the idea that while the
strong coupling to light shifts the collision energy, the ac-
tual interaction process is dominated by the underlying
interactions between the charges. Hence polariton-electron
scattering can be understood as off-shell exciton-electron scat-
tering, an idea that has also been successfully employed to
describe polariton-polariton interactions [20,21] and intraval-
ley polariton-electron interactions [18,19]. At low collision
energy compared with the exciton binding energy, the exciton-
electron scattering takes the universal form of low-energy
short-range interactions [22], leading to

2 1

T.(p) ~ X_(p)*
‘ (p) (p) Mmex In [ — eex/(E,(p) + 6; + Sx)]

. (18)

which reduces to Eq. (1) in the Introduction in the limit
p — 0. Here, the constant €.x = 0.lex is approximately the
trion binding energy (with possibly minor corrections at very
strong light-matter coupling), such that the pole of the T
matrix approximately corresponds to the experimentally ob-
served trion binding energy. In Fig. 3 we plot the analytical T
matrix as dashed black lines, and we see that this approximate
T matrix agrees extremely well. The agreement with the uni-
versal low-energy form of polariton-electron scattering further
emphasizes the universal nature of our results.

In fact, the nonzero value of g.p is a remarkable conse-
quence of the broken Galilean invariance in the light-matter
coupled system. Indeed, 2D scattering theory predicts that the
scattering amplitude should vanish at zero momentum [48]
for any short-range interaction (such as the exciton-electron
potential). However, in the light-matter coupled system this
only happens for p < exp(—m,/mc)ay !, a momentum scale
that is so small that it is only relevant in systems much larger
than the size of the universe [21]. Hence, in practice, our
results for g.p apply when p <« a;(l.

In Fig. 4 we plot the real and imaginary parts of the T
matrix as a function of relative momentum for different values
of detuning and Rabi coupling, still focusing on parameters
relevant to monolayer TMDs [Figs. 4(a)-4(c), MoSe,, MoS,,
and WSe;; Figs. 4(d)—4(f), WS,]. In Figs. 4(a) and 4(b) we see
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FIG. 4. The real (solid blue and dashed red lines) and imaginary parts (solid purple and dashed black lines) of our calculated polariton-
electron T matrix 7;(p) (solid lines) and the analytic approximation in Eq. (18) (dashed lines). Here we use TMD parameters with Q/ex =

0.025 [(a)~(c)] and 0.05 [(d)~(f)].

that the trion resonance occurs at finite collision momentum.
The origin is the strongly momentum-dependent polariton
dispersion below the inflection point, with the resonance cor-
responding to a very high degree of accuracy to when the
polariton dispersion crosses the trion energy, i.e., to the con-
dition E_(p) = Et. In Fig. 4(c), the detuning is such that we
are above the trion resonance for all collision momenta [refer
to Fig. 3(b)]. For this value of the Rabi coupling, we see that
we can still observe a second resonancelike feature above the
trion resonance. On the other hand, for larger light-matter
coupling [Figs. 4(d)—4(f)] the trion pole broadens and dom-
inates the finite-momentum behavior, and the resonancelike
peak is absorbed into the trion pole. In both cases, we find
that the trion resonance also shows up as a narrow peak in the
imaginary part of the full 7 matrix (purple line). However, this
peak is finite and therefore much smaller than the real part, as
discussed in Appendix C.

We also compare our finite-momentum results with the
analytic approximation in Eq. (18). This is again seen to
capture the behavior of the trion pole and resonancelike struc-
ture extremely well. The only point where it fails is close
to where the collision energy matches the exciton energy,
i.e., when E = —ex, where we find a fictitious onset of the
imaginary part. This is due to the analytic formula neglecting
the continuum of states that exist below the exciton in the
light-matter coupled system, and it is associated with the
argument of the logarithm in Eq. (18) becoming negative. This
feature can in principle be cured by introducing a small photon
linewidth [i.e., taking E_(p) — E_(p) + i'], as discussed in
Appendix E. It is also absent in a full two-body T matrix
calculation that treats the exciton as tightly bound but includes
the finite photon mass [21].

Aside from monolayer TMDs, our results also apply to
conventional 2D quantum well semiconductor microcavities
such as GaAs. These naturally feature larger light-matter

coupling relative to their exciton binding energy, even in the
case of a microcavity containing only a single quantum well.
We show our results for g.p for parameters corresponding to
a single GaAs quantum well in Fig. 5(a) and for a system
with larger Rabi coupling in Fig. 5(b). Here, we take the trion
energy to be Ey = —1.1¢x as in the case of monolayer TMDs.
For a single quantum well, we predict a broad resonance at
positive detuning, similar to those in monolayer TMDs. This
should in principle be observable by methods similar to those
employed in Ref. [14]. Once we go to larger Rabi coupling,
the trion resonance shifts to prohibitively large positive detun-
ings. This explains why the trion resonance is not observed in
doped GaAs quantum well microcavities, since typically these
feature multiple quantum wells to enhance the light-matter
coupling, which suppresses the trion resonance around zero
detuning.

In Fig. 6 we show results for GaAs for polariton-electron
scattering at finite momentum. Here, we again find that the
resonance is most likely to be observed in a microcavity con-
taining a single quantum well. We also find that the imaginary
part of the scattering amplitude can be significant close to the
trion resonance, although still substantially smaller than the
real part.

Finally, we briefly discuss the role played by multiple
semiconductor layers in a microcavity. It is well known that
the effective Rabi coupling scales as /N, where N is the
number of layers. Less appreciated is the fact that the effective
pairwise interactions involving polaritons (i.e., polariton-
polariton, polariton-exciton, or polariton-electron scattering)
is reduced by a factor 1/N due to the polariton being spread
over multiple layers [21]. For instance, our results in Figs. 5(b)
and 6(d)-6(f) correspond roughly to a Rabi coupling relevant
to six layers, and therefore the effective coupling constant and
T matrix should be divided by this factor if one were to use
these parameters as inputs into a mean-field calculation of a
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FIG. 5. The polariton-electron coupling constant g.p as a func-
tion of detuning for /ex = 0.2 and 0.5 is shown in (a) and (b),
respectively. Here, we use GaAs parameters, with m, = 0.067my
and my, = 0.45mg, where my is the vacuum electron mass. We show
both the result of our numerical calculation (solid blue lines) and the
analytic approximation in Eq. (18) (dashed black lines), where we
take €.x = 0.1ex.

polariton-electron mixture. In spite of this, it appears realistic
to observe the trion resonance in microcavities containing a
few doped TMD monolayers.

IV. CONCLUDING REMARKS

To conclude, we have used a diagrammatic theory to in-
vestigate intervalley polariton-electron scattering. Our theory
allowed us to sum all diagrams contributing to the scatter-
ing, under the approximation of strongly screened electronic
interactions. In particular, we observed the coupling of the
scattering process to the trion, resulting in a drastic enhance-
ment of the polariton-electron interaction strength when the
polariton energy is tuned to that of the trion. A simple analytic
approximation provided further evidence of the universality
of our results, i.e., their independence of the precise form
of the electronic interactions. Overall, our results indicate a
large degree of tunability in polariton-electron interactions,
since the polariton energy can be tuned by changing the cavity
frequency, or even potentially by applying a magnetic field
[49-51].

It would be interesting to extend our theory to the case of
longer-range electronic interactions, such as the Coulomb or
Rytova-Keldysh potentials characterizing atomically thin 2D
semiconductors. Technically, this could be done by using the

analytic Coulomb T matrix originally derived by Schwinger
[15,52]. Of particular importance would be the investigation
of whether interactions between Rydberg polaritons and elec-
trons could also be resonantly enhanced, a precise description
of which is beyond the current approach based on screened
electronic interactions.

Our theory provides a microscopic foundation for the
polariton-electron interactions in effective theories of po-
laron polaritons in charge-doped semiconductor microcavities
[14,53]. In particular, our analytic approximations in Egs. (1)
and (18) can be used as a starting point for 7-matrix-based the-
ories of polarons and polariton-electron mixtures in a range of
semiconductor heterostructures, including moiré superlattices
in twisted bilayers [54,55], which are only beginning to be
explored.
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APPENDIX A: ELECTRON-HOLE T MATRIX

Here, we derive the electron-hole 7 matrix [23]. We first
write the Lippmann-Schwinger equation for the 7 matrix at
total momentum q and energy E as

A
1
Ih(q.E)=-Vo+Vo ) —5—— W~
Xk:E — €y — € +i0

=—Vo+VI(E —e)Vo— -

-1
= , Al
Vo '+ TI(E — €)) (A
where we have defined
A 1
I(E) = _— A2
(&) Xk: E — ¢ +1i0 (A2)

The exciton (i.e., the center of mass) kinetic energy is e;( =
q°/2myx with mx = m. + my, and the kinetic energy of the
relative motion is €, = k?/2m;,. In 2D, the integral in TI(E) ~
In(A) is divergent as the cutoff A — oo. Thus, in order to
have physically meaningful results in the limit A — oo we
must have VO_1 ~ —TI(E — efl(), corresponding to carrying
out a renormalization procedure. Using the condition that the
T matrix at q = 0 should have a pole at the exciton energy
E = —&x, we obtain

V! = —T(—ex). (A3)
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FIG. 6. The real (solid blue and dashed red lines) and imaginary parts (solid purple and dashed black lines) of the full 7 matrix 7;(p) and
the analytic approximation in Eq. (18) using €.x = 0.1ex. Here we use GaAs parameters with Q/ex = 0.2 [(a)—(c)] and 0.5 [(d)—()].

Substituting back into Eq. (A1) gives the renormalized T ma-
trix
-1 . =27 /my
N(E —€X) —M(—ex) 1 (—‘E - io)’
(A4)

TO(qv E) =

where we have taken the limit A — oo.
An important quantity is the residue of the 7 matrix at E =
—ex for zero momentum, i.e.,
21

ZX = —&X.
nmy

(A5)

This is the square of the normalization of the exciton wave
function.

APPENDIX B: EXCITON-POLARITONS AT
FINITE MOMENTUM

We now go through the theoretical description of exciton-
polaritons within the model (3). The single-polariton problem
in a model containing photons and their coupling to electrons
and holes interacting via a Coulomb potential was first solved
in Ref. [27]. In the present case of contact electron-hole inter-
actions, the polariton problem was first addressed in Ref. [56].
Here, we use the renormalization scheme of Ref. [18], which
has the advantage of being fully analytic. We now briefly
review this approach.

Considering only states consisting of the photon or an
electron-hole pair, the dressed photon propagator D(q, E) =
(0¢q(E — H)™! ¢}10) can be expanded in powers of the light-
matter interaction to give the Dyson equation (for simplicity,
we suppress the spin index throughout this Appendix)

D(q, E) = Do(q, E) + Do(q, E)X(q, E)D(q, E)
1
B DO(qﬂE)_] - E(q’ E)

(BI)

Here, the free photon propagator is Dy(q,E) = (E —» —
€q T i0)~!, and the photon self-energy X consists of two parts

(q E)=g'TI(E — €))+&'TI(E — €3)T(q, E)II(E — €),

(B2)

where the first term corresponds to the photon creating an
electron-hole pair that recombines to form a photon, while
the second term corresponds to those processes where the
electron-hole pair interact following their creation. As dis-
cussed in Appendix A, the integral IT(E —efl() with the
momentum cutoff A is divergent, and in order to get a fi-
nite result we must have g ~ 1/1In(A). This implies that the
momentum cutoff for light-matter coupling and the momen-
tum cutoff for electron-hole interaction behave in the same
manner, i.e., g ~ Vp as A — oo. The simplest renormalization
scheme is to take the cutoff on the light-matter coupling to be
the same as for the electron-hole interaction, as in Ref. [19].
Within this scheme, we renormalize the bare light-matter cou-
pling constant such that g’ TT?(E) = Q2/Zx as A — 0o, with
the relation between the coupling constants being g = Q]—%X
This results in the first term of Eq. (B2) going to zero. The
resulting renormalized dressed photon propagator is

1
_E—i -1 ’
E—a)—ec—i-Q—z[ln(M)] +i0
EX X

D(q,E) = (B3)

q

The bare cavity photon energy w is also renormalized, with its
relation to the physical detuning § between the cavity photon
and the 1s exciton being

QZ

w=0—€ex+ —

Yex (B4)

This is due to the optically active semiconductor medium
shifting the bare cavity photon energy.

The photon and exciton fractions, or the squared Hopfield
coefficients, are found using the unitary pole expansion. The
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photon fraction CZ (p) is obtained by calculating the residue of
the dressed photon propagator Eq. (9). For a Green’s function
G(E) = (E — 2(E))~! with a pole at energy Ey, the residue
by the pole expansion is given by Z = (1 — M|E 5
By expanding the photon propagator in Eq. (B3) around its
poles, the photon fraction is found to be

-1

Q> 1
14+ —

_ 2
&X [ln (er’f ii(l’))] (61))(

Using the photon fraction, we can extract the exciton fraction
from the normalization condition: C2 (p) + X?(p) = 1.

The electron-hole 7 matrix in the presence of light-matter
coupling, which can be thought of as a polariton propagator
P, is derived based on the matter component of the polariton
capable of interacting with a third particle. In the absence of
light-matter coupling, P should reduce to the electron-hole
T matrix Ty. Following Ref. [19], and in condensed form
ignoring the energy and momentum variables,

P =Ty + ¢(TyI1ID + TyIIDIITy + D + DIITy)
1
Ty — Dog?T?’

Ci(p) =
— E+(p))
(BS)

=Ty + ThyDg'T* = (B6)
where in going from the first to the second line we took the
limit A — oo, canceling terms that vanish in this limit. Thus,
within our model, only the diagrams which begin and end with
the formation of the electron and hole are capable of interact-
ing with the third particle in polariton-electron scattering. This
leads to the polariton propagator

—2m /m;
eX—E—i0 2 -
ln(%> +?—X(E—w—el§) !

APPENDIX C: PARTIAL-WAVE DECOMPOSITION AND
NUMERICAL SOLUTION OF THE
SCATTERING EQUATIONS

Pa(P:E) =

. (B7)
+i0

In a similar manner to the partial-wave decomposition of
a two-body T matrix and potential, we project the three-body
equation onto its partial waves. We first write the partial-wave
decomposition of the whole polariton-electron scattering 7'
matrix and irreducible exchange process:

oo
t(p. q. E) = > (2= 819) cos(l6py)1(p. . E),
=0

(&)
B(p,q,E) =Y (2= 810) cos(l0pq)Bi(p, ¢, E).  (CI)
1=0
Here, § is the Kronecker delta, and 6pq = 8 — 6 is the differ-
ence between the angles associated with the vectors p and q.

By inverting Eq. (C1), we have

27 do
tl(pv qu) = / 2pq COS(lepq)t([L qu)v
0 s

cos(l6pq)B(P, q, E). (C2)

2
do
Bi(p, ¢, E) =/ —2“
0 JT

Now we write the three-body equation (13) in integral form
by taking the continuum limit, i.e., converting the sum over
momentum to an integral using

_ / kdk f” dog
0

where the angle of momentum Kk is taken with reference to q.
Then, we insert the expressions in Eq. (C1) for # and B into
Eq. (13). Focusing on the angular integration in the second
term on the right-hand side of Eq. (13) and integrating with
respect to fiq gives

(€3)

> 2= 8:0)2 = 8mo)

n,m=0

/ " o5 (16p4) c0s (mbg) 250
X COoS (n COoS (m
0 pk Ve

= Z(z — 8m0) €08 (MBpq).

m=0

(o2))

Here, Opk and 6yq equal 6, — 6 and 6 — 64, respectively.
Now we apply the integral operator fo cos(10pg)[- ]dg"“ to
the left- and right-hand sides of Eq. (13) to isolate the Ith
partial-wave equation, giving

u(p,q,. E) =Bi(p,q. E)

o0 kdk
+ / Bilp.k EVP, (k. E — )tk 4. E)5
0

(C5)

Solving for the partial-wave exchange process term B
is done in a similar manner to the kernel of the scattering
equation. For convenience we define the partial-wave hole
propagator

2
do
/(. q.E)= / —27‘;“ cos(10pq)gh (P, q, E)
0

2 depq
/0 o cos(16pq)

2 2
X<E_p g

2me  2me

_ P+ q¢* +2pg cos(epq)>_1 (C6)
th
and its inverse
[o.¢]
gh(p.q. E) =Y (2= 819) cos(lbpg)gh (. 4. E).  (CT)

=0

Ignoring for now the form factor x (see discussion in
Appendix D about how this is included in practice), the
partial-wave exchange process in integral form is

sds 2 d@sq
B(p.q.E) =
0

X gf,(p, s,E)TO(s,E —€)gh(s.q,E). (C8)

Now we use Egs. (C1) and (C7) and insert the solutions for
B and g into Eq. (C8). This produces a very similar set
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TABLE 1. Table of the form factor functions used and their re-
spective critical values of A for which Ey = —1.1¢x.

Functional form of x (p)

Type Expression Critical A3 value
Gaussian exp(—p*/A3) 0.8234ay,"
Yamaguchi (14 p?/AH)~! 0.7316ay"
Yamaguchi squared (14 p?/2A2)72 0.7768ax’

of equations to the kernel of the three-body equation above.
Using the same integration procedure as in Eq. (C4), and then
applying the same integral operator foh cos(/ qu)[~]d29% to B,
we isolate the partial-wave contribution

sds
_g};l(p’ S, E)’Ib(sv E - éf)g};l(sv q: E)

Bi(p,.q. E) = / o
0
(C9)

We solve for the partial-wave T matrix using the principal
value method, as the polariton and exciton propagators have
poles that are integrated over in the three-body equation (C5)
and in the hole-exchange process (C9). In the following, we
demonstrate how we treat the pole in the kernel of the scatter-
ing equation [57], with the pole in the hole-exchange process
carried out in a similar manner. The issue is that the polariton
propagator has a simple pole when the energy is on-shell,
i.e., when the collision energy matches the sum of the single-
particle energies: E = E_(q) + €,. Thus P(k, E_(q) + €, —
€;) — oo ask — g. We treat this using the Sokhotski-Plemel;
theorem

1

P
= sk — q), C10
pa— k_q+m( ) (C10)

0
@ |
T — |
g | |
_z’r |
_37 | \ | \ |
0 0.5 1 1.5

1/(Aszax)®

2mi|T(p)|

where P indicates the principal part. This allows us to write
the three-body equation (C5) with £ = E_(g) + e; as

t(p, q) =1 —ima(g)ti(q, PIBi(p, q)
% kdk
+7>/ Bz(p,k)P(k)tz(k,q)z—, (C11)
0 T

where we have suppressed the energy dependence of the vari-
ous terms. Here, we define

k(k —
%P(k, E_(q)+€ —€)
_4q IX_()PZ_(q)

27 3(E_(q) + €)/dq

a(q) = —lim

k~>q

(C12)

and

2 X
Z:(q) = ;|E:t(5I) —€, E (C13)

For convenience we define the 7 matrix such that
1

Kl_l(pv P) + l7tOl(P)

Here, we can see that the real and imaginary parts are sepa-
rated, and the quantity K; is found from the equation

u(p, p) = (C14)

o0 kdk
Ki(p,q) =Bi(p,q) +P /0 B (p, k)P, (k)K; (k, q)g.
(C15)

As seen in Fig. 4, at negative detuning the imaginary part
of the T matrix has a sharp and narrow peak as the collision
energy matches the trion energy. To study this peak, we isolate
the imaginary part of the full 7' matrix using Eq. (C14). As the
real part of the 7' matrix tends to infinity,

Im(z(p, p)) = — (C16)

ma(p)

pax

FIG. 7. (a) Trion energy Er as a function of the form factor parameter 1/(Azax)? for the Gaussian (solid blue line), Yamaguchi (solid
black line), and Yamaguchi squared form factors (dashed yellow line). The exciton energy —ex (solid purple line) is shown for reference. We
also show the realistic trion energy Er = —1.1¢x (dashed black line): The intersection between the calculated trion energy and this line fixes
the form factor parameter Aj. (b) Absolute value of the full 7 matrix for Q2/ex = 0.025 and §/ex = —0.4. Calculations using the Gaussian,
Yamaguchi, and Yamaguchi squared form factors are shown using solid blue, purple, and red lines. Their respective angular integrations that
do not apply the approximation equation (D1) are shown using dashed black, brown, and gray lines. The lines are essentially indistinguishable,

providing evidence for the universality of our results.
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2m.T(p)

pax

FIG. 8. The real (solid lines) and imaginary parts (dashed lines)
of the polariton-electron T matrix T;(p) for Q/ex = 0.025 and § =
—0.4, with equal electron and hole masses. The numerical calcula-
tion (blue) and the analytic approximation equation (18) with I' = 0
(black), I = 1 x 10~*ex (purple), I' = 4 x 10~%¢x (red), and I' =
1 x 10~3gx (brown) are shown.

The value of « is proportional to the exciton fraction, which is
very small for negative detunings, thus resulting in the sharp
(but finite) feature.

APPENDIX D: FORM FACTORS AND
EXCHANGE PROCESS

Here, we discuss the different form factors x (p) we have
used in our calculations. These reduce the strength of pro-
cesses where the hole is exchanged between the two electrons,
thus mimicking electron-electron repulsion. Their functional
form and the critical value of their respective parameters Aj
used to reproduce the observed trion energy of Er = —1.1¢ex
are tabulated in Table 1.

For the results shown in Table I and in the main text, we
have made the approximation of taking the s-wave projection
of the form factor, i.e.,

P+9° > P+ (D1)

While this simplification is not exact, it offers a substantial
numerical advantage since it is necessary for the decoupling
into separate partial waves discussed in Appendix C. Fur-
thermore, it is an extremely good approximation since the
coupling to higher-angular-momentum channels is strongly
suppressed for momenta < 1/ax.

To illustrate the universality of our results, Fig. 7(a)
demonstrates that the three form factors behave almost iden-
tically while solving for the trion energies Et as a function
of Aj. Furthermore, Fig. 7(b) shows our results for the
momentum-dependent scattering using all three types of form
factors [with the s-wave approximation in Eq. (D1)] as well
as for the form factors without this approximation (where
we solve for the full angle-dependent T matrix, which is
numerically much more expensive). We see that the results
are essentially identical, which provides strong evidence that
our polariton-electron scattering results are truly universal.

APPENDIX E: IMAGINARY PART IN THE ANALYTIC
APPROXIMATION TO POLARITON-ELECTRON
SCATTERING

In the analytic T matrix, Eq. (18), the spurious sharp onset
of the imaginary part disappears as soon as we introduce a
small photon linewidth in the energy, i.e., E_(p) — E_(p) +
il", which always exists in real experiments. This has been
illustrated for different values of I' in Fig. 8. We see that
all values of I used reproduce the qualitative features of the
numerical results very well, with I' = 4 x 10~*ex providing
the best match.
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